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Abstract

Background: Finding meaningful gene-gene interaction and the main Transcription Factors (TFs) in co-expression
networks is one of the most important challenges in gene expression data mining.

Results: Here, we developed the R package “CeTF” that integrates the Partial Correlation with Information Theory
(PCIT) and Regulatory Impact Factors (RIF) algorithms applied to gene expression data from microarray, RNA-seq, or
single-cell RNA-seq platforms. This approach allows identifying the transcription factors most likely to regulate a given
network in different biological systems— for example, regulation of gene pathways in tumor stromal cells and tumor
cells of the same tumor. This pipeline can be easily integrated into the high-throughput analysis. To demonstrate the
CeTF package application, we analyzed gastric cancer RNA-seq data obtained from TCGA (The Cancer Genome Atlas)
and found the HOXB3 gene as the second most relevant TFs with a high regulatory impact (TFs-HRi) regulating gene
pathways in the cell cycle.

Conclusion: This preliminary finding shows the potential of CeTF to list master regulators of gene networks. CeTF
was designed as a user-friendly tool that provides many highly automated functions without requiring the user to
perform many complicated processes. It is available on Bioconductor (http://bioconductor.org/packages/CeTF) and
GitHub (http://github.com/cbiagii/CeTF).
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Background
Transcriptome analysis has become crucial to identify
gene circuits involved in regulating cancer hallmarks [1].
One of the intelligent ways to explore this type of data and
obtain biologically relevant information about the mecha-
nisms involved inmodulating gene circuits is the inference
of gene regulatory networks (GRNs). Conceptually, we can
define GRN as the reconstruction of gene networks from
gene expression data, revealing the connection of tran-
scription factors (TFs) with their targets [2], aiming to
highlight which gene interactions are the most relevant to
the study. Despite the plethora of tools, new methods are
needed to assess all possible interactions and their signifi-
cance [3]. Besides, the presence of TFs in interactions for
gene-to-gene is functionally crucial because they may be
playing an essential regulatory role in biological processes
[4]. TFs are considered keymolecules that can regulate the
expression of one or more genes in a biological system,
thus determining how cells function and communicate
with cellular environments [5]. Furthermore, integrating
genome-scale and network generation with the identifi-
cation of main TFs provides new insights into their data
function. In this article, we provide an R package that
enables performing the Regulatory Impact Factors (RIF)
and Partial Correlation with Information Theory (PCIT)
analysis separately, or by applying the full pipeline.
We, therefore, developed an R package called CeTF,

which would not only apply the RIF and PCIT analy-
sis, but would also perform network diffusion analysis,
generate circos plots for specifics TFs/genes, functional
enrichment for network conditions, and others features.
The biggest advantage is that the package is intuitive to
use, and the main functions are written in C/C++, which
provides faster analysis for large data.

Implementation
CeTF is an C/C++ implementation in R for PCIT [6] and
RIF [7] algorithms, which initially were made in FOR-
TRAN language. From these two algorithms, it was possi-
ble to integrate them in order to increase performance and
Results. Input data may come from microarray, RNA-seq,
or single-cell RNA-seq. The input data can be read counts
or expressions (TPM, FPKM, normalized values, etc.). The
main pipeline (Fig. 1) consists of the following steps.

Data adjustment
If the input data is a count table, data will be converted to
TPM by each column (x) as follows:

TPM = 106x
sum(x)

(1)

The mean for TPM values different than zero and the
mean values for each gene are used as a threshold to filter
the genes. Genes with values above half of the previous

averages will be considered for subsequent analyses. Then,
the TPM data is normalized using:

Norm = log(x + 1)
log(2)

(2)

If the input already has normalized expression data
(TPM, FPKM, etc), the only step will be the same filter for
genes that consider half of the means.

