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Point-driven modern Chladni
figures with symmetry breaking
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Point-driven modern Chladni figures subject to the symmetry breaking are systematically unveiled by
. developing a theoretical model and making experimental confirmation in the orthotropic brass. The
Accepted: 5 July 2018 . plates with square shape are employed in the exploration based on the property that the orientation-
Published online: 18 July 2018 . dependent elastic anisotropy can be controlled by cutting the sides with a rotation angle with respect to
: the characteristic axes of the brass. Experimental results reveal that the orientation symmetry breaking
not only causes the redistribution of resonant frequencies but also induces more resonant modes.
More intriguingly, the driving position in some of new resonant modes can turn into the nodal point,
whereas this position is always the anti-node in the isotropic case. The theoretical model is analytically
developed by including a dimensionless parameter to consider the orientation symmetry-breaking
effectin a generalized way. It is numerically verified that all experimental resonant frequencies and
Chladni patterns can be well reconstructed with the developed model. The good agreement between
theoretical calculations and experimental observations confirms the feasibility of using the developed
model to analyze the modern Chladni experiment with orientation symmetry breaking. The developed
model is believed to offer a powerful tool to build important database of plate resonant modes for the
applications of controlling collective motions of micro objects.

Received: 3 May 2018

Chladni sound figures of vibrating plates which greatly impressed Napoleon in 18" century! have inspired many
essential research in modern physics such as quantum chaos?, self-organization of granular media®*, microscale
acoustofluidics>®, and pattern formation”®. Due to its advantages of robustness, low cost, easier observation, and
high replicability, the historic vibrating plate experiment still serves as a promising candidate to develop frontier
applications including automated patterning of micro-objects®'?, non-contaminated positioning of biomole-
cules'"'?, and sorting different particles’>'%. Nowadays the traditional violin-bowing method has been replaced by
an oscillating point driving source in modern Chladni systems to provide more stable and reliable experimental
results'®. The point-driven modern Chladni figures have not only been broadly used to demonstrate wave physics
in popular science but also applied to the groundbreaking technology of manipulating multi-object motion by a
single-actuator system'?.

Recently, the formation of modern Chladni figures has been explicitly resolved by an analytical model con-
sidering the coupling effect between the thin plate and the point oscillator's. However, the current model only
focuses on analyzing isotropic plates and cannot fully characterize the vibration of general systems with ani-
sotropic properties. Unlike the isotropic cases, Chladni figures of anisotropic plates have been found to show
morphologies with broken-symmetry that cannot be simply explained from the plate geometry as seen the com-
parison for aluminum and brass circular systems (Fig. 1). Even though the symmetry-breaking features in vibrat-
ing plates have been observed and explored for a long time'”~%°, a complete model that can nicely formulate all
resonant spectra and Chladni figures for anisotropic systems remains highly desirable so far. Since the elastic
anisotropy ubiquitously exists in materials such as copper, brass, silicon, sapphire, etc., which are commonly
used in industry and semiconductor engineering, developing a general model to analyze modern Chladni figures
for systems with broken orientation symmetry is greatly important to improve accuracy of actuating devices for
micro-particles.

In this study, point-driven modern Chladni system subject to orientation symmetry breaking is thoroughly
explored by developing a generalized model and making experimental confirmation in the orthotropic brass
plates. Thanks to the orthotropy of brass?,, plates with different elastic anisotropy magnitude can be directly made
by cutting the brass sheet into squares with their sides along different rotation angles with respect to the charac-
teristic axes of brass. Experimental results of the frequency spectra reveal that the increasing symmetry breaking
not only arouses the redistribution of resonant peaks but also induces more resonant modes. More intriguingly,
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Figure 1. Comparison of typical Chladni figures for circular plates. The resonant Chladni figure of the isotropic
aluminum plate follows the symmetry of the boundary geometry, whereas the case for the orthotropic brass
cannot be simply explained by its boundary shape.

it is discovered that the driving position in some new resonant modes will turn into a nodal point, whereas this
position is always an antinode for the isotropic plates. The peculiar morphology of new resonant modes with a
nodal-point driving position is originated from antiphase superposition of nearly degenerate eigenstates which
can only happen in systems with broken-symmetry??. By including a dimensionless parameter to consider the
orientation symmetry-breaking effect in a generalized way, a theoretical model is analytically developed to recon-
struct all experimental observations. The numerical reconstructions verify that all experimental resonant fre-
quency spectra and Chladni figures can be satisfactorily described by the developed model. The good agreement
between theoretical calculations and experimental results confirms the feasibility of using the developed model
to efficiently analyze the vibrating modes and to effectively determine some critical elastic parameters of the ani-
sotropic plates to greatly benefit various applications in practice.

