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Starting from the general equations of fluid dynamics
that describe the atmosphere, and using asymptotic
methods, we present the derivation of the leading-
order equations for nonlinear wave propagation in the
troposphere. The only simplifying assumption is that
the flow in the atmosphere exists in a thin shell over a
sphere. The systematic approach adopted here enables
us to find a consistent balance of terms describing
the propagation, and to identify the temperature and
pressure gradients that drive the motion, as well
as the heat sources required. This produces a new
nonlinear propagation equation that is then examined
in some detail. With the morning glory in mind, we
construct a few exact solutions, which, separately,
describe breezes, bores and oscillatory motion.

1. Introduction
The ‘morning glory’ is a spectacular cloud pattern
composed of a tubular cloud, or succession of such roll
clouds, typically stretching from horizon to horizon; see
the photographs in figure 1. Comprehensive descriptions
of these phenomena using quantitative hypothesis-
testing based on field data are available, but a more
insightful study requires a careful development from
the governing equations of atmospheric flow. Hitherto,
the modelling of such local meteorological phenomena
has been pursued on a rather ad hoc basis, relying
on analogies with shallow-water flow for internal
gravity waves in a stably stratified fluid [1–4]. Despite
the inadequacies of this approach, important insights
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(a) (b)

Figure 1. Morning glory cloud patterns composed of a tubular cloud (a) or a succession of such roll clouds (b). These wave-type
patterns travel hundreds of kilometres, propagating horizontally in the direction orthogonal to the cloud line. (a) Roll cloud over
land, photographed by G. E. Nyland in Calgary on 18 June 2013 (video link: https://m.youtube.com/watch?v=i1rdWjrYG5I). (b)
Roll cloud photographed over the Gulf of Carpentaria in Northern Australia on 10 August 2009 (source: Mike Petroff, CC BY-SA
3.0). (Online version in colour.)

have been gained into this phenomenon, in particular indicating that the processes involved
are nonlinear [5–7]. We believe, therefore, that a systematic asymptotic derivation of a suitable
nonlinear equation that describes the wave propagation is required, starting from the general
governing equations. This will provide a reliable test for existing models, which, to be useful,
should be consistent with, and can be derived from, the governing equations. More significantly,
it will enable us to identify all the relevant factors (such as temperature and pressure gradients,
and atmospheric heat sources), and also develop a consistent nonlinear theory.

The plan for this work is as follows. After a brief description of the morning-glory
phenomenon (as an important example of nonlinear wave propagation), and the mechanisms
that are relevant to its generation, in §2, we then present the general governing equations for
the atmosphere in §3. These are the Navier–Stokes equation, the equation of mass conservation,
the equation of state for the air and the associated first law of thermodynamics—all written in
rotating spherical coordinates. The restriction to spherical geometry is an adequate model for
these local phenomena because, in this context, the oblateness of the Earth is of little consequence;
see the discussion in [8,9]. However, the use of spherical coordinates is essential if the length
scales are anything other than very short—some morning glory waves propagate over 1000 km
[10]—and, even more significantly, this enables us to determine higher-order correction terms.
Guided by field data for the identification of the relevant scales and parameters, in §4 we perform
the non-dimensionalization and scaling of the equations, with the ultimate aim of producing
a coherent model for nonlinear wave propagation in the atmosphere. This process involves
a rotation of the local coordinates, allowing for propagation in any direction over the Earth,
in the thin-shell approximation for the atmosphere. (No other simplifications are used in the
development presented here.) The associated asymptotic solution is developed in §5, which
involves the perturbation of a background state of the atmosphere, eventually leading to the
equation that describes the propagation of a nonlinear wave. This equation is analysed in §6;
we are unable to solve it in general, but we make some important observations about it and, in
particular, we find a number of exact solutions valid under simplifying assumptions. These show
that the new equation captures all the essential elements that describe the evolution of waves
such as the morning glory. Indeed, at the stage of the investigation described here, we are able
to present solutions, which, although separately and only in certain regions, exhibit features such
as the existence of background breezes, bore-like structures and oscillatory motion. It is clear
that a comprehensive description of the solutions of this equation will require a study of some
complexity, combining mathematical analysis with numerical solutions and simulations; this is far
beyond our remit in this initial investigation. Nevertheless, what we present here should provide
the basis for future work: local and global well-posedness of the model wave equation is of
fundamental importance, as is obtaining further insight into its dynamics. This latter will almost

https://m.youtube.com/watch?v=i1rdWjrYG5I
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certainly require finding and studying—both qualitatively and quantitatively—other families of
solutions.

