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Abstract

Background: Shotgun metagenomics yields ever richer and larger data volumes on the complex communities living
in diverse environments. Extracting deep insights from the raw reads heavily depends on the availability of fast,
accurate and user-friendly biodiversity analysis tools.

Results: Because environmental samples may contain strains and species that are not covered in reference databases
and because protein sequences are more conserved than the genes encoding them, we explore the alternative route
of taxonomic profiling based on protein coding regions translated from the shotgun metagenomics reads, instead of
directly processing the DNA reads. We therefore developed the Unipept MetaGenomics Analysis Pipeline (UMGAP), a
highly versatile suite of open source tools that are implemented in Rust and support parallelization to achieve optimal
performance. Six preconfigured pipelines with different performance trade-offs were carefully selected, and
benchmarked against a selection of state-of-the-art shotgun metagenomics taxonomic profiling tools.

Conclusions: UMGAP’s protein space detour for taxonomic profiling makes it competitive with state-of-the-art
shotgun metagenomics tools. Despite our design choices of an extra protein translation step, a broad spectrum index
that can identify both archaea, bacteria, eukaryotes and viruses, and a highly configurable non-monolithic design,
UMGAP achieves low runtime, manageable memory footprint and high accuracy. Its interactive visualizations allow for
easy exploration and comparison of complex communities.
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Background
Biodiversity, in many environments, is formed by complex
communities of archaea, bacteria, eukaryotes, and viruses.
Most of these organisms are hard to isolate and culture
in lab conditions, so getting insight into which species are
present in these environments and estimating their abun-
dances nowadays routinely relies on metagenomics [1]:
a combination of high-throughput DNA sequencing and
computational methods that bypass the cultivation step to
enable genomic analysis. In particular, shotgun metage-
nomics, the non-targeted sequencing of all genomes in
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an environmental sample, is applied more often [2], as it
allows the profiling of both taxonomic composition and
functional potential of the sample.
In general, computational approaches for taxonomic

profiling of metagenomics data from high-complexity
environments directly process the reads by either assem-
bling them into larger contigs before profiling [3–8] or by
individually mapping them to DNA sequence databases
[9–11], e.g., compiled from publicly available reference
genomes. As the latter approach is carried out with-
out assembly, it can mitigate assembly problems, speed
up computations, and enable profiling of low-abundance
organisms that cannot be assembled de novo [2]. Map-
ping a read onto a reference database usually either applies
inexact string matching algorithms on the entire read or
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breaks it into shorter fragments before applying exact
string matching algorithms.

Aims
In this paper we explore the alternative route of first
translating the protein coding regions in the reads of a
shotgun metagenomics data set. We then map the result-
ing protein fragments onto a reference protein sequence
database. Because protein sequences are more conserved
than the genes encoding them [12], this might alleviate
the limitation that environmental samples contain strains
that are not covered in reference databases or even belong
to yet uncharacterized species. In addition, it allows us
to adapt the high-performance mapping algorithms based
on periodic builds of a UniProtKB-based index [13] for
mapping tryptic peptides that we developed for shotgun
metaproteomics analysis in Unipept [14–17]. Mapping
against the complete UniProt Knowledgebase has the
advantage that it covers all domains of life in a single
general-purpose analysis, compared to using one or more
reference databases of selected genomes.

Methods
The general steps involved in our approach for taxonomic
profiling of a DNA read are outlined in Fig. 1. After iden-
tifying and translating the (partial) protein coding genes
in the read, the protein fragments are split into short
peptides. Each individual peptide is then mapped onto a
precomputed consensus taxon derived from all proteins
containing the peptide in the reference database. As a
final step we derive a consensus taxon for the read from
the consensus taxa of its individual peptides. For paired-
end sequencing, the information content in the final step
increases after merging the individual peptides from a
read pair, as it is guaranteed that both reads originate from
the same organism.
Each individual step in the above process can be tack-

led using a multitude of strategies. To explore which
strategy performs best and how the combination of alter-
native strategies leads to different trade-offs with respect
to runtime, memory footprint and predictive accuracy,
we have implemented the Unipept Metagenomics Analy-
sis Pipeline (UMGAP) according to the Unix philosophy
[18]. The result is a modular suite of 20 versatile fil-
ters (commands that read from standard input and write
to standard output) that each implement a single oper-
ation and that can be seamlessly combined into a single
data processing pipeline. All filters are implemented in
Rust (https://www.rust-lang.org) and support paralleli-
sation to achieve optimal performance. As some filters
implement alternative strategies of the same operation,
we have performed a parameter sweep to collect perfor-
mance metrics of all relevant combinations of alternative
strategies. Based on our observations from this parameter

sweep, we have selected six preconfigured pipelines with
different performance trade-offs whose results have been
compared in an established benchmark [19] to a selec-
tion of state-of-the-art shotgun metagenomics taxonomic
profiling tools.
UMGAP has been open sourced on GitHub (https://

github.com/unipept/umgap) under the MIT License.
Documentation (https://unipept.ugent.be/umgap) and
case studies (https://unipept.ugent.be/umgap/casestudies)
are available on the Unipept website.

Implementation
UMGAP performs taxonomic profiling of individual reads
or read pairs in a shotgun metagenomics data set. Results
can be summarized for the entire data set, either as a hier-
archical frequency table containing each identified taxon
or as an interactive taxonomic visualization. The pipeline
executes a multi-step process and provides fast imple-
mentations of alternative strategies for every step of the
analysis. In this section, we chronologically discuss the
successive steps of the generic pipeline, together with their
alternative strategies.

Protein translation
UMGAP does not profile a read directly at the DNA
level. Instead, protein fragments translated from the cod-
ing regions in the read are matched. Non-coding regions
are ignored a priori (which might impact the sensitivity
compared to identification strategies that use the entire
read, especially for organisms with a lower coding den-
sity) and extra steps are required to find coding regions
and protein translations (which might negatively impact
both performance and accuracy). However, the more con-
served nature of proteins compared to DNAmight lead to
better generalizations when it comes to profiling environ-
mental strains that have no perfect match in the reference
database [12]. Two approaches are supported: one based
on gene prediction in short reads and one based on a full
six-frame translation (Fig. 2).