Differential expression analysis
There are two options for differential analysis of the gene
expression, the Reverter method [8] and DESeq2 [9]. In
both methods, two conditions are required (i.e., control
vs. tumor samples). In the Reverter method, the mean
between samples of each condition for each gene is calcu-
lated. Then, subtraction is made between the mean of one
condition concerning the other conditions. The variance
of the subtraction is performed, then is calculated the dif-
ference of expression using the following formula, where s
is the result of subtraction and var is the variance:

diff =
s − sum(s)

length(s)√
var

(3)

The DESeq2 method applies the Differential expres-
sion analysis based on the negative binomial distribution.
Although both methods can be used on count data, it is
strongly recommended to use only the Reverter method
on expression input data.

Regulatory impact factors (RIF) analysis
The RIF algorithm is well described in the original paper
[7]. This step aims to identify critical Transcription Fac-
tors calculating for each condition the co-expression cor-
relation between the TFs and the Differentially Expressed
(DE) genes (from previously item). The result is RIF1 and
RIF2 metrics that allow the identification of critical TFs.
The RIF1 metric classifies the TFs as most differentially
co-expressed with the highly abundant and highly DE
genes, and the RIF2 metric classifies the TF with the most
altered ability to act as predictors of the abundance of DE
genes. The main TF is defined if:

√
RIF12 or

√
RIF22 > 1.96 (4)

Partial correlation and information theory (PCIT) analysis
The PCIT algorithm is also well described in the origi-
nal paper from Reverter and Chan [6]. Moreover, it has
been used for the reconstruction of Gene Co-expression
Networks (GCN). The GCN combines the concept of the
Partial Correlation coefficient with Information Theory
to identify significant gene-to-gene associations defining
edges in the reconstruction of the network. At this stage,
the paired correlation of three genes is performed simulta-
neously, thus making the inference of co-expressed genes.
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Fig. 1 CeTF workflow. From top to bottom the four main steps start with data adjustment, followed by a differential expression, Regulatory Impact
Factors (RIF) analysis and ending with Partial Correlation and Information Theory (PCIT) analysis. The plots represent visualization examples that the
package can generate (i.e. data distribution, smear plot, network, heatmap, circos plot)
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This approach is more sensitive than other methods and
allows the detection of functionally validated gene-gene
interactions. First, is calculated for every trio of genes x, y,
and z the partial correlation coefficients:

rxy,z = rxy − rxzryz√
(1 − r2xz)(1 − r2yz)

(5)

And similarly, for rxz,y and ryz,x. After that, for each trio
of genes is calculated the tolerance level (ε) to be used as a
threshold for capturing significant associations. The aver-
age ratio of partial to direct correlation is computed as
follows:

ε = 1
3

( rxy,z
rxy

+ rxz,y
rxz

+ ryz,x
ryz

)
(6)

The association between the genes x and y is discarded
if:

|rxz| ≤ |εrxz| and |rxy| ≤ |εryz| (7)

Otherwise, the association is defined as significant, and
the interaction between the genes x and y is used in the
reconstruction of the GCN. The final output includes
the network with gene-gene and gene-TF interactions for
both conditions, besides generating the main TFs identi-
fied in the network.

Functions of the package
There are 28 functions and 5 example datasets available
in CeTF, which are described in Table 1. A working exam-
ple for each of these functions is given in the package
documentation in the Supplementary Material. The pack-
age allows the integration with many other packages and
different types of genomics/transcriptomics analysis.

Additional functionalities
The CeTF package also includes additional features in
order to visualize the results. After running PCIT and
RIF analysis, it is possible to plot the data distribution,
the distribution of differentially expressed genes/TFs that
shows the average expression (in log2) by the difference
of expression, the network for both conditions and the
integrated network with genes, TFs and enriched path-
ways. Besides, it is possible to visualize the targets for
specific TFs as a circos plot. It is also possible to per-
form the grouping of ontologies [10] without statistical
inference and functional enrichment for several databases
with the statistical inference of many organisms using
WebGestalt database [11]. Finally, it is possible to save
all tables that include interaction networks, enrichment,
differential expression, main TFs, and others.