Results

Modelling modern Chladni systems with symmetry breaking by orthotropic plates. The the-
oretical foundations for orthotropic systems are considered first to offer more general concepts for modern
Chladni figures subject to orientation symmetry breaking. Note that in addition to orientation symmetry, plate
systems possess translational symmetry which will also affect the resonant modes significantly if it is broken.
However, studying the effect of translational symmetry breaking on plate resonance is beyond the scope of this
work since the plates used in the experiments are considered to be uniform. The governed equation for the vibra-
tion mode v of orthotropic thin plates with two characteristic axes can be given by the anisotropic Kirchhoff-Love
equation as*

0" " o'y

where v, is the Poisson ratio in xy-plane, G is the in-plane shear modulus, D, , = E, , w12(1 — ny’/yx) is the
flexural rigidity, and E, , is the Young’s modulus along the x or y characteristic direction. Note that the condition
of symmetry of stiffnesses for orthotropic plates ensures v, E, = v, E, . Due to the orthotropic property, bending
waves inside the plate correspond to different acoustic speeds along different propagating directions. To deter-
mine the dispersion relation depending on the propagating orientation in the orthotropic plate, the plane-wave
solution given by ¢(x, y) = 1, e K» 0% o= Knindy yith the amplitude of 1/, and the propagating wave number
Kp(0) along an arbitrary direction with a rotation angle 6 to one of the characteristic axes can be considered.
Substituting the plane-wave solution into Eq. (1), the orientation-dependent dispersion relation of the ortho-
tropic plate under the infinite plate approximation can be found to be
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where
B(0) = Dxcos49 + Z(nyDy + 2G)cos?0sin’0 + Dysin49. (3)

Equations (2) and (3) clearly show that bending waves propagating along the directions denoted by 6 and
0+ w/2 to the orthotropic characteristic axes will more or less correspond to different acoustic speed except for
the case with § = nt/4. Based on this property, the orientation symmetry breaking induced by the elastic anisot-
ropy for the system can be flexibly adjusted by cutting orthotropic plates into squares with their sides along differ-
ent angles 6 with respect to the characteristic axes. More specifically, for an orthotropic square plate with the sides
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along 0 and 0 + w/2 directions, the quantitative measure for orientation symmetry breaking of the system can be
simply related to the ratio between the propagating wave numbers as

Kp(0)
Kp(0 + 7/2)

1 — 6(0)

1/4
_ B(0 + 7/2) _
1+ 60) (4)

B(0)

where §(0) is a dimensionless symmetry-breaking parameter modelling the magnitude of elastic anisotropy and
can be reversely evaluated as

1 — [B(@ + 7/2)/BO)]*

50) = .
© + [B(O + =/2)/B(O)]""*

(5)

Once 6 is specified, the anisotropic Kirchhoff-Love equation given by Eq. (1) can be subsequently solved to
find out the eigenmodes and eigenvalues for constructing the response wave function of the system. However,
solving the vibration of free-edge plates has long been a tough problem even for the seemingly simple isotropic
square systems?. Hence some critical assumptions are required to obtain an analytical expression for approximat-
ing the vibration wave function. Typically, the anisotropy of the orthotropic plate is dominated more by the differ-
ent Young’s moduli for the two characteristic axes than by the Poisson effect. Besides, the in-plane shear effect is
comparatively small for the vibrating thin plates. Therefore, the cross term for the coupling between x and y direc-
tions in Eq. (1) may be neglected. Consequently, the vibrating modes of orthotropic plates can be approximated
by straightforwardly considering the overall anisotropic properties with the dimensionless symmetry-breaking
parameter 6 as

