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Abstract: Background: NADPH-oxidase and myeloperoxidase (MPO) play an important role on
defense against pathogenic microorganisms. Defects on these mechanisms have been described
in association with recurrent infections due to such as Staphylococcus aureus and Candida albicans.
We describe a patient with partial disturbance of intracellular microorganism destruction clinically
manifested by recurrent fungal infection. Case report and results: A 58-year-old male rural farmer
has suffered with superficial mycosis affecting hands, nails and right ankle persisting for 20 years.
He was treated with several antifungal drugs with no improvement. Mycological scraping isolated
Trichophyton rubrum. Immunological evaluation showed impaired T cell proliferation to Candidin and
impaired neutrophil burst oxidative after specific stimulation with Candida albicans. The patient’s
DNA was extracted from peripheral blood leukocytes for whole exome sequencing (WES) analysis.
Two heterozygous variants of undetermined significance were screened accordingly: (1) MPO A332V
(c.995G > A; rs28730837); and (2) NCF1 G83R (c.247G > A; rs139225348). Conclusions: Functional
leukocyte evaluation with heterozygous variants in MPO and NCF1 suggest that these defects were
associated with the susceptibility to dermatophytosis in our patient. We have developed a fast,
effective and safe trial for screening individuals with yeast infections.

Keywords: neutrophil; myeloperoxidase; Trichophyton; fungal infection; NCF1; chronic
granulomatous disease

1. Introduction

Reactive oxygen species (ROS) production is one of the main cytotoxic mechanisms of
phagocytes described so far. [1] Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase is a
multicomponent enzymatic complex constituted by two membrane-bound components, gp91 phox
and p22 phox, and four cytosolic subunits, including the small GTPase Rac1/2, p40 phox, p67 phox,
and regulatory p47 phox (also known as NCF1) [2,3]. NADPH-oxidase plays a pivotal role on ROS
production by converting oxygen into a superoxide radical or hydrogen peroxide, albeit the latter may
be also produced by superoxide dismutase activity. Loss-of-function mutant NADPH-oxidase subunits
impair electron transport system and, in turn, ROS production, which interfere on leukocyte’s ability
to destroy phagocytosed microorganisms, culminating with the emergence of chronic granulomatous
disease (CGD) [4–6].
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Myeloperoxidase (MPO) is the main component of neutrophil azurophil granules, although also
found in monocytes and eosinophils [7,8]. As a lysosomal hemoprotein, it catalyzes the production
of highly reactive radicals such as hypochlorous acid, from hydrogen peroxide and halogen ions,
thus playing an important role on defense against pathogenic microorganisms [7,8]. MPO deficiency is
a relatively common human genetic defect (1:2000–4000 cases) [9] and may impair bactericidal and
fungicidal capacity of polymorphonuclear leukocytes (PMN), mainly against microorganisms such as
Staphylococcus aureus and Candida albicans [10,11]. This piece of data reaffirms the important role of
superoxide dismutase and myeloperoxidase interplay within the oxidative-dependent microbicidal
killing in neutrophil lysosomes [12].

Taken altogether, the above data demonstrated the relevance of neutrophil oxidative burst on
innate response against pathogens. Herein, we describe a patient with partial disturb of intracellular
microorganism destruction clinically manifested by recurrent fungal infection.

2. Case Report

A 58-year-old male rural farmer has suffered with superficial mycosis affecting hands, nails and
right ankle persisting for 20 years. A 20 × 15 cm desquamative pruritic liquenified fungal well
delimited plaque with regular and thin erythematous borders have recently ascended to inguinal
and abdominal areas (Figure 1). Simultaneously, the patient also presented a similar 10 × 10 cm
fungal lesion on his upper right paravertebral dorsum. The patient has been receiving long-lasting
unsuccessful therapy with griseofulvin (1990–2000; 2016–2018), terbinafine (1985–1990; 2001–2015)
and itraconazole (>2018). On the other hand, his brother presented similar symptoms, although was
responsive to standard antifungal treatment. No additional relevant family history or consanguinity
was observed. Mycological scraping isolated Trichophyton rubrum. Due to the absence of visceral
fungal history, an upper gastrointestinal endoscopy was also performed and confirmed no invasive
fungal infection. Immunological screening (Table 1) showed deficient T cell proliferative response to
specific stimuli and impaired neutrophil burst oxidative after specific stimulation with Candida albicans
(Figure 2A–C). Patient signed consent form and the protocol was approved by the local ethical
committee (CAAE 33911520.5.0000.0082, 30/07/2020).
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Table 1. Immunological evaluation of the patient with T. rubrum infection.