Table 1 Functions available in CeTF

Function Description

bivar.awk Summary statistics from two variables

CircosTargets Circos plot for the Transcription
Factors/genes targets

clustCoef Calculate the clustering coefficient

clustCoefPercentage Calculate the clustering coefficient as a
percentage

densityPlot Density distribution of correlation
coefficients and significant PCIT values

diffusion Network diffusion analysis

enrichdemo Enrichment data

enrichPlot Plots to visualize the enrichment analysis
results

expDiff Differential expression analysis

getData Data accessor for a CeTF class object

getDE Differential Expression accessor for a CeTF
class object

getEnrich Enrichment analysis for genes of network

getGroupGO Functional Profile of a gene set at specific
GO level

heatPlot Heatmap-like functional classification

histPlot Histogram of connectivity distribution

InputData Input data accessor for a CeTF class object

netConditionsPlot Network plot of gene-gene/gene-TFs
interactions

netGOTFPlot Plot a network for Ontologies, genes and TFs

NetworkData Networks data accessor for a CeTF class
object

normExp Normalized expression transformation

OutputData Output data accessor for a CeTF class object

PCIT Partial Correlation and Information Theory
(PCIT) analysis

pcitC A helper to calculate PCIT implemented in
C/C++

refGenes List of reference genes for 5 different
organisms to perform enrichment

RIF_input Regulatory Impact Factors (RIF) input

RIF Regulatory Impact Factors (RIF) analysis

RIFPlot Relationship plots between RIF1, RIF2 and
DE genes

runAnalysis Whole analysis of RIF and PCIT

simCounts Simulated counts data

simNorm Simulated normalized data

SmearPlot Smear plot for Differentially Expressed genes
and TFs

TFs Transcripition Factors data

Tolerance Tolerance level between 3 pairwise
correlations implemented in C/C++
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Software construction
CeTF is an R-based toolkit, andmost of the code is written
in R language. PCIT and tolerance functions were writ-
ten in C/C++ using Rcpp (v1.0.5) [12] and RcppArmadillo
(v0.10.1.2.2) [13] for better performance. The main R
packages used for analysis and visualization of the results
were the circlize (v0.4.10) [14], ComplexHeatmap (v2.6.0)
[15], DESeq2 (v1.30.0) [9], ggplot2 (v3.3.2) [16], RCy3
(v2.10.0) [17], and others listed in the Supplementary
Material.

Results
To demonstrate the tool’s utility, we used stomach adeno-
carcinoma RNA-seq data from The Cancer Genome Atlas
(TCGA) project [18] and applied all analyzes available
in the CeTF package. Here, we compared samples from
normal tissue (NT=36) and primary tumor (PT=408)
of Stomach adenocarcinoma (STAD). The TFs-HRi are
shown in Table 2 and the analysis of partial results in
Fig. 2A.
Table 2 describes a list of 37 TFs-HRi. Among the

main TFs-HRi identified, we highlight four TFs (SETD3,
HOX3B, FOXA1, and SOX4) for being widely reported in
association with stomach adenocarcinoma. Some studies
show that high expression of the SETD3 gene is associ-
ated with poor survival in triple-negative breast cancer
[19], while HOXB3 and FOXA1 were identified as indica-
tors of better prognosis [20–22]. Interestingly, the elevated
expression of the SOX4 gene has been described to regu-
late the epithelial-mesenchymal transition (EMT) mech-
anism mediated by TGF-beta [23]. The Results presented
below will be centered on the HOXB3 gene, as it is one of
the HOX genes studied by our group [24, 25].
After filtering data, a total of 8,037 genes remained in

the analysis and are represented in Fig. 2A, with 151 up-
regulated genes (red dots) and 118 down-regulated genes
(blue dots). On this set of genes, 7 TFs are up-regulated
(green dots), 9 TFs are down-regulated (pink dots) and
504 are not differentially expressed. Figure 2B places the
HOXB3 gene as a central hub and its 2520 gene-to-gene
interactions obtained with the CeTF package. Seventy-six
up-regulated targets, and 58 down-regulated targets were
found.
Figure 2C shows the heatmap with all 163 HOXB3 tar-