4
(- 6)26¢+(1+6)26¢ K*y =0,
x* (6)

where the effective wavenumber K includes contributions from x- and y-propagations as K* = (K2 + K 2) Even
though Eq. (6) still cannot be solved analytically for the square plate with free edges, its correspondmg mode
functions have been confirmed by Rayleigh?? that can be nicely approximated by the eigenfunctions of
free-boundary membrane as long as the wavelength of bending wave is far larger than the thickness of plate*.
Neglecting the cross term and assuming x- and y-coordinates of the system can be separable once again, the
eigenmodes ¢, ., (x, y) and eigenvalues K, , of the orthotropic square plate with the regionin 0 < x, y < a
under the free- edge condition can be appr0x1mately given by

) = % cof o 2T %
and

K2 = [1]2[(1 —ont 4+ (1 + HnAl.

" g (8)

Note thatn, = 0, 1, 2, ...andn, = 0, 1, 2, ...are respectively the mode indices along x and y coordinates
of the plate. Using the approximated eigenmodes and eigenvalues, vibrating wave functions of point-driven
square plate subject to orientation symmetry breaking can be generalized from previous work!® as

Vx, ysw)= Y, Cpppon, (s ¥, w) cos[—x]cos[—y]
a

ny Vl (9)
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Herew, = ./B/ph - (w/a) given by the dispersion relation of Eq. (2) has been used for clearer presentation
later. For brevity, the parameters x” and y’ denoting the driving point position of plate are omitted in the argu-
ments of vibrating wave function U(x, y ; w) in Eq. (9). A more explicit derivation for the expression of
Y(x, y ; w)is provided in the section Methods.

With the analytical approximation for the response modes, influences of orientation symmetry breaking on
resonant spectra and wave functions of modern Chladni system can be explicitly analyzed. For a vibrating plate
coupled to a driving point source, the resonance conditions can be quantitatively determined by analyzing the
spectrum of effective radiated power efficiency at the driving point (x’, y’). The driving-point radiated power of
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Figure 2. Effective participation mode number spectra N, The N,z spectra for square plates with different
symmetry-breaking parameters of =0, 0.02, and 0.05 were calculated and shown from top to bottom. The
redistribution of resonant peaks with increasing symmetry breaking manifests two types of resonant modes
for the plate: one is the so-called robust mode (see the cases i-iii) with its peak position remaining nearly
unchanged under orientation symmetry breaking; the other is the new-formed resonant mode occurring at the
local minimum of the isotropic spectrum (see the cases of iv and v).

vibrating plate has been confirmed to be directly proportional to the number of effective participated eigenstates
N,gin the response wave function®. It is worthy to note that N, for the vibrating plate is similar to the concept of
acoustic density of states whose increment has been proved to play an important role for the enhancement of
acoustic emission?. Since entropy is a logarithmic measure of the number of eigenmodes with significant partic-
ipated probability in the coherent superposition to form the response wave function, the N4 spectrum of the
vibrating plate can be related to the entropy S as Neff(k) = exp(S(k)) . A more detailed discussion to calculate the
entropy corresponding to a given driving wave number by the weighting coeflicient function in Eq. (10) is pro-
vided in the section Methods. In order to compare with the results of isotropic plate in previous works more
directly, the argument of the expansion coefficient function in Eq. (10) has been changed from frequency w to
wave number k by simply using the dispersion relation with w = C - k% where the coefficient C can be evaluated
by Eqs (2 and 3) once the orientation angle ¢ is determined. By specifying the local maxima of N, spectrum
under different § parameters, the redistribution of resonant peaks of vibrating plates with orientation symmetry
breaking can be analyzed. Figure 2 shows the calculated results of N;(k) for the square plates with symmetry
breaking parameters 6 to be 0, 0.02, and 0.05. The calculated N,;(k) spectra can be seen to behave as oscillatory
functions whose peak positions correspond to resonant wave numbers that leads the acoustic power transferred
efficiency of system to be local maxima. The validity of determining the resonant peak positions by the maximum
N,y (or the maximum entropy) may be understood via the concept of energy equipartition in statistical mechan-
ics, i.e. the more the eigenstates participating in the total energy configuration, the higher the energy it can pos-
sess since each eigenstate can offer the same energy contribution to the system. This so-called maximum entropy
principle has been widely confirmed to be feasible and reliable to predict the collective behavior in multimode
systems such as maximum emission for lasers?, self-organization for complex systems?’, wave function localiza-
tion for disordered systems?®, and phase transitions for open quantum systems?. From the results of the redistrib-
uted N,gspectra, some resonant modes (marked by blue downward arrows in Fig. 2) can be found to be so robust
with their resonant peak positions remain almost unchanged when the symmetry-breaking parameter § increases.
These nearly unaffected peak positions can be seen to correspond to relatively larger N, (larger density of states)
whose positions are mainly determined by the energy level distribution of the plate. Since the perturbation effect
like the orientation symmetry breaking is insufficient strong to considerably shift the positions of clustered energy
levels of the system, the number of participated eigenstates in the robust modes only decreases a little as ¢
increases. In addition, because the dominant participated eigenmodes in the coherent superposition can still have
relatively high participated probability under the orientation symmetry breaking, the morphologies of the robust
modes can be conjectured to be almost the same. A detailed analysis for the dependence of morphology variation
on the eigenstate composition for the resonant modes will be discussed later. On the other hand, some new reso-
nant peaks can be found to emerge at the positions of local minima for the isotropic case as the symmetry-breaking
parameter increases. Once ¢ is sufficient large, N, for the new resonant modes can even exceed those of the orig-
inal resonant modes in the isotropic case to become locally dominant states as seen the marks (iv) and (v) in
Fig. 2.