Gene prediction In theory, UMGAP may use any gene
predictor capable of identifying coding regions and their
translations in short reads. Not all gene predictors can
do this task accurately, as reads might contain only par-
tial coding regions with start and/or stop sectionsmissing.
The translation table to be used is also a priori unknown.
We used both FragGeneScan (FGS) [20] and our

own faster and more robust implementation of FGS
in Rust called FragGeneScanRs (FGSrs) [21] for testing
and benchmarking purposes. FGS has a custom Hid-
den Markov Model whose topology especially addresses
the problem of finding genes in short and error-prone
reads, correcting frameshifts resulting from read errors.
FragGeneScan-Plus (FGS+) [22] is a faster implementa-
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Fig. 1 Outline of the Unipept Metagenomics Analysis Pipeline (UMGAP). Green blocks represent data types, purple blocks represent tools.
Horizontally aligned purple blocks grouped in yellow boxes are alternative approaches for the same general step of the pipeline
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Fig. 2 Sample DNA fragment extracted from the Acinetobacter baumannii 118362 genome (NCBI Assembly ASM58051v1, positions 37.700-39.530)
containing three RefSeq annotated coding regions of a major Facilitator Superfamily protein (EXA88265), a tetR family protein (EXA88191) and a
translocator family protein (EXA88255), marked with yellow lines (top). Blue lines indicate coding regions predicted by FGS. Green dots indicate
starting positions of 9-mers with an LCA* on the A. baumannii lineage (true positive identifications). Red dots indicate starting positions of 9-mers
with an LCA* outside the A. baumannii lineage (false positive identifications). Opacity of colored dots indicates depth in the taxonomic tree: opaque
colors indicate highly specific LCA* (species level) and translucent colors indicate nonspecific LCA*. This example illustrates the following general
observations: (1) the frameshift-correcting topology of the FGS hidden Markov model often incorrectly interprets coding regions of genes that are
very close or overlapping as frameshifts and glues them together; (2) missing dots at the end of coding regions is merely an artefact of the
visualization: the last 8 codons (24 bases) are never starting positions of k-mers; (3) FGS may identify false coding regions or (4) frame shifts, but the
extracted peptides from those and (5) translations from non-coding regions in a six-frame translation are mostly filtered automatically as they have
no exact match with any UniProt protein or can be filtered with additional heuristics

tion of FGS. As FGS+ is no longer actively supported, our
own implementation with improved multithreading sup-
port and several critical bug fixes has been released as
FGSrs.
FGS and its derivatives are functionally equivalent and

can thus be plugged into UMGAP interchangeably. They
perform gene prediction relatively fast and accurate. How-
ever, due to their predictive nature, false negatives and,
to a lesser extent, false positives might have a negative
impact on downstream steps of the pipeline. Especially
missed coding regions may lead to information loss and
reduced precision of the pipeline.
Other gene prediction tools such as Prodigal [23], Meta-

GeneMark [24] and MetaGeneAnnotator [25] can also be
plugged into UMGAP. However, this would also require an
additional gene translator, as some of these tools merely
predict the loci of genes but do not translate them into
protein sequences.

Six-frame translation Translation of all coding regions
is guaranteed when applied on all six reading frames of an
error-free read, but at least 83.33% false positives (5 out
of 6 reading frames) need to be filtered away downstream.
UMGAP implements this strategy without attempting to
correct for read errors at this stage, as they only result in
local information loss in downstream steps. The transla-

tion table is user-specified, without an attempt to derive
it from the data or using multiple tables. While this
approach might lead to increased sensitivity compared to
gene prediction, it yields at least a sixfold increase in the
data volume that needs to be processed in downstream
analysis.

Protein fragmentation
All (partial) proteins that are putatively translated from
the read arematched against the complete UniProt knowl-
edgebase [22, 26]. Direct full-length exact matching is
not feasible due to natural variation and read errors.
Even though fast heuristics exist for full-length inexact
matching or alignment [27], it remains a relatively slow
approach. Instead, UMGAP achieves high-performance
inexact matching of protein fragments by breaking them
down into short peptides. Two approaches are supported:
non-overlapping variable-length peptides and overlapping
fixed-length peptides.

Tryptic peptides UMGAP breaks protein fragments
into non-overlapping variable-length peptides by splitting
after each lysine (K) or arginine (R) residue that is not
followed by proline (P). This is the classic in silico emu-
lation of a trypsin digest, the most widespread protein
digestion used for mass spectrometry [28]. It is a random
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fragmentation strategy in the context of metagenomics,
but finds its roots in the Unipept metaproteomics analy-
sis pipeline as the initial starting point for UMGAP, and
is merely an attempt to reuse part of the metaproteomics
processing pipeline for metagenomics analysis. Applying
this fragmentation strategy to all proteins in the UniProt
Knowledgebase (2020/04 release) yields a collection of
tryptic peptides with an average length of 17.671 amino
acids (with peptides shorter than 5 or longer than 50
discarded).
Note that UMGAP also supports user-specified regu-

lar expressions for variable-length protein fragmentation,
other than the default regular expression thatmimics an in
silico tryptic digest. However, the regular expression used
for protein fragmentation must match the regular expres-
sion used when fragmenting proteins to build a peptide
profiling index from a reference database. We currently
only host a pre-built index for tryptic peptides extracted
from UniProt, so for peptide profiling with a non-tryptic
fragmentation strategy, a custom peptide profiling index
needs to be built.