2. The morning glory: observations and genesis mechanism
Morning glory clouds occur most often in coastal regions but, occasionally, also over the land
or the sea (see figures 1, 2 and the photographs in [11–18]). These spectacular formations have
been reported as appearing over the English Channel, in Central USA, Germany, Eastern Russia,
Canada, Mexico, Brazil, Uruguay and, most particularly, Australia. Here, they can be observed,
on a fairly regular basis, in the Gulf of Carpentaria (a large, shallow sea enclosed on three sides,
connected northwards to the Arafura Sea between Australia and New Guinea); they are usually
observed in the early morning, during September and October. Their appearance in this region
is mainly due to the very particular thermal structure of the lower atmosphere over the land and
the sea.

Firstly, there is a low-lying, wide peninsular—the Cape York peninsular, on the eastern edge of
the gulf—which is covered by dry air, sufficiently dry to inhibit the wholesale formation of clouds,
but moist enough in the lower layers for cloud lines to form. Secondly, there are two colliding
breezes: the offshore breeze forms over the peninsular after sunrise and is driven by the difference
in air pressure created by the differing heat capacities of water and dry land; it is warm, moist and
slow; the onshore flow is shallower, cooler and faster. The two flows meet just inland at the coast;
the offshore wind-speed increases and the flow moves forward and begins to override the onshore
breeze: a first wave is formed at the leading edge of the advancing offshore flow. On occasions,
only one wave is formed (so we have, essentially, a bore), but fairly often a train of waves appear—
perhaps six or seven—each generated at the front and moving in the offshore direction relative to
the front; see the sketch in figure 3 and the discussion in [11]. The condensation that occurs within
these waves produces the cloud patterns that have been observed. The net effect is to generate
local conditions where a warm low-level temperature-inversion layer appears; the temperature in
the troposphere, on average, decreases with height, so this inversion layer sits between a slightly
colder layer below (in the atmospheric boundary layer) and the much colder atmosphere above;
see [19]. Thus, in the lower part of the flow, we have a stably stratified region—warmer air above
colder air—in the neighbourhood of the bottom edge of the inversion layer. On the other hand,
the unstable stratification near the upper boundary of the inversion layer facilitates horizontal
wave propagation, with the lower boundary acting as a waveguide. Eventually, the morning glory
clouds vanish as the heat of the day causes them to evaporate.