gets, which revealed no correlation with the two main
groups of samples with clinical and histopathological data.
A graph with the enrichment of gene pathways only with
HOXB3 targets (Fig. 2D) shows that only one biologi-
cal process (muscle system process) was enriched with
overexpressed HOXB3 targets. Nine other biological pro-
cesses were enriched with downregulated targets associ-
ated with the cell cycle, corroborating with the biology of
normal tissues (Fig. 2D). Furthermore, the Chip-seq data
from one of our studies (unpublished data) were used to

Table 2 List of TFs-HRi from TCGA-STAD analysis. Here we have
the Transcript Factors (TF) found as playing an important role in
the given comparison. Also shown is the mean of expression
(avgexpr) for each TF, in addition to the values of the metrics RIF1
and RIF2. Finally, freq.NT and frep.TP columns represent the
frequency of appearance of the given TF in each condition, with
freq.diff being the difference between these frequencies. A
positive difference means that TF plays an important role in the
reference condition in the NT case, whereas a negative difference
means that TF plays an important role in the condition TP

TF avgexpr RIF1 RIF2 freq.NT freq.TP freq.diff

SETD3 5.854 1.409 2.189 162 13 149

HOXB3 4.309 0.517 2.282 159 14 145

RNF115 4.96 -2.324 1.64 153 19 134

TOX4 6.183 2.345 1.63 139 9 130

ASCL2 3.96 2.179 0.678 147 18 129

FOXA1 5.597 -0.801 2.022 159 34 125

SOX4 7.281 3.554 1.072 149 29 120

CSDE1 8.816 -0.069 2.153 172 53 119

TEAD3 5.903 -0.225 2.031 157 46 111

VEZF1 6.211 -0.385 2.243 157 47 110

TERF1 4.853 -2.475 0.902 123 17 106

RBBP7 7.086 2.393 1.872 147 42 105

BBX 6.22 -0.314 2.09 154 55 99

ECD 5.17 3.16 0.778 115 20 95

SPDEF 3.749 -2.081 1.078 114 20 94

TULP3 5.059 0.698 2.012 152 58 94

TRIM16 5.74 -2.266 0.721 127 35 92

ZBTB7C 3.999 -3.093 0.824 122 30 92

NFX1 5.733 3.149 0.852 96 13 83

TP53 6.305 -2.016 -0.005 89 8 81

NFE2L3 6.01 2.484 1.068 175 112 63

TSC22D4 5.989 -1.976 -0.106 72 9 63

AFF4 7.147 2.486 0.539 89 27 62

ELF1 6.758 -2.384 -0.09 76 16 60

VTN 1.905 -2.277 0.02 66 13 53

ADNP2 5.251 2.319 0.311 79 29 50

KLF4 6.519 -3.313 -0.297 73 24 49

CDC5L 5.794 2.845 -0.058 69 36 33

KLF6 7.737 -2.584 -1.222 31 10 21

PER1 5.694 2.051 0.866 127 115 12

MYC 7.064 2.127 -0.714 35 29 6

LYAR 4.775 2.242 -1.301 45 75 -30

HMGB2 6.67 -0.737 -2.214 3 66 -63

MAFB 5.29 -2.433 -1.844 32 95 -63

E2F3 4.673 0.238 -2.131 7 80 -73

SSRP1 7.323 1.431 -2.081 44 128 -84

MAF 5.527 0.495 -2.282 20 124 -104
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Fig. 2 TCGA-STAD data results comparing normal versus tumor samples using CeTF. (A) Smear plot showing the difference of expression for 8,037
genes, which 151 are up-regulated (colored in red), 118 are down-regulated (blue color), and the dots in black color are not differentially expressed
based in a difference of expression module cutoff of 2.57. There are 7 TFs up-regulated (green color), 9 TFs down-regulated (pink color), and 504 not
differentially expressed TFs (grey color). (B) Smear plot showing the 163 HOXB3 targets. Of these, 76 are up-regulated, 58 are down-regulated, and
29 are not differentially expressed. The yellow dots represent the 149 targets associated with NT samples, and the green dots represent the 4 targets
associated with TP samples. (C) Heatmap with 163 HOXB3 targets in NT samples. The bottom annotation has clinical information as tumor stage,
AJCC pathologic N, AJCC pathologic T, AJCC pathologic stage, primary diagnosis, AJCC system edition, gender, and race. (D) Enrichment of 163
HOXB3 targets with Gene Ontology Biological Process showing which genes are enriched with the pathways and their expression difference. The