K-mers With overlapping fixed-length peptides or k-
mers, the only parameter is the length k of the peptides.
Choosing smaller k leads to more spurious hits when
matching the k-mers of a protein fragment against the
k-mers inferred from a reference protein database. Choos-
ing larger k increases the impact of natural variation and
read errors. Because protein fragments are reduced to all
their overlapping k-mers, the number of resulting pep-
tides increases k-fold compared to using tryptic peptides.
So, choosing larger k also increases the total length of
all peptides and thus the memory footprint for indexing
them. It also increases the number of lookups that need to
be done during peptide profiling. Finding a well-balanced
peptide length k is therefore crucial.
Because UMGAP uses exact matching for mapping pep-

tides derived from a read onto peptides derived from the
proteins in a reference database, read errors and natu-
ral variation usually have a lower impact on k-mers than
on tryptic peptides. This is illustrated in Fig. 3 for a sin-
gle nucleotide polymorphism (either as a read error or a
natural variation).

Peptide profiling
Fragmentation of all partial proteins found in a read yields
a list of peptides (tryptic peptides or k-mers). Each peptide
may have an associated consensus taxon that is looked up
in an index structure. Overall, these lookups are the most
time-consuming step in the pipeline, so performance is of
utmost importance.
Upon eachUniProt release, the Unipept team builds and

publishes new indexes from tryptic peptides and 9-mers
extracted from all UniProt proteins in the knowledge-

Fig. 3 Impact of a single nucleotide polymorphism (SNP) on the
peptide coverage of a protein fragment. Because tryptic peptides are
non-overlapping, each read position is covered by exactly one tryptic
peptide. A SNP modifies a single tryptic peptide, but all positions
around the SNP covered by the modified peptide are no longer
covered (correctly) after matching (53 read positions on average).
Because k-mers are overlapping, each read position is covered by k
peptides, except at the ends of the protein fragments. A SNP modifies
k peptides, but apart from reduced peptide coverage around the SNP,
only a single codon is no longer covered (correctly) after matching.
The redundancy of the overlapping k-mers therefore makes up for a
reduced impact of SNPs compared to non-overlapping tryptic
peptides, at the cost of larger data volumes that need to be processed

base (available online at https://unipept.ugent.be/system/
umgap/recent/tryptic.fst and https://unipept.ugent.be/
system/umgap/recent/ninemer.fst). Each of these pep-
tides is associated with the modified lowest common
ancestor (LCA*) consensus taxon computed from the set
of taxonomic annotations on all UniProt proteins that
exactly match the peptide [14]. LCA* is the most specific
taxon that does not contradict any taxon in the set, i.e.,
all taxa in the set must either be descendants or ances-
tors of the LCA* in the NCBI Taxonomy [29]. See the read
profiling step for a detailed discussion on the LCA* algo-
rithm introduced by UMGAP as a variation on the lowest
common ancestor (LCA) algorithm.
UMGAP uses a finite state transducer (https://blog.

burntsushi.net/transducers/) (FST) as its index structure
to lookup the LCA* consensus taxon for each peptide
extracted from a read. This index structure supports high-
performance and parallel lookups, supports both fixed
and variable length peptides, and has a relatively small
memory footprint. The latter is important, given the large
number of peptides extracted from UniProt. The index
should be loaded in process memory, but UMGAP can

https://unipept.ugent.be/system/umgap/recent/tryptic.fst
https://unipept.ugent.be/system/umgap/recent/tryptic.fst
https://unipept.ugent.be/system/umgap/recent/ninemer.fst
https://unipept.ugent.be/system/umgap/recent/ninemer.fst
https://blog.burntsushi.net/transducers/
https://blog.burntsushi.net/transducers/
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also operate with an on-disk index and very little memory
at the cost of performance.
The FST maps each peptide extracted from a UniProt

protein to the NCBI Taxonomy Identifier (an integer) of
the LCA* associated with the peptide. It is a flow graph
whose edges are labeled with amino acids and integers.
Peptides are matched by following the path of their amino
acid sequence. The sum of the integers along this path cor-
responds to the identifier of the LCA*. Where tries are
ordered tree data structures that take advantage of com-
mon prefixes to reduce the memory footprint, FSTs are
even more compressed by taking both common prefixes
and suffixes into account (Fig. 4).
For UniProt release 2020-04, a 19.3 GiB FST-indexmaps

all 1.2 billion tryptic peptides to their LCA* and a 132.9
GiB FST-index maps all 17 billion 9-mers to their LCA*.
We also experimented with other k-mer lengths, but pre-
cision dropped significantly for k ≤ 7 (Fig. 5) and the
index size became too large for k ≥ 10. The only viable
options were k = 8 and k = 9, with the latter giving
the best balance between index size and accuracy of read
profiling.

Peptide filtering
Protein fragmentation may yield false positives: peptides
that do not occur in proteins encoded in the read. Most
false positives are automatically filtered as they have no
exact match with any UniProt protein. As a result, they
cannot be associated with a taxon during peptide profil-
ing. This is the case for most peptides from translations
of wrong gene predictions or outside coding regions in a
six-frame translation (Fig. 2). But peptide profiling itself
may also yield false positive identifications: peptides asso-
ciated with an inconsistent taxon, i.e., a taxon that is not
the correct taxon or one of its ancestors in the NCBI
Taxonomy tree. This could be the case for both true and
false positive peptides from protein fragmentation. Pep-
tide filtering aims at strongly reducing the number of false

Fig. 4 Finite state transducer mapping all weekdays to their index
number (monday = 1, tuesday = 2, ...). Integer labels are not shown
on edges with zero weight. Adding weights along the path spelled by
the letters of the word Thursday, from the initial state on the left
(indicated by a triangle) to the final state on the right (indicated by a
double circle), yields 2 + 1 + 1 = 4. So, Thursday is the fourth day in
the week

positive identifications, while keeping most true positives.
UMGAP supports three kinds of filters.