Parameters Patient Reference Range

IgG (mg/dL) 1070 384–1200
IgM (mg/dL) 85 40–230
IgA (mg/dL) 339 22–176
IgE (UI/mL) 3829 <100

Leukocytes (cells/mm3) 12,960 6000–11,000
Isoagglutinin Anti-B: 1/32 >1/4

Serology for rubella IgG + IgM- Positive IgG
Serology for CMV IgG + IgM- Positive IgG

Antipneumococcal antibodies <0.5 for 7 serotypes Positive response
B cells cells/mm3 (%) 117 (8.04) 161–979 (12.8–38.4)

T CD3+ cells/mm3 (%) 1187 (81.24) 605–2460 (60–87)
T CD4+ cells/mm3 (%) 787 (53.85) 493–1666 (32–61)
T CD8+ cells/mm3 (%) 400 (27.4) 224–1112 (34–43)

Proliferative response to PHA (s.i.) * 24.1 Control = 128.9
Proliferative response to CMV (s.i.) * 5.7 Control = 99.8

Proliferative response to tetanus toxoid (s.i.) * 0.5 Control = 50.1
Proliferative response to candidin (s.i.) * 4.6 Control = 80.5

NK cells cells/mm3 (%) 134 73–654 (4–28)
C3 level (mg/dL) 105 88–165
C4 level (mg/dL) 27 14–44

* stimulation index.J. Fungi 2020, 6, x FOR PEER REVIEW 3 of 7 
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without stimulus; (B) DHR stimulated with S. aureus; (C) DHR stimulated with Candida.

The patient’s DNA was extracted in a clinical setting from peripheral blood leukocytes for whole
exome sequencing analysis. Exome capture was conducted in a clinical setting as per the manufacturer’s
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instructions. Sequencing was performed on an Illumina NextSeq platform and exome datum was
aligned to the GRCh37/hg19 reference genome using Burrows–Wheeler Aligner (BWA). Variants were
identified using the Genome Analysis ToolKit (GATK) protocol and annotated using ANNOVAR,
with a minimum of 95% of target bases covered at >10×. Mitochondrial genome and copy number
variants were not studied. Variants were interpreted as per a consensus of two different analytical
softwares: an in-house-developed analysis platform (GTAC) and a commercially available diagnostic
decision support platform by Emedgene Technologies LTD (Tel-Aviv, Israel) (www.emedgene.com).
At least two parallel analyses were performed to preselect variants considering allele frequency <1%,
functional impact, clinical relevance of gene harboring the variant, relevant reports from databases
(such as ClinVar, HGMD) and the literature. These preselected variants were then discussed in a board
with three experts and only selected variants underwent Sanger confirmation. Variants were classified
according to ACMG guidelines with assistance of a third-party ACMG calculator by Saphetor SA
(Lausanne, Switzerland) (www.varsome.com).

Overall, 58,553 variants were observed. Only 1139 of those have been previously described in less
than 5% of healthy controls, among of which 960 were identified in coding regions or exonic boundaries
and 296 were synonymous. Finally, 240 were considered for medical analysis and, per the patient’s
clinical phenotype, only two heterozygous variants of undetermined significance were screened
accordingly: (1) MPO A332V (c.995G>A; rs28730837; Figure 3A), whose prevalence in controls was
estimated in 4.28% (GnomAD), 1.30% (ExAC) and 0.46% (1000 G); and (2) NCF1 G83R (c.247G>A;
rs139225348; Figure 3B), whose prevalence in controls was estimated in 1.36% (GnomAD), 0.88%
(ExAC) and 0.36% (1000 G).
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3. Discussion