To examine the influences of orientation symmetry breaking on the wave patterns, the resonant wave func-
tions of vibrating plates corresponding to driving wave numbers marked by (i)-(v) in Fig. 2 under different
symmetry-breaking parameters § =0, 0.02, and 0.05 are calculated by Eqs (9-11) and shown in Fig. 3. Consistent
with the aforementioned discussion, the overall structures of mode patterns for the robust modes (i)-(iii) remain
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Figure 3. Calculated resonant wave functions of square plates. Resonant wave functions of square plates
corresponding to the peaks (i)-(v) in Fig. 2 were calculated under different symmetry-breaking parameters
6to be 0 (top), 0.02 (middle), and 0.05 (bottom). The robust modes (i)-(iii) can be seen to only show slightly
deformed morphologies under the orientation symmetry-breaking effect. In contrast, the morphologies of new
resonant modes (iv) and (v) under non-zero symmetry breaking can be found to be dramatically different from
the wave patterns of the isotropic cases

nearly unchanged but only deform slightly along one coordinate axis as the symmetry-breaking parameter
increases. The numerical results validate the fact that the larger the N5 for the coherent superposition, the more
stable the structure of the resonant mode against the perturbation. In contrast, the new resonant modes (iv) and
(v) with non-zero ¢ can be obviously found to show totally different morphologies in comparison with the iso-
tropic cases. Unlike typical plate wave functions with a presumable antinode at the driving point because that this
position serves as the main excitation source for the plate vibration, it can be intriguingly seen that the driving
position will turn into a nodal point in some new resonant modes under orientation symmetry breaking'®.