Short tryptic peptides Analysis on UniProt proteins
shows that short tryptic peptides are typically associated
with highly unspecific LCA* consensus taxa, i.e., taxa at or
close to the root of the NCBI Taxonomy tree [14] (Fig. 5).
Because these peptides match proteins occurring across
all domains of life, they do not provide a strong taxonomic
signal that could be useful in downstream steps of the
pipeline. In addition, by being short they often cause spu-
rious matches during peptide profiling. UMGAP can skip
very short tryptic peptides, e.g., having less than 6 amino
acids.

Low-frequency identifications In the context of peptide
profiling, true positive identifications should come from
the same lineage in the NCBI Taxonomy tree, whereas
false positives are randomly scattered across the tree.
Since one read typically yields many peptides that may
each have an associated taxon, identifications along the
correct lineage are expected to occur with high frequency
and false positives are expected to occur with low fre-
quency. Therefore UMGAP can skip peptides associated
with low-frequency identifications.

Seed-and-extend The (partial) proteins in the read are
typically fragmented into multiple peptides and it is
expected that neighboring peptides have similar identifi-
cations (Fig. 2). It therefore seems natural to use a seed-
and-extend approach to exploit this expected local conser-
vation of identifications. Peptides are first scanned to find
seeds: s or more successive peptides that are associated to
the same LCA*. With increased minimum seed size s, the
precision of the pipeline will increase, and its sensitivity
will decrease. Each seed is then extended in both direc-
tions to neighboring seeds and individual peptides that are
bridged by gaps (successive peptides with no associated
LCA*) of at most g peptides. With increased maximum
gap size g, the precision of the pipeline will decrease, and
its sensitivity will increase. UMGAP can skip peptides that
are excluded from extended seeds (Fig. 6).

Read profiling
Previous steps of the pipeline result in a list of taxonomic
identifications, derived from a (filtered) list of peptides
extracted from the read. As the read comes from a single
organism, it is natural to aggregate these individual iden-
tifications that rely on partial data into one global consen-
sus identification. UMGAP supports three heuristics that
infer a consensus taxon after mapping a frequency table
of the individual identifications onto the NCBI Taxonomy
tree (Fig. 7). They balance between providing a consen-
sus taxon that is as far away from the root as possible and
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Fig. 5 All tryptic peptides found in the UniprotKB (release 2020-04-22), classified by length and associated LCA* rank. Fractions of peptides (y-axis)
across all peptide lengths (left) or per peptide length (right). Short tryptic peptides are more frequently associated with less specific ranks in the
NCBI Taxonomy and therefore have a lower information content. Relative taxonomic information content (depth of LCA* rank in tree of life) is low
for short peptides (length 8 and below). Because tryptic peptides of length k are a random sample of all k-mers, similar ratios and conclusions are
expected should this analysis be repeated for all k-mers in UniprotKB across all lengths k

that allows for a good generalization. The first goal is pro-
gressive and leads to a very specific consensus but has
to avoid overfitting. The second goal is conservative and
takes into account the possibility of false positives among
the individual identifications but has to avoid underfit-
ting. All heuristics are implemented with two different
data structures: a tree and a range minimum query [30].
Both implementations are functionally equivalent, but the

latter gives a faster implementation of the MRTL heuristic
because querying ancestry is supported in constant time.

MRTL Maximum root-to-leaf [11] is the most progres-
sive heuristic. It identifies the consensus among a list of
taxa as a taxon having the maximal number of ancestors
in the list. Ties are broken arbitrarily. By definition, the
consensus taxon is always included in the original list of

Fig. 6 Seed-and-extend strategy for filtering false positive identifications after peptide profiling, with minimum seed size s = 3 and maximum gap
size g = 1. Successive peptides fragmented from (partial) protein are shown as a sequence of dots. Green dots indicate correct identifications (true
positives). Red dots indicate wrong identifications (false positives). Brightness of colored dots indicates depth in the taxonomic tree: dark colors
indicate highly specific LCA* (species level) and light colors indicate nonspecific LCA*. Grey dots indicate peptides without an associated LCA*
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Fig. 7 Lowest common ancestor (LCA), LCA*, hybridf and maximum
root-to-leaf (MRTL) are four heuristics that determine a consensus
taxon for a given list of taxa. All heuristics map the list of taxa onto the
NCBI Taxonomy tree, that guides the heuristic towards a consensus
taxon. MRTL is the most progressive heuristic and LCA* is the most
conservative heuristic, so the MRTL consensus will be deeper in the
tree than the LCA* consensus. The hybridf heuristic has a parameter f
that can be tweaked to yield a result that is either more towards the
LCA* consensus or the MRTL consensus

taxa. This property does not hold for the other two heuris-
tics, and shows that this heuristic might not necessarily be
good at generalizing.

LCA* This the most conservative heuristic, though less
conservative than a standard lowest common ancestor
(LCA). For a given list of taxa, it identifies the consensus
taxon as themost specific taxon in the tree that is either an
ancestor or a descendant of each taxon in the list. This is
the LCA of all taxa in the list, after we have first discarded
all ancestors of at least one other taxon in the list. The
latter is a measure against underfitting. Because the indi-
vidual identifications are only based on partial data, it is
expected that some identifications might be more specific
than others. The LCA* heuristic is also used to compute
the consensus taxon during peptide profiling.

Hybridf This heuristic has a parameter f ∈[ 0, 1] that
allows to balance between being conservative or progres-
sive: with f = 1 this heuristic is the same as LCA* and
with f = 0 this heuristic is very close to MRTL (the same
for most lists of taxa). LCA* can be implemented by start-
ing at the root of the tree and repeatedly descending to the
child node whose subtree contains all taxa in the list, until
such a child no longer exists (i.e., the taxa in the list are
distributed over multiple subtrees). In the latter case, the
hybrid heuristic continues descending to the child node
whose subtree contains most taxa from the list (with ties
broken arbitrarily) if the fraction of the number of descen-
dants in the child node over the number of descendants in
the current node is larger than or equal to f.