All the above shows that the morning-glory phenomenon involves a complicated sequence
of processes yet, of course, it must be possible to describe the essential features by relying
on the governing equations for atmospheric flow. Writing down equations admitting solutions
that replicate specific observed flow structures is a relatively routine exercise (e.g. [1,2,4,20]). In
addition, there have been many attempts to model the morning-glory phenomenon based on
existing nonlinear wave equations, such as the Korteweg–de Vries or Benjamin–Ono equations—
see [21,22] for a discussion of geophysical flows for which these equations have been adopted as
the phenomenological model of choice. To go beyond the range of validity of these models one
typically argues, by analogy, that what is observed and measured appears to follow a familiar
pattern and so some perturbation of a well-known equation might be relied upon to elucidate the
essential features of the observations. The exercise is then one of fitting length scales, timescales
and available coefficients in order to reproduce a particular wave structure; see, for example,
[3,7,23,24]. In none of these discussions is a suitable equation derived from first principles, i.e.
from the underlying, governing equations that describe the atmosphere. Of course, deriving such
an equation from the general governing equations is a daunting undertaking, but crucial for
a proper understanding of these flows. Here, we attempt to extract the main ingredients that
contribute to the description of the underlying structure of waves of this type—and there is a
bonus: we are able to be precise about the approximations needed to accomplish this and to
describe the underlying temperature and pressure fields, as well as the heat sources required
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Figure 2. Natural-colour satellite photograph of the ‘morning glory’ cloud formation in the Gulf of Carpentaria (Australia),
taken on 18 August 2019 (source: https://worldview.earthdata.nasa.gov). Each roll cloud stretches over more than 50 km, has a
width of about 1 km and a cloud base a few 100 m above the ground. The cloud formation propagates in the southwest direction
at about 10 m s−1. (Online version in colour.)
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Figure 3. Schematic illustrating the morning-glory cloud-formation-mechanism in the Gulf of Carpentaria. The thick curve in
(b) represents a snapshot of the top of the thermal inversion layer, normal to the two depicted roll cloud lines, with nearby
airflow featuring similar undulations, as confirmed by measurements using pilot-balloon ascents [19]. The cloud lines are not
moved by the airflow: they are formed as awave crest approaches (because ascending air parcels cool and condensation occurs)
but, after the wave crest passes, the cloud evaporates (due to the warming of the descending air parcels). The continuous
formation and erosion of the clouds gives the appearance that the clouds are rotating [17]: they are referred to as ‘roll clouds’.
(a) Colliding sea breezes bring about a thermal inversion layer if the warmer breeze reaches a few hundred metres higher than
the cooler: a layer of warm air is sandwiched between slightly colder air below and much colder air above it, as the cool breeze
pushes the warm air of the other breeze upwards. (b) Wave disturbances develop on the top of the thermal inversion layer. The
cooling updraft at the front of each wave crest causes condensation of the ascending moist air parcels, with the ensuing cloud
(dotted region) eroded by evaporation as the wave crest passes since the descending air parcels warm up.

to drive and maintain the motion. Nevertheless, it must be emphasized that our mathematical
approach, although far more general than hitherto attempted, does not easily reveal all the
fine detail that we would wish. More analysis will be required, possibly linked to an extensive
numerical investigation.

3. The governing equations
Since the governing equations for atmospheric flow are analytically intractable, careful
approximations and simplifications are necessary, these providing the only realistic way to obtain

https://worldview.earthdata.nasa.gov
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Figure 4. The spherical coordinate system (ϕ, θ , r′), where θ is latitude, ϕ longitude and r′ the distance from the origin at
the Earth’s centre, is adequate to describe atmospheric flows outside polar regions. (Online version in colour.)

useful and reliable analytical results. With this in mind, we advocate the use of systematic
asymptotic expansions applied to the governing equations rather than starting from a model
system or a model (nonlinear wave) equation. This is a significant improvement on most weather
forecasting and climate models that are based on the hydrostatic primitive equations, with an
underlying approximation which assumes a precise balance between the pressure and density
fields within the framework of the ‘traditional approximation’. This simplification neglects the
Coriolis terms that involve the cosine of the latitude for a thin-shell atmosphere. There is a rich
analytic theory for the existence of solutions to these primitive equations (see the survey [25]).
However, the hydrostatic approximation—a building block for the primitive equations—is not
appropriate for a neutrally stratified atmosphere (see the discussion in [26]), which is the typical
state near the top of a thermal inversion layer. Because our approach differs markedly from the
usual one adopted for these type of studies, and to aid the reader less familiar with a development
from first principles, we provide all the relevant details here (avoiding the need for the reader to
access other similar, but different, analyses). We now present the formulation of the problem that
underpins our discussion of nonlinear wave propagation in the atmosphere.

Throughout this analysis, we will assume a spherical Earth as the adjustments required to
describe the oblateness are unimportant for this study of wave propagation; see [8,9] for details
about the Earth’s geoid and how to model it. The coordinate system is the set of (right-handed)
spherical coordinates (ϕ, θ , r′): r′ is the distance from the centre, θ ∈ [−π

2 , π
2 ] is the angle of latitude

and ϕ ∈ [0, 2π ) is the azimuthal angle, i.e. the angle of longitude. The unit vectors in this system are
(eϕ , eθ , er) and the corresponding velocity components are (u′, v′, w′): eϕ points from West to East,
eθ from South to North and er points upwards (figure 4). The (ϕ, θ , r′)-system is associated with a
point fixed on the sphere (other than at the two poles where the unit vectors are not well-defined)
that is rotating about its polar axis (with constant angular speed Ω ′ ≈ 7.29 × 10−5 rad s−1). At
this stage, we use primes to denote dimensional (physical) variables; the primes will be removed
when we introduce appropriate non-dimensional variables.