bar plot on the left side shows the enrichment ratio. The left sidebar shows the enriched pathway significance with an asterisk if significant, a
p-value less than 0.05. Finally, the top annotation shows the match between HOXB3 targets from CeTF and ChIP-seq. (E) Circos plot representing the
HOXB3 targets and their chromosome position. HOXB3 is located on chromosome 17. The red line shows the 10 cis interactions (the target is
located at the same chromosome HOXB3), and the black lines indicate a trans interaction (the target is locatedon a different chromosome than
HOXB3). (F) Network with 134 down and up-regulated HOXB3 targets. The network has 135 nodes and 2520 edges. HOXB3 is represented in the
center of the network in blue color. The green nodes represent the 79 targets found in CeTF that match with ChIP-seq targets for HOXB3 and the
yellow nodes represent the 55 targets that don’t fit with them
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validate the 163 targets predicted. Although the CHIP-seq
data were generated from placental tissue, 54% of the tar-
gets predicted by the CeTF package have been validated
(Fig. 2D). In addition to the negative control of the cell
cycle, the DUSP1 gene, which is upregulated in all cell
cycle biological processes, is related to the negative regu-
lation of cellular proliferation [26]. A representation of the
genomic distribution of the HOXB3 targets (located on
chromosome 17) shows that the vast majority of targets
are in different chromosomes. Ten targets are located on
chromosome 17 (Fig. 2E). Finally, we built the network for
HOXB3 and their targets (Fig. 2F). The targets validated
by Chip-seq are highlighted in green color.

Conclusions
CeTF is a tool that assists the identification of meaningful
gene-gene associations and the main TFs in co-expression
networks, as demonstrated previously. It offers functions
for a complete and customizable workflow from count
or expression data to networks and visualizations in a
freely available R package. We expect that CeTF will be
widely used by the genomics and transcriptomics com-
munity and scientists who work with high-throughput
data to understand how main TFs are working in a co-
expression network and what are the pathways involved in
this context. We employ RNA-seq data of stomach adeno-
carcinoma from the TCGA project to demonstrate all the
CeTF package analyses. We believe that the present study
will help researchers either identify transcription factors
with a critical role in regulating gene pathways involved
with tumorigenesis or other biological systems of interest.

Availability and requirements
Project name: CeTF
Project home page: http://bioconductor.org/packages/
CeTF and http://github.com/cbiagii/CeTF
Operating system: platform independent
Programming language: R
Other requirements: R 4.0 or higher
License: GPL-3
Any restrictions to use by non-academics: no licence
needed
Abbreviations
CeTF: Coexpression for Transcription Factors; RIF: Regulatory Impact Factors;
PCIT: Partial Correlation with Information Theory; TFs: Transcription Factors;
TCGA: The Cancer Genome Atlas; TFs-HRi: Transcription Factors with a High
Regulatory impact; GRNs: Gene Regulatory Networks; TPM: Transcripts Per
Million; FPKM: Fragments Per Kilobase Million; DE: Differentially Expressed;
STAD: Stomach adenocarcinoma; EMT: Epithelial-Mesenchymal Transition

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12864-021-07918-2.

Additional file 1: Detailed tutorial for CeTF package. This file is an tutorial
showing step-by-step how to use CeTF package.
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