Summary and visualization
Previous steps assign a consensus taxon to each read
(pair). The final step of the pipeline computes a fre-
quency table of all identifications across the entire data
set, with the option to filter low-frequency identifications.
Another option is to report the frequency table at a user-
specified taxonomic rank. Frequency tables are exported
in CSV-format, enabling easy postprocessing.
To gain insight into environmental samples with a

complex biodiversity, UMGAP also supports rendering
taxonomic frequency tables as interactive visualizations
(Fig. 8) that are automatically made available on a ded-
icated website. The online service hosting the visualiza-
tions also support shareable links (e.g. https://bl.ocks.org/
5960ffd859fb17439d7975896f513bc3).

Results
UMGAP implements multiple strategies for each step in
the pipeline (Fig. 1), with some strategies also driven
by user-specified parameters. Runtime, memory footprint
and accuracy of UMGAPwere benchmarked as a two-step
process. Using some smaller data sets, we first measured
and analysed performance metrics for a large number of
relevant combinations of strategies and parameter set-
tings. This broad exploration allowed us to investigate
how different strategies/parameter settings led to differ-
ent performance trade-offs. As a result, we defined six
preconfigured pipelines with different performance trade-
offs. Performance of these configurations has then been
compared to a selection of state-of-the shotgun metage-
nomics taxonomic profiling tools in an established bench-
mark [19] that uses larger data sets.
Both the parameter sweep and the benchmark were exe-

cuted on a 2.60GHz 16 core Intel� Xeon� CPU E5-2650
v2 CPU with 195GB RAM running Debian 9.8 (stretch).

Parameter tuning
For protein translation we either used gene prediction or
six-frame translation. FGSrs was used for gene prediction.

https://bl.ocks.org/5960ffd859fb17439d7975896f513bc3
https://bl.ocks.org/5960ffd859fb17439d7975896f513bc3
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Fig. 8 Taxonomic profiling by UMGAP as visualized by the Unipept Web API

In the protein fragmentation step we either used non-
overlapping tryptic peptides or overlapping 9-mers. Tryp-
tic peptides were filtered by length, with minimum length
ranging from 5 to 10 amino acids and maximum length
ranging from 45 to 50 amino acids. Peptide profiling was
invariably done using LCA*. Low-frequency identifica-
tions were filtered with a minimum number of taxon hits
per read that varied between 1 and 5, with a minimum
of 1 hit effectively corresponding to no low-frequency
identification filtering. For 9-mers, identifications were
optionally also filtered using the seed-and-extend strategy
with seed size s between 2 and 4, and gap size g between
0 to 4. Read profiling was done using either MRTL, LCA*
or hybridf , with parameter f either set to 0.25, 0.5 or 0.75.
All variation included in this parameter sweep resulted

in 3900 different UMGAP configurations whose perfor-
mance was evaluated for taxonomic profiling of two
metagenome data sets simulated by Wood and Salzberg
[11]. These data sets are referenced as the HiSeq
metagenome and the MiSeq metagenome after the Illu-
mina sequencing platforms whose read error models have
been used for simulation. For each data set 1000 reads
were simulated from 10 bacterial genomes, for a total of
10.000 reads per data set.
Accuracy of each UMGAP configuration was evaluated

at the genus level by computing precision and sensitiv-
ity of the taxonomic profiling for each data set. Using
the UMGAP snaptaxon tool and guided by the NCBI
Taxonomy tree, more specific UMGAP predictions were
mapped to the genus level because expected predictions

were only known at the genus level for these data sets.
True positives (TP) are reads assigned to the expected
genus. False positives (FP) are reads assigned to a genus
other than the expected genus. False negatives (FN) are
reads that UMGAP could not assign at or below the genus
level. As these data sets contain no invalid reads, there are
no true negatives (TN).
Figure 9 shows the precision and sensitivity of all 3900

UMGAP configurations tested. As expected, the protein
fragmentation method has a major influence on sensitiv-
ity. The difference in precision is less pronounced at first
glance. In general, 9-mer configurations (orange) have a
higher sensitivity than tryptic configurations (blue), but
they also have a higher runtime and memory footprint. To
simplify further discussion, we will treat tryptic and 9-mer
configurations separately in what follows.

Tryptic configurations
If we look at the impact of protein translation on the
accuracy of 1800 tryptic configurations (Supplementary
Fig. S1), six-frame translation clearly improves the sensi-
tivity of the tryptic configurations, at the cost of a steep
drop in precision if spurious identifications resulting from
incorrect translations are not properly filtered after pep-
tide profiling. As it also yields muchmore work during the
peptide profiling step, increasing execution time, combin-
ing six-frame translation with tryptic peptides proves less
favorable.
Shorter peptides have a higher probability of random

hits in a protein database. With tryptic peptides, it is
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Fig. 9 Precision and sensitivity of 3900 UMGAP configurations, with tryptic peptide configurations marked in blue and 9-mer configurations marked
in orange. Six configurations are selected for further benchmarking

therefore recommended to discard very short peptides. In
general, we advise to only retain tryptic peptides with a
length of at least 9 amino acids (Supplementary Fig. S2).
We have also investigated the impact of a maximum pep-
tide length cutoff on the accuracy of the predictions, but
the effect is negligible except for a marginal gain in the
speed of the pipeline.
Tryptic configurations effectively profile only a limited

number of peptides per read, such that filtering taxa after
peptide profiling must be done carefully to avoid losing
valuable information. Discarding taxa that have only been
assigned to a single peptide guarantees high precision
at the cost of a steep drop in sensitivity (Supplementary
Fig. S3). This shows that tryptic configurations often
profile reads based on a single peptide, increasing the risk
of spurious predictions.
The choice of read profiling method has no signifi-

cant impact on the performance of the pipelines, again
because of the limited number of (reliable) peptides per
read whose predictions need to be aggregated.
Based on the above observations we have selected two

tryptic configurations with good accuracy trade-offs,
either favoring higher precision or higher sensitivity
(Fig. 9):