In order to analyze the morphology transition with increasing elastic anisotropy more quantitatively, the
eigenmode compositions given by the weighting coefficient C, , (k) for the cases of the robust resonant mode
(k/a=29.662) and the new resonant mode (k/a =33.832) are further analyzed (Fig. 4a). For the case of robust
mode, the number of eigenstates with significant participated probability can be seen to decrease a little as §
increases, which agrees with the results in Fig. 2. However, the slight decrement of N, for the robust mode does
not influence the global morphology of the wave pattern because the significant participated eigenmodes still
have sufficient large contribution to the coherent superposition. The slightly deformed wave patterns along one of
the coordinate direction for the robust mode can be explained by the enlarged magnitude differences on the
weighting coefficients for participated eigenmodes 1, n, and wng,nl as the symmetry-breaking parameter ¢
increases. Nevertheless, it can be clearly found that most of the dominant eigenstates in the robust modes remain
in-phase in the superposition no matter how the symmetry-breaking parameter increases. On the contrary, the
participating eigenmodes Yy, and Uy, for the new resonant mode show abrupt change from in-phase to
antiphase superposition once there exists non-zero symmetry breaking. The antiphase superposition of eigen-
modes has been known to be the main cause for wave patterns with a nodal point at the fixed or driving position
for the free-edge plates??. However, the relationship between symmetry breaking and the presence of antiphase
superposition in plate systems is seldom discussed with an explicit model so far. Using the developed analytical
expression for the resonant mode, antiphase superposition induced by orientation symmetry breaking can be
easily explained with the conceptual diagram (Fig. 4b). Without symmetry breaking (K,, , = K, ,, ), all degen-
erate eigenmodes Uy o, and ¢, are in-phase to correspond to either positive or negative weights in the super-
position no matter the driving wavenumber is larger or smaller than the closest eigenvalue K, , . In contrast,
once the symmetry breaking causes the degenerate level splitting, antiphase superposition naturazlly appears as
long as the driving wave number is in between the split eigenvalues K, , and K, . .From the other viewpoint, it
is the degenerate level splitting to lead to the emergence of new local maximum in N ;- spectrum so as to form the
new resonant mode. Next the modern Chladni experiment of vibrating orthotropic plates is performed to con-
firm the developed theory.
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Figure 4. Studying mode pattern variation by mode composition analysis. (a) The eigenmode compositions for

33.832) under different
and 0.05 were analyzed and plotted from top to bottom. The main
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-phase no matter how ¢ changes, while the
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two degenerate eigenstates have been split due to orientation symmetry breaking, the anti-phase superposition

(b) Conceptual diagram for explaining the origin of antiphase superposition from symmetry breaking. Once
will naturally occur when the driving wave number is tuned to in between the split levels K, s and Ko,y

dominant eigenmodes for the new resonant mode are clearly seen to be antiphase once § becomes non-zero.
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Figure 5. Setup of modern Chladni experiments with symmetry breaking. (a) Fabrication of thin plates with
different magnitude of elastic anisotropy. Based on Eq. (3), the brass sheet was cut into three squares with
their sides along the directions with angles of 0, /6, and /4 with respect to one of the characteristic axes

of the orthotropic brass. (b) Apparatus for measuring the resonant spectrum and the corresponding nodal-
line patterns for modern Chladni systems. Following the measurement in ref.?, a digital galvanometer was
connected in series to the vibrating system (thin plate and mechanical oscillator) to probe the driving power
efficiency for characterizing the resonant spectrum. The resonant Chladni figures were then recorded by the
traditional sprinkling-sand approach.

Experimental verification by orthogonal brass plates. Because of its appropriate stiffness and elastic
properties®, the orthotropic brass which plays important roles in industry and musical instrument manufactur-
ing was utilized for the modern Chladni experiment. To create thin plates with different elastic anisotropy corre-
sponding to different symmetry-breaking parameters 6, a brass sheet with a thickness of 0.8 mm were cut into
three squares with the side-length 4 =280 mm and with their sides along the cutting direction in rotation angles
0 of 0, /6, and /4 with respect to one of the characteristic axes of brass (Fig. 5a). All brass plates were fixed and
driven at the square center as seen the experimental setup for modern Chladni figures (Fig. 5b). The solid black
lines in Figs 6a—-8a show the experimental frequency spectra of the driving efficiency of power delivery 7 for the
brass plates with § = /4, ©/6, and 0, respectively. According to the orientation-dependent dispersion relation
given by Eq. (3), it can be easily deduced that the symmetry-breaking parameter increases as the cutting angle 6
deviates away from § =n/4,1i.e.5(0) > &(w/6) > 6(w/4). Consistent with previous theoretical discussion, several
new resonant peaks can be clearly found in the frequency spectra as the symmetry breaking parameter increases
(Figs 6a-8a). Subsequently, Chladni nodal-line patterns corresponding to the resonant modes of vibrating brass
plates were recorded by using the traditional method. The first row of Fig. 6b shows the experimental Chladni
figures corresponding to the resonant peaks (i)-(x) in Fig. 6a of the brass plate with § = /4. These resonant
modes exactly belong to the robust modes whose resonant peak positions can be clearly seen to be almost
unchanged with the symmetry breaking (Figs 6a-8a). Besides, resonant Chladni figures of these robust modes for
the case of  =7/4 can be seen to present highly symmetric morphologies that are quite similar to the results for
the isotropic square plate?*. The comparatively less resonant peaks in the frequency spectrum and the
high-symmetry nodal-line patterns of resonant modes implies the brass square plate with 6 = /4 can be certainly
viewed as an isotropic system with § =0. The first rows of Figs 7b and 8b show Chladni figures corresponding to
some new resonant modes marked by (i)-(vi) in Figs 7a and 8a. All these new resonant modes induced by orien-
tation symmetry breaking indeed reveal nodal patterns with the driving position to be a nodal point as the theo-
retical prediction. Moreover, some Chladni figures of the new resonant modes can also be found to present
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Figure 6. Experimental V.S. theoretical results for the square plate with =0. (a) The experimental result (solid
black line) and the theoretical reconstruction (red chain line) of the frequency spectra of the driving efficiency
of power delivery 7 for the square brass plate with the cutting angle § = /4 and the symmetry-breaking
parameter 6 =0. (b) The experimental results (first row) and the theoretical reconstructions (second row) of
resonant Chladni figures corresponding to peaks (i)-(x) in the resonant spectrum. The high similarity between
these results and those in ref.? for the aluminum plate implies that the square brass plate with cutting angle