Phagocytes play a particularly important role in fungal infections, mainly against Candida albicans
and Aspergillus fumigatus. Individuals who have primary or secondary neutrophils defects may
present refractory invasive fungal infections [13]. MPO deficiency is the most common neutrophil
biochemical defect and have been associated with recurrent fungal infections, especially candidiasis,
and diabetes mellitus in 5% of individuals [14]. Despite the possible MPO hyperglycosylation secondary
to high concentrations of plasmatic glucose, culminating with negative modulation of enzymatic
activity, one can never rule out whether this loss-of-function defect may also be resultant of a primary
conformational protein defect [15]. An association between MPO deficiency and infection is still
unclear; therefore, it has been suggested that MPO deficiency itself does not increase susceptibility to
infections, but may synergistically work with other conditions to decrease the immune defenses against
microorganisms [16]. On the other side, McCarthy & Dahl evaluated if the myeloperoxidase-hydrogen
peroxide (H202) halide system of neutrophils could inhibit fungal growth, and the N-acetylglucosamine
assay was used to measure fungal growth in the presence of various components of that system [17].
An intact myeloperoxidase-H202 halide system significantly decreased the radioactive counts associated
with growth of T. rubrum. The addition of catalase inactivated the H202 and restored fungal growth,
whereas adding heat-inactivated catalase dropped counts back to baseline. In conclusion, fungal growth
was inhibited even in the absence of cell-mediated immunity [17]. This activity may prevent fungal
sepsis. Additional studies have found an association between MPO deficiency and pustular candida
dermatitis [18] or systemic infections (candidiasis and bacteremia) in nondiabetic MPO-deficient
patients [19,20], which strengthens MPO primary impairment hypothesis.

NADPH-oxidase subunit p47 phox/NCF1 is considered the complex assembler, since it coordinates
the interaction of the five other subunits, allowing multiprotein complex activation [21]. While gp91
phox and p22 phox are the central docking site for the cytosolic components, p47 phox/NCF1 is the
subunit responsible for transporting the whole cytosolic complex (p67 phox-p40 phox-GTPase Rac1/2)
to the docking site during NADPH-oxidase activation [22–24]. Although X-linked gp91 phox-deficient
CGD responds for approximately 70% of cases, p47 phox/NCF1 deficiency is the main autosomal
recessive form (approximately 25%). Moreover, the importance of p47 phox/NCF1 in host defense was
also demonstrated in a p47 phox/NCF1 knockout mice [25]. These mice developed lethal infections
and granulomatous inflammation like those encountered in human CGD patients [21].

Our study originally demonstrates two heterozygous variants harbored in distinct genes driving
a phagocyte oxidative burst defect and possibly inducing a CGD-like phenotype, as per chronic fungal
infection susceptibility. To our best knowledge, NCF1 deficiency represents an autosomal recessive
condition without previous association of a similar clinical phenotype on heterozygous mutated
patients. Despite both NCF1 G83R and MPO A332V variants are still considered of “undetermined
significance” as some asymptomatic carriers are reported, some studies have respectively associated
them to inflammatory bowel disease [26] and recurrent infections with MPO deficiency [16,27,28].
Interestingly, a male subject with partial MPO deficiency carrying the same single heterozygous
MPO A332V mutation described here was previously reported [16]. Additionally, MPO A332V was
associated with lower levels of MPO in monocytes, demonstrating deleterious enzymatic function in
patients carrying this variant [27]. Although instigating, we were not able to rule out a possible digenic
inheritance pattern in our patient, since our study did not have enough power. Further studies are being
designed with cells donated by the same patient reported herein to address this important question.

We also found impairment in T cell proliferation with specific antigens, including Candidin.
It is possible that mannan from T. rubrum might have an activity similar to mannan from C. albicans
inhibiting mitogen induced lymphoproliferation [29,30].

Laboratory tests to investigate neutrophil response against C. albicans are scarce due to cell viability
constraints. We have developed a fast, effective and safe trial for screening individuals with yeast
infections. A little amount of sample is necessary, which is a great advantage, since routinely functional
tests usually require a large amount of blood.
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4. Conclusions

Clinical manifestations are very important to guide immunological evaluation. Functional tests
were essential to demonstrate the susceptibility to fungal infection and molecular diagnosis has to be
considered in the face of heterozygous mutations found.
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