• tryptic precision: FGSrs, minimum peptide length 5,
maximum peptide length 45, minimum 2 taxon hits,
MRTL

• tryptic sensitivity: FGSrs, minimum peptide length 9,
maximum peptide length 45, no rare taxon filtering,
MRTL

9-mer configurations
When evaluating 800 UMGAP configurations that use 9-
mer peptide fragmentation, the first observation is that
seed-and-extend filtering has a positive effect on both
precision and sensitivity (Supplementary Fig. S4). This fil-
tering technique is not useful when working with tryptic
peptides, but proves to be highly effective for discard-
ing unreliable identifications after peptide profiling when
working with 9-mers. As a result, we recommend to
always apply seed-and-extend filtering in 9-mer configu-
rations, and we will only focus on these configurations in
any further analysis.
With respect to protein translation method, the same

observations concerning accuracy hold as with the tryp-
tic configurations (Supplementary Fig. S5). The sensitivity
gain that can be obtained with six-frame translation is
more pronounced than with the tryptic configurations,
which may make up for the extra work during the pep-
tide profiling step. However, effective filtering of spurious
identifications after peptide profiling is still needed in
order to avoid poor precision.
Gene prediction is best combined with minimum seed

size s = 2 for optimal sensitivity and with minimum seed
size s = 3 for the best trade-off between precision and
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sensitivity (Supplementary Fig. S6). In combination with
six-frame translation, better trade-offs between precision
and sensitivity are achieved with higher minimum seed
size s. With gene prediction the low-frequency identifi-
cations filter has a higher impact than the chosen read
profiling method, whereas the opposite is true for six-
frame translation (Supplementary Figs. S7–S10). In both
cases, the maximum gap size g has no significant impact
on the accuracy (data not shown).
Based on the above observations we have selected four

9-mer configurations that represent different accuracy
trade-offs. Ranging in optimization from precision to
sensitivity they use the following UMGAP configurations
(Fig. 9):

• max precision FGSrs, minimum 5 taxon hits,
seed-and-extend with s = 2 and g = 2, hybridf with
f = 0.75

• high precision six-frame translation, minimum 4
taxon hits, seed-and-extend with s = 3 and g = 4,
hybridf with f = 0.5

• high sensitivity six-frame translation, no filtering on
low-frequency identifications, seed-and-extend with
s = 3 and g = 0, MRTL

• max sensitivity six-frame translation, no filtering on
low-frequency identifications, seed-and-extend with
s = 2 and g = 0, MRTL

Benchmark
The six preconfigured UMGAP pipelines selected from
the parameter sweep analysis were compared with the two
best-performing shotgun metagenomics analysis tools
found in the MetaBenchmark study [19] and with the
popular Kaiju tool [31] that was published shortly after
the initial benchmark. Kraken [11] and the newer Kraken

2 [32] were run with their default (preloaded) indexes and
16 threads. CLARK [33] was run with 20-mer indexes in
full-mode. Because CLARK only supports identifications
for a predefined taxonomic rank, we used indexes built
from bacterial databases for the taxonomic ranks of phy-
lum, genus, and species. Kaiju was run with its default
index.
Our benchmark uses the same experimental setup as the

MetaBenchmark study, including its use of two simulated
metagenomes that differ in relative abundance of the indi-
vidual phyla and that have three replicates each. The
six data sets contain between 27 and 37 million read
pairs simulated from both real, simulated, and shuffled
genomes, with read length 100 and mean insert size 500
(standard deviation 25). All data sets contain 20% reads
simulated from shuffled genomes that serve as a negative
control and also contain reads simulated from genomes
that were artificially diverged from a Leptospira interro-
gans reference genome to test the robustness of the tools
against natural variation.
In addition to evaluating the accuracy of taxonomic

profiling tools at the phylum and genus levels, we also
evaluated their accuracy at the species level (Table 1,
genus and phylum level are included in Supplementary
Tables S1 and S2). Using the UMGAP snaptaxon tool
and guided by the NCBI Taxonomy tree, predictions
more specific than the taxonomic rank under evalua-
tion were mapped to the taxonomic rank under evalu-
ation. Predictions less specific than the taxonomic rank
under evaluation were considered as no assignment to any
taxon. Reads whose expected identification is less specific
than the taxonomic rank under evaluation are ignored.
True positives (TP) are non-shuffled reads assigned to
the expected taxon. False positives (FP) are non-shuffled
reads assigned to a taxon that differs from the expected

Table 1 Table: MetaBenchmark performance metrics for ten metagenomics analysis tools sorted by precision. Average numbers for
the six simulated data sets are given. Accuracy evaluated at the species level and reported as sensitivity, specificity, precision (positive
predictive value), negative predictive value (NPV) and Matthew’s Correlation Coefficient (MCC). Index size reported for CLARK is the
sum of the phylum (46.6GiB), genus (149.5GiB) and species (146.3GiB) indexes. Performance metrics at genus and phylum ranks can be
found in Supplementary Tables S1 and S2