0 = /4 can be regarded as an isotropic system as the theoretical prediction.

deformed morphologies that break the reflection symmetry with respect to the square diagonals when the sym-
metry breaking parameter increases even further (see i, iv, and vi in Fig. 8b).

Reconstructing experimental resonant modes by developed model.  For validating its feasibility to
analyze modern Chladni systems with orientation symmetry breaking, the developed model is further exploited
to reconstruct all the experimental observations subsequently. Theoretically, the driving efficiency of power deliv-
ery 7 of the vibrating plate can be expressed as the square of the ratio of the reaction amplitude o ¥(x/, y’; w) to
the driving amplitude Q that can be explicitly derived as'®

2
|a U(x', y'; w)|

Q

’ _|my a E, yh w)
1+ a =,y w)

N(w) =

My (12)

Utilizing Eq. (12) with the parameters of a=0.1, w,= 1045, y=0.16w,, and m,/m,= 0.1, the reconstructed
frequency spectra of driving efficiency are calculated and shown by the red chain lines in Figs 6a-8a. Note that the
damping coefficient v and coupling factor « that are respectively associated with the widths and positions of res-
onant peaks can be directly determined by best fitting the numerical calculation to the experimental results. By
fine tuning the symmetry-breaking parameter ¢ in the calculation, the overall structures of experimental fre-
quency spectra can be seen to be nicely matched by the numerical results. The best fitting between the experimen-
tal and numerical spectra in Figs 6a-8a correspond to symmetry-breaking parameters ¢ to be 0, 0.014, and 0.022
for the brass plates with cutting angles 0 of /4, ©/6, and 0, respectively. Using Eqs (9 and 10) with the driving
frequencies to be at the peak positions marked in Figs 6a-8a, the corresponding Chladni figures for the brass
plates can be reconstructed by evaluating the inverse of wave patterns|¥(x, y; w)[* as seen in the second rows of
Figs 6b-8b. Even though slight differences can be found in detailed structures due to the linear approximation in
theory and the manufacturing imperfections of plates, the global morphologies of experimental Chladni figures
are satisfactorily reconstructed by the numerical patterns of current model. The good agreement between the
numerical reconstructions and the experimental results once again verifies the applicability of the developed
model to nicely approximate the resonant behavior of vibrating thin plates subject to orientation symmetry
breaking. Finally, the orientation-dependent symmetry-breaking parameter for the brass plate given by Eq. (3) is
further calculated with the elastic constants®' of E,=107.7 GPa, E, = 126.5 GPa, and vyE, +2G=280.3 GPa to
compare with the results from reconstructions (Fig. 9). The high consistency between the reconstructing param-
eters and the results calculated from the elastic theory further verifies that the developed model can be a powerful
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Figure 7. Experimental V.S. theoretical results for the square plate with 6 =0.014. (a) The experimental result
(solid black line) and the theoretical reconstruction (red chain line) of the frequency spectra of the driving
efficiency of power delivery 7 for the square brass plate with the cutting angle § = ©/6 and the symmetry-
breaking parameter  =0.014. (b) The experimental results (first row) and the theoretical reconstructions
(second row) of the resonant Chladni figures corresponding to peaks (i)-(vi) in the resonant spectrum.
Compared with the results shown in Fig. 6(a,b), some new resonant peaks can be clearly seen to emerge from
the orientation symmetry breaking. The Chladni figures of new resonant modes reveal morphologies with a
nodal point at the driving position which is always an antinode in the isotropic plates.