The Navier–Stokes equation, written in rotating spherical coordinates, is

ρ′ D
Dt′

(u′, v′, w′) + ρ′

r′
(
−u′v′ tan θ + u′w′, u′2 tan θ + v′w′, −u′2 − v′2

)
+ 2Ω ′ρ′ (− v′ sin θ + w′ cos θ , u′ sin θ , −u′ cos θ )
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+ r′Ω ′2ρ′ (0, sin θ cos θ , − cos2 θ )

= −∇′p′ + ρ′
(

0, 0, −g′ R′2

r′2
)

+ ∇′2
μ (u′, v′, w′)

− 2
3

( 1
r′ cos θ

∂

∂ϕ

(μ′
h

ρ′
Dρ′

Dt′
)

,
1
r′

∂

∂θ

(μ′
h

ρ′
Dρ′

Dt′
)

,
∂

∂r′
(μ′

ν

ρ′
Dρ′

Dt′
))

− 1
r′2 cos2 θ

(
μ′

hu′, μ′
hv

′, 2μ′
νw′(cos2 θ − v′ sin θ cos θ )

)
+ 2μ′

h
r′2

∂

∂θ
(0, w′, −v′)

+ 2μ′
h

r′2 cos θ

∂

∂ϕ
(w′ − v′ tan θ , u′ tan θ , −u′) + dμ′

ν

dr′ r′ ∂

∂r′
(u′

r′ ,
v′

r′ ,
w′

r′
)

+ 1
r′

( 1
r′ cos θ

dμ′
h

dr′
∂

∂ϕ
,

1
r′

dμ′
h

dr′
∂

∂θ
,

dμ′
ν

dr′
∂

∂r′
)

(r′w′), (3.1)

where t′ is the time, p′(ϕ, θ , r′, t′) the pressure, ρ′(ϕ, θ , r′, t′) the density, and

D
Dt′

≡
( ∂

∂t′
+ u′

r′ cos θ

∂

∂ϕ
+ v′

r′
∂

∂θ
+ w′ ∂

∂r′
)

; ∇′ ≡
( 1

r′ cos θ

∂

∂ϕ
,

1
r′

∂

∂θ
,

∂

∂r′
)

(3.2)

and

∇′2
μ ≡ μ′

ν

( ∂2

∂r′2 + 2
r′

∂

∂r′
)

+ μ′
h

r′2
( 1

cos2 θ

∂2

∂ϕ2 + ∂2

∂θ2 − tan θ
∂

∂θ

)
. (3.3)

The gravitational body force in (3.1) is written in terms of g′ ≈ 9.81 m s−2, the average acceleration
of gravity at the surface of the Earth, of radius R′ ≈ 6371 km, and we have introduced both
coefficients of dynamic eddy viscosity (μ′

ν vertical and μ′
h horizontal, each being a function of

only r′). In addition, we have incorporated Stokes’ hypothesis, namely, that the bulk viscosity
coefficient is zero or, equivalently, the thermodynamic and mechanical pressures are equal; see
[27].