Tool Precision Sensitivity Specificity NPV MCC Run time Index size

UMGAP tryptic prec. 99.70% 3.50% 99.96% 21.83% 8.62% 6.96 m 19.3 GB

Kraken 99.38% 81.34% 98.15% 59.21% 68.24% 210.86 m 198.7 GB

UMGAP max prec. 98.94% 45.87% 98.22% 33.35% 37.73% 16.47 m 132.9 GB

Kraken 2 98.15% 82.27% 94.64% 60.68% 67.27% 2.10 m 43.3 GB

UMGAP high prec. 98.11% 55.68% 96.21% 38.07% 43.33% 30.42 m 132.9 GB

Kaiju 98.02% 68.31% 95.21% 46.44% 53.15% 304.10 m 74.4 GB

UMGAP tryptic sens. 96.07% 18.03% 97.36% 24.88% 17.95% 6.10 m 19.3 GB

UMGAP high sens. 92.55% 66.70% 84.12% 46.04% 44.28% 30.32 m 132.9 GB

UMGAP max sens. 80.78% 77.73% 63.34% 58.94% 40.39% 31.12 m 132.9 GB

CLARK 71.41% 100.00% 27.87% 100.0% 44.61% 20.54 m 342.3 GB
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taxon or shuffled reads assigned to a taxon. True negatives
(TN) are shuffled reads not assigned to any taxon. False
negatives (FN) are non-shuffled reads not assigned to any
taxon.
In terms of precision the UMGAP tryptic preci-

sion configuration marginally surpasses Kraken, with the
UMGAP max/high precision configurations, Kraken 2,
and Kaiju also showing very high precision rates (Fig. 10,
Table 1). As expected, the UMGAP pipelines have a
lower sensitivity than the other metagenomics pipelines
because a priori no taxa are assigned to reads that have
no or only short overlap with protein coding regions. This
benchmark again underscores the difference in sensitivity
between the tryptic and 9-mer configurations of UMGAP.
Also take into account that precision is a more impor-
tant accuracy metric than sensitivity for most biological
applications, especially with deeply sequenced samples.
In terms of speed Kraken 2 is the best-performing tool,
with UMGAP’s tryptic configurations following in close
range. Clark and the UMGAP 9-mer configurations are
still considerably faster than Kraken and Kaiju.

In-depth analysis
We would like to stress that UMGAP does not require
setting a specific target taxonomic rank prior to process-
ing a dataset. Instead, UMGAP automatically decides for
each read at which taxonomic rank a reliable identification
can be made, taking into account that deeper ranks are

more informative. As a result, UMGAP automatically bal-
ances between optimal information content (specificity)
and reliability (sensitivity), with different settings of
the pipeline resulting in different trade-offs. Mapping
UMGAP identifications to a specific rank is only a post-
processing step we have done (using UMGAP’s snaprank
tool) to comply with the experimental setup of the
MetaBenchmark.
Taking advantage of the dynamic taxonomic rank

assignment and the fact that UMGAP reports taxonomic
profiles for each individual read, we performed a more in-
depth analysis to investigate two questions not elucidated
by the MetaBenchmark: i) how specific are read profil-
ings that are correctly identified but above the species
level and ii) can we observe any trends that explain
wrong identifications? The analysis still uses species as the
target rank, but in a less stringent way compared to the
MetaBenchmark.
We performed the analysis using the UMGAP high

precision pipeline. Accuracy metrics are reported per
operational taxonomic unit (OTU), i.e. all (paired-end)
reads are grouped per OTU from which they were
extracted/generated. Results are reported in separate
tables for one of the small datasets we used for parameter
tuning (10 OTUs) and one of the large MetaBenchmark
datasets (1105 OTUs), split into real (963), simulated
(32) and shuffled (110) OTUs (Additional file 1). In what
follows, we discuss some general observations from the

Fig. 10 Precision and sensitivity evaluated at the species level for ten metagenomics analysis tools and the two simulated metagenomes of the
MetaBenchmark. Dots indicating the accuracy metrics for the three replicates of each simulated metagenome are on top of each other, since each
replicate was generated for identical proportions of phyla
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in-depth analysis and illustrate them with specific use
cases.
In addition to correct identifications at the species

level (the typical rank of the expected identification
derived from the benchmark data), UMGAP also identi-
fies (paired-end) reads correctly but at less specific taxo-
nomic ranks (genus level and above) as can be seen from
the second column in the reported tables. For someOTUs,
UMGAP yields highly specific identifications, i.e. most of
the OTU reads are correctly identified at the species level
(species entry marked in bold in the second column). For
other OTUs, UMGAP yields less specific identifications,
i.e. most of the OTU reads are correctly identified at the
genus level or above (species entry not marked in bold in
the second column). One particular reason for the latter
are misidentifications in the reference databases, espe-
cially because UMGAP uses broad spectrum indexes built
from the entire UniProt Knowledgebase. Using the LCA*
algorithm to compute the taxonomic profiling of a sin-
gle peptide might correct for some misidentifications in
UniProt, but definitely not all. For example, misidentify-
ing UniProt proteins from one strain to another species
of the same genus might cause that the taxonomic pro-
files of most peptides of the two species (the correct and
wrong identification) resolve at the genus level and no
longer at the species level. For some species groups it is
also well known that they are extremely hard to differen-
tiate or that there’s even debate whether it is natural to
keep them taxonomically separate (as the Bacillus cereus
vs. Bacillus anthracis case, with multiple OTUs included
in theMetaBenchmark). Again, problematic identification
in these species groups also increases the possibility of
misidentifications in UniProt.
Wrong identifications exceeding 2% of the total number

of (paired-end) reads (marked in bold in the third col-
umn) are rare and might indicate issues with the expected
identification in the benchmark dataset. For example, in
the smaller dataset used for parameter tuning of UMGAP,
none of the reads for the OTU identified as Aeromonas
hydrophila SSU are identified byUMGAP as the speciesA.
hydrophila, whereas 10% of the reads are identified as the
speciesA. dhakensis. If we look into the history of the clas-
sification of these species, Aeromonas hydrophila subsp.
dhakensis was established in 2002 as a new subspecies
of A. hydrophila [34], whereas in 2015 it was reclassified
as a separate species A. dhakensis by Beaz-Hidalgo et al.
[35]. Grim et al. [36] reclassified the virulentA. hydrophila
SSU strain isolated from a patient with diarrhea in the
Philippines as A. dhakensis SSU, showing that in this case
UMGAP actually comes up with a correct identification
and instead the identification in the benchmark should
have been updated. Where Chen et al. [37] mention that
A. dhakensis is often misidentified as A. hydrophila, A.
veronii, or A. caviae by commercial phenotypic tests in