tool to be combined with the numerically modal-expansion method* to analyze the anisotropic elastic constants
of orthotropic plates more efficiently.

Discussion

In this study, point-driven modern Chladni systems subject to the orientation symmetry breaking effect have
been theoretically and experimentally explored in depth. By cutting the orthotropic brass sheet into squares
with their sides in rotation angles with respect to the characteristic axes, vibrating plates with different elastic
anisotropy have been systematically explored. It has been confirmed that the resonant spectra reveal explicit
redistribution and occurrence of new resonant modes under the orientation symmetry breaking effect which
leads the degenerate level splitting of the orthotropic plates. More intriguingly, the driving position in some
new resonant modes has been found to turn into a nodal point, whereas this position is always an antinode in
the isotropic plates. Using the analytical model developed by including a dimensionless parameter to consider
the orientation symmetry breaking of plate in a generalized manner, formation of the peculiar morphologies
of new resonant modes from the antiphase superposition has been unambiguously resolved. Furthermore, the
developed model has been utilized to reconstruct all experimental observations of resonant spectra and resonant
Chladni figures subject to orientation symmetry breaking with high consistency. The good agreement between
the theoretical reconstructions and experimental results not only proves the feasibility of the developed model to
describe point-driven Chladni systems with orientation symmetry breaking but also provide a powerful tool to
use the analytical model to analyze important elastic constants of orthotropic plates in a more time-saving way.

Methods

Response wave function of modern Chladni plates. According to ref.'°, the response wave functions
¥ (x, y; w) of a vibrating thin plate coupled with a sinusoidal point source with oscillation frequency w at (x’, y’)
can be governed by the inhomogeneous bi-harmonic equation:
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Figure 8. Experimental V.S. theoretical results for the square plate with §=0.022. (a) The experimental result
(solid black line) and the theoretical reconstruction (red chain line) of the frequency spectra of the driving
efficiency of power delivery 7 for the square brass plate with the cutting angle § =0 and the symmetry-breaking
parameter 6 =0.022. (b) The experimental results (first row) and the theoretical reconstructions (second row)
of the resonant Chladni figures corresponding to peaks (i)-(vi) in the resonant spectrum. Compared with the
results shown in Fig. 7(a,b), some new resonant modes can be seen to become locally dominant states as the
symmetry breaking parameter increases further. These new dominant modes can be found to reveal deformed

morphologies along one of the coordinate axes and with a nodal-point driving position (see the cases of i, iv,
and iv).
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Figure 9. Orientation-dependent symmetry-breaking parameter ¢ for the brass plate. The dependence of
symmetry-breaking parameter on the orientation of brass plate was evaluated by Eq. (3) with the elastic
constants?! (red line) to compare with the results from reconstructions (blue hollow circles). The error bars were
determined by the allowable range of § in fitting the experimental resonant spectra and Chladni figures for a
batch of brass square plates fabricated with the same cutting angles.
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2 2
[V4 - phTw]\I/(x, Y w) = % Q- a[%]\lf(x’, ¥ w)olx — x)o(y — y'),
d

(13)

where V* is the bi-harmonic operator; D is the flexural rigidity; p is the mass density of plate; 4 is the plate thick-
ness; m, and m,, are respectively the mass of driving oscillator and thin plate; Q is the amplitude of driving oscil-
lator; o € [0, 1]is the dimensionless coupling factor which describes the coupling strength between the plate and
the driving oscillator. By using the complete set of eigenfunctions ¢),,(x, y) and eigenvalues w, given by the homo-
geneous equation (V* = phwnz/D)wn(x, y) = 0, Eq. (13) can be solved to lead to