The equation of mass conservation is

Dρ′

Dt′
+ ρ′

{ 1
r′ cos θ

∂u′

∂ϕ
+ 1

r′ cos θ

∂

∂θ
(v′ cos θ ) + 1

r′2
∂

∂r′ (r′2w′)
}

= 0, (3.4)

and the air is described by the equation of state for an ideal gas

p′ = ρ′R′T′, (3.5)

T′ being the absolute temperature (in K) and R′ ≈ 287 m2 s−2 K−1 the gas constant. Together with
this we have a suitable version of the first law of thermodynamics:

c′
p

DT′

Dt′
− κ ′∇′2T′ − 1

ρ′
Dp′

Dt′
= Q′(ϕ, θ , r′, t′), (3.6)

with c′
p ≈ 103 m2 s−2 K−1 the constant specific heat of predominantly dry air, κ ′/c′

p ≈ 2 ×
10−5 m2 s−1 the constant thermal diffusivity and Q′ a general heat-source term; here

∇′2 ≡ ∂2

∂r′2 + 2
r′

∂

∂r′ + 1
r′2

( 1
cos2 θ

∂2

∂ϕ2 + ∂2

∂θ2 − tan θ
∂

∂θ

)
. (3.7)

The second law of thermodynamics sets limits on the transformation between heat energy and
the total mechanical energy, but this property will not directly impinge on the developments that
we present here. (A more expansive description of this model for the atmosphere can be found
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in [8].) Finally, it is instructive to compute the vorticity associated with these flows: the vorticity
vector, written in our spherical coordinates, is

γ ′ =
( 1

r′
∂w′

∂θ
− ∂v′

∂r′ − v′

r′
)

eϕ +
(∂u′

∂r′ + u′

r′ − 1
r′ cos θ

∂w′

∂ϕ

)
eθ + 1

r′
(

u′ tan θ − ∂u′

∂θ
+ 1

cos θ

∂v′

∂ϕ

)
er.

(3.8)

In order to proceed, with the aim of extracting the relevant information from this general set
of equations, we must non-dimensionalize and then introduce suitable parameters, together with
an associated scaling and limiting process.

4. Non-dimensionalization and scaling
The non-dimensionalization is based on the timescale 1/Ω ′ (which is equivalent to about
3.5 hours—an appropriate choice for these wave motions) and on the speed scale Ω ′H′, where
H′ is a measure of the thickness of the troposphere (taken to be the maximum height of the
troposphere—about 16 km). In addition, we require an average density of the air, ρ′, and an
average dynamic eddy viscosity, μ′; the fundamental parameter that we work with is ε = H′/R′,
measuring the thinness of the atmospheric shell enveloping the Earth: we invoke the thin-shell
approximation described by ε → 0.

The non-dimensional (or normalized) variables—the unprimed variables—are then defined by⎧⎪⎨⎪⎩
r′ = R′(1 + εz), t = Ω ′ t′, ρ′ = ρ′ρ, p′ = ρ′(Ω ′R′)2p,

(u′, v′, w′) = Ω ′H′(u, v, w), T′ = (Ω ′R′)2

R′ T.
(4.1)

We also introduce a number of (non-dimensional) parameters:

Re = ρ′Ω ′H′2

μ′ , g = g′H′

Ω ′2R′2 , cp =
c′

p

R′ , κ = κ ′

R′Ω ′H′2 , (4.2)

with

ω = Ω ′R′

U′ (= ε−1 for U′ = Ω ′H′),

i.e. we have a small Rossby number. This condition on the Rossby number does not play a role
in the standard modelling for waves such as the morning glory, but it is essential here in order
to produce a consistent background state which we can then perturb. The parameters (4.2) are
held fixed under the limiting process ε → 0, so their values are immaterial; for information, the
Reynolds number is Re ≈ 105, the thermal-conductivity parameter is κ ≈ 10−7, cp ≈ 5.5, g ≈ 0.72.
Even though two of these parameters take rather extreme values, the asymptotic procedure
ensures that all the necessary physical attributes are retained. The guiding principle in this
approach is: do not approximate unless absolutely necessary. (We could introduce thin viscous
and thermal boundary layers, on the basis of these parameter values, but that is an additional
mathematical complication which is avoided altogether in our approach. Any boundary layers
are automatically included in our solution.)

We now non-dimensionalize equations (3.4), (3.5), (3.6) and (3.1), but we will write down only
the leading-order terms, having invoked the thin-shell approximation (ε → 0) in the viscous terms
and noting the size of the relevant error terms. The Navier–Stokes equation becomes

ρ
D
Dt

(u, v, w) + ερ

1 + εz

(
−uv tan θ + uw, u2 tan θ + vw, −u2 − v2

)
+ 2ρ (−v sin θ + w cos θ , u sin θ , −u cos θ ) + ρ(1 + εz)

ε

(
0, sin θ cos θ , − cos2 θ

)
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= − 1
ε2 ∇p + ρ

ε2

(
0, 0, − g

(1 + εz)2

)
+ 1

Re

{( ∂

∂z

[
m(z)

∂

∂z

]
+ M(z)

[ ∂2

∂(θ/ε)2 + 1
cos2 θ

∂2

∂(ϕ/ε)2

])
(u, v, w) + O(ε)

}
, (4.3)

where
D
Dt

≡
( ∂

∂t
+ ε

[ u
(1 + εz) cos θ

∂

∂ϕ
+ v

1 + εz
∂

∂θ
+ w

ε

∂

∂z

)
(4.4)

and
∇ ≡

( ε

(1 + εz) cos θ

∂

∂ϕ
,

ε

1 + εz
∂

∂θ

∂

∂z

)
, (4.5)

and we have written the two eddy viscosities as

μ′
ν = μ′ m(z), μ′

h = μ′ M(z).

Correspondingly, the equation of mass conservation becomes

Dρ

Dt
+ ρ

{ ε

(1 + εz) cos θ

(∂u
∂t

+ ∂

∂θ
(v cos θ )

)
+ 1

(1 + εz)2
∂

∂z

[
(1 + εz)2w

]}
= 0, (4.6)

and the equation of state is
p = ρT; (4.7)

the first law of thermodynamics is written as

cp
DT
Dt

− 1
ρ

Dρ

Dt
− κ ∇2T = Q(ϕ, θ , z, t; ε), (4.8)

where

∇2 ≡ ∂2

∂z2 + 2ε

1 + εz
∂

∂z
+ ε2

(1 + εz)2

( 1
cos2 θ

∂2

∂ϕ2 + ∂2

∂θ2 − tan θ
∂

∂θ

)
, (4.9)

and the non-dimensional heat-source term is Q. The corresponding form of the vorticity is

γ =
( ε

1 + εz
∂w
∂θ

− ∂v

∂z
− εv

1 + εz

)
eϕ +

(∂u
∂z

+ εu
1 + εz

− ε

(1 + εz) cos θ

∂w
∂ϕ

)
eθ

+ ε

1 + εz

(
u tan θ − ∂u

∂θ
+ 1

cos θ

∂v

∂ϕ

)
er, (4.10)

where γ ′ = γΩ ′. This system of equations corresponds closely to that used to study the properties
of the steady atmosphere [8], and various large-scale wave motions [9], but there are important
differences. Although the timescale used here and in [9] is the same, the size of the velocity
component in the vertical direction here, as compared with that used in [8,9], differs; this leads
to a very significant change in the structure of the solution. This arises mainly because of the
requirement here to scale the variations in the direction of propagation, and along the wavefront,
differently. This also leads to a slightly different form of the background state of the atmosphere,
onto which the motion is superimposed. Further, in order to apply these equations to nonlinear
wave phenomena (such as the morning glory), we must describe a wave propagating in a specific
direction, with little variation along the wavefront and a stronger variation in the direction of
propagation.

To initiate this further development, we note that waves of the morning-glory type, for
example, as seen in a number of locations around the world, can extend up to 3 km or so above
the Earth’s surface, but rarely is the wave train as long as 30 km; indeed, individual rolls are
typically only a few hundred metres in diameter. The length of the wavefront is usually well
over 100 km and, on occasions, it is observed to be as much as 1000 km, with the whole wave
group sometimes propagating over hundreds of kilometres [10,12]; on these length scales, it is
not advisable to ignore the effects of spherical geometry. We proceed by using the thin-shell
parameter, ε, to provide a scale that differentiates the structure in the propagation direction from
that along the wavefront. First, however, we must introduce a horizontal rotation of the coordinate
system about a point on the surface of the Earth.
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We rotate (ϕ, θ ) through the fixed angle α, counter-clockwise about the fixed point (ϕ0, θ0), to
produce (Φ, Θ); the wave is propagating in the Θ-direction (and we might expect weak variation
along the wavefront, i.e. in the Φ-direction, presumably coupled with no flow in this direction).
Thus, we have

ϕ − ϕ0 = Φ cos α − Θ sin α, θ − θ0 = Φ sin α + Θ cos α,

with the corresponding velocity components (U, V), where

u = U cos α − V sin α

and v = U sin α + V cos α.

}
(4.11)

Further, we require that the scale associated with the Θ-direction is much less than that in the
Φ-direction; indeed, in terms of the formulation that we have presented, the natural choice is to
replace Θ by εΘ . Thus, the transformation that we use is

ϕ − ϕ0 = Φ cos α − ε Θ sin α and θ − θ0 = Φ sin α + ε Θ cos α, (4.12)

in conjunction with (4.11). The description that we propose, therefore, is that the scaling in the
direction of propagation is comparable with that in the vertical direction, i.e. the depth of the
troposphere guides the length of the wave train; the length of the wavefront, on this scale, is
then Φ = O(1). For comparison, we can note, with H′ = 15 km, that a wave with its top at 3 km
corresponds to z = 1/5, and a length of the wave train of 30 km corresponds to Θ = 2 (ignoring
the adjustment from α): both are reasonable O(1) choices. More significantly, this scaling ensures,
at the order at which the leading-order velocity field is determined, that we have a consistent
nonlinear system that is derived directly from the general governing equations.

We use (4.11) and (4.12) in equations (4.6) and (4.3), with each component written out to give

D̂ρ

Dt
+ ρ

{(
1 − 1

Ĉ

)
sin α cos α

∂U
∂Θ

+
(

cos2 α + sin2 α

Ĉ

) ∂V
∂Θ

+ ∂w
∂z

}
= O(ε), (4.13)

ρ
D̂
Dt

(U cos α − V sin α) − 2ρ(U sin α + V cos α)̂S + 2ρwĈ

= − 1
ε2(1 + εz)Ĉ

(
ε

∂p
∂Φ

cos α − ∂p
∂Θ

sin α
)

+ 1
Re

{( ∂

∂z

[
m(z)

∂

∂z

]
+ M(z)

[
cos2 α + sin2 α

Ĉ2

] ∂2

∂Θ2

}
(U cos α − V sin α) + O(ε), (4.14)

ρ
D̂
Dt

(U sin α + V cos α) + 2ρ(U cos α − V sin α)̂S + 1
ε

ρ(1 + εz)̂SĈ

= − 1
ε2(1 + εz)

( ∂p
∂Θ

cos α + ε
∂p
∂Φ

sin α
)

+ 1
Re

{( ∂

∂z

[
m(z)

∂

∂z

]
+ M(z)

[
cos2 α + sin2 α

Ĉ2

] ∂2

∂Θ2

}
(U sin α + V cos α) + O(ε), (4.15)

ρ
D̂w
Dt

− 2ρ(U cos α − V sin α)Ĉ − 1
ε

ρ(1 + εz)Ĉ2 = − 1
ε2

{∂p
∂z

+ ρg
(1 + εz)2

}
+ O(ε), (4.16)

where

D̂
Dt

= ∂

∂t
+ 1

1 + εz

{
U

(
1 − 1

Ĉ

)
sin α cos α + V

(
cos2 α + sin2 α

Ĉ

)} ∂

∂Θ

+ ε

1 + εz

{
U

(
sin2 α + cos2 α

Ĉ

)
+ V

(
1 − 1

Ĉ

)
sin α cos α

} ∂

∂Φ
+ w

∂

∂z

and

Ŝ = sin(θ0 + Φ sin α + ε Θ cos α) and Ĉ = cos(θ0 + Φ sin α + ε Θ cos α).
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In addition, we have (4.7) and, from equation (4.8),

cp
D̂T
Dt

− 1
ρ

D̂ρ

Dt
− κ ∇̂2T = Q̂(Φ, Θ , z, t; ε), (4.17)

where

∇̂2 ≡ ∂2