the clinical laboratory, our analysis shows that UMGAP is
indeed able to correctly identify reads in a metagenomics
dataset to A. dhakensis. Apart from the power of the iden-
tification pipeline used by UMGAP, this case study also
reminds us that taxonomy is not a constant and under-
scores the importance of using broad spectrum indexes
that are constantly updated.
Some OTUs are only identified to the genus rank (or

above) in the MetaBenchmark, whereas UMGAP consis-
tently identifies many of the corresponding (paired-end)
reads to one particular species of the same genus. An
example is Methylovorus sp. MP688 in the large dataset,
where UMGAP assigns 3087 of the 5556 reads (55%)
to the species Methylovorus glucosotrophus. The correct-
ness of this observation is confirmed by Doronina et al.
[38] based on phylogenetic analysis using 16S rRNA gene
sequences and mxaF amino acid sequences, five years
after the complete genome sequence of the strain MP688
has been deposited [39] as Methylovorus sp., a name that
has never been updated in the public sequence databases.
An important factor in this case, is the fact that the
complete genome sequence Methylovorus glucosetrophus
strain SIP3-4 has been deposited in the public sequence
database [40], whose proteome is also available in UniProt.
Almost all shuffled reads in the large dataset aremapped

to the root of the NCBI Taxonomy, which corresponds
to no identification at all. This reflects the robustness
of UMGAP against spurious identifications. The large
dataset contains reads simulated from genomes that were
artificially diverged from a Leptospira interrogans refer-
ence genome (AE016823). In total, reads for 32 OTUs
were generated from 8 simulated genomes with either
little, medium, mixed or high divergence. Since these
genomes are not random but simulated using an evolu-
tionary model, it is expected that the derived reads could
be assigned to the correct clade. Of the OTUs generated
from simulated genomes with little divergence, we consis-
tently observe that 35% of the reads are correctly identi-
fied to the species level and 40% to the genus level. Of the
OTUs generated from simulated genomes with medium
divergence, only 1-2% of the reads are correctly identified
at the species level and 5% at the genus level. Of the OTUs
generated from simulated genomes with high divergence,
almost no reads could be identified. OTUs generated
from simulated genomes withmixed divergence either fol-
low the pattern of genomes with little divergence or the
genomes with medium divergence.

Discussion
The six predefined pipelines come bundled with UMGAP
as separate POSIX shell scripts, which makes them the
primary way to run UMGAP on metagenomics data sets.
This section details the setup of the reference database
and optional external tools, followed by a short case
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study using a preconfigured pipeline. Instructions on the
configuration of your own pipeline and the details of
all UMGAP tools are available on the Unipept website
(https://unipept.ugent.be/umgap).
After downloading and installing UMGAP as described

in theREADME (https://github.com/unipept/umgap), run
the umgap-setup.sh script to interactively download
the relevant databases. Pass -f /opt/FragGeneScan
to link the installation directory of FragGeneScan or put
the FGSrs executable in your PATH.
As an example, we will profile 100 paired-end reads

sampled from the benchmark dataset [19] (supplementary
files 2 and 3) using a tryptic peptide index. If these files are
saved as A1.fq and A2.fq, the following command will
profile the reads:
umgap-analyse.sh -1 A1.fq -2 A2.fq

-t tryptic-sensitivity \
-z -o tryptic-sens-output.fa.gz

The two paired-end files are passed using the options -1
and -2. Only use the option -1 when processing single-
end reads. Both files can be GZIP-compressed and will be
automatically decompressed by UMGAP. The option -t
is used to select one of the preconfigured pipelines. The
flag -z demands UMGAP to compress the output, which
is written to the file indicated with the option -o. The out-
put file contains a single taxonomic profile for each read.
For the sample files it should start with:
>header1
1198114
>header2
926566
>header3
332163

The umgap-visualize.sh script can be used to
summarize and visualize the results. This script can
create importable CSV frequency tables and interactive
visualizations that are either stored locally or hosted
online. This is illustrated in the following shell session.
Figure 8 contains a screenshot of one of the interactive
visualizations.
$ umgap-visualize.sh -t -r phylum
tryptic-sens-output.fa.gz

taxon id,taxon name,tryptic-sens-output.fa.gz
57723,Acidobacteria,4
1,root,78
1224,Proteobacteria,5
201174,Actinobacteria,5
1117,Cyanobacteria,2
$ umgap-visualize.sh -w tryptic-sens-output.fa.gz \

> tryptic-sensitivity.html
$ umgap-visualize.sh -u tryptic-sens-output.fa.gz
tryptic-sens-output.fa.gz:
https://bl.ocks.org/11b7809d6754b9530cf1a49d93a8d568

The flags -t, -w and -u select the output mode. The
option -r allows setting the taxonomic rank for the
output.

Conclusions
UMGAP’s protein space detour for taxonomic profil-
ing makes it competitive with state-of-the-art shotgun

metagenomics tools. Despite our design choices of an
extra protein translation step, a broad spectrum index
that can identify both archaea, bacteria, eukaryotes and
viruses, and a highly configurable non-monolithic design,
UMGAP achieves low runtime, manageable memory foot-
print and high accuracy. Integrating the command line
tool with the interactive Unipept visualizations [17] also
allows exploration and comparison of complex communi-
ties. As such the pipeline has already been used to study
the biodiversity in the rhizosphere [41].
As a next step, we want to further explore how the

protein translation detour can be used to infer the func-
tional capacity of an environmental sample from its
metagenome, which is more challenging than inferring
biodiversity. Again, Unipept’s function analysis pipeline
for metaproteomes could be used as a potential starting
point. In addition, both the biodiversity and the func-
tional capacity of a sample could also be derived from
its metatranscriptome, which could be analysed using
pipelines similar to UMGAP but with an adjusted protein
translation step.
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