2
E% wn*(x/x y’)’%(% )’)>
n (“n w) (14)

U(x, y; w) =|Q

ﬂ] —a ¥,y w)
m,

where A is the area of plate and m,= phA. Note that 6(x — x")é(y — y') = >, 47 (x', y' ), (x, y) and
U(x, y; w) =X, C,(w) ¥,(x, y) have been used here. Equation (14) clearly reveals that the response wave function
W(x, y; w)is directly influenced by its response at the driving point ¥(x’, y’; w) and thus manifests the so-called
coupling effect. Setting x = x’ and y = y’ on both sides of Eq. (14), the self-consistent solution of the driving
point response ¥(x’, y’; w) can be analytically derived as

2, s w)

Mg | =L, ysw)
1+ a2, ysw)’ (15)

my,

U(x', y's w) = Q

where Z(x/, y'; w) is a dimensionless meromorphic function given by

=l ol _A "‘)ZWn(x/’ yl)|2
2y w) _Z,,:w,,z— (w— iy}’ (16)

where the damping rate +y is considered by replacing w with w — i7. The damping factor + is closely related to the
quality Q-factor of the resonance of the realistic thin plate system. In term of Z(x’, y'; w), the final form of the
response wave function can be given by

P(x, y; w) = D Cylw) Y(x, y)

—Z‘ Qlmgim,) — AW® (', ")

1+ a2, y5 @) w,?— (w— iv) il ) a7

The analytical expression of the expansion coefficient C,(w) of Eq. (17) explicitly indicates the eigenmode
composition in the coherent superposition under a given driving frequency w.

Effective number of participated eigenmodes in the coherent superposition. For the response
mode contributed by the coherent superposition of numerous eigenmodes t/;,(x, y)as ¥(x, y; k) = 3=, C, (k) 1,(x, ¥)
the number of effectively participating eigenmodes as a function of driving wave number k can be given by the
entropy S(k) of the system as N,;(k) = exp(S(k)) . According to Shannon's information theory’!, the entropy of a
coherent state can be written as S(k) = —3° £, (0n[p (k)] where p,(k)is the probability of a specific eigenmode v,
contributing to the driven response under a given wave number. According to the interpretation for quantum wave
function, the probability can be expressed by the normalized expansion coefficient

o) = B
VEICRF (18)

as p (k) = |c,(k) . Considering a coherent state that is composed by N eigenmodes with equal probabilities, i.e.
p. = 1/N, the information entropy can be evaluated to be S = InN whose exponential form can certainly give
the number of effective participated eigenmodes.

Measurement of resonant spectra and resonant Chladni figures of thin plates. The setup and
processes for measuring modern Chladni figures at resonance are the same as those mentioned in refs'®?*. To
prepare thin plate systems with different elastic anisotropy corresponding to different symmetry-breaking param-
eters, the brass sheet with thickness of 0.8 mm was cut into squares with the side-length of 280 mm and with dif-
ferent cutting angles § to be 0, ©/6, and /4 with respect to the characteristic axes of the orthotropic brass (Fig. 5a).
The center of thin plate was fixed with a screw supporter that was driven by an electronically controlled mechan-
ical oscillator with sinusoidal wave of variable frequency. The electronically controlling system consists of a func-
tion generator with its signal to be amplified to excite the mechanical oscillation and a digital galvanometer
connected in series to the oscillator to probe the effective driving power of the whole plate system (Fig. 5b). From
the frequency response of the measured driving power for total vibrating system (thin plate and mechanical oscil-
lator) P(w) as well as for the mechanical oscillator only P(w), the driving efficiency of power delivery
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n = [B(w) — P(w)]/P(w) can be analyzed to characterize the resonant spectrum of modern Chladni systems'®.
Subsequently, resonant Chladni figures can be recorded at the resonant frequencies resolved from the driving
efficiency spectrum by using the traditional sprinkling-sand method.

Data availability statement.  All data generated or analyzed during this study are included in this published
article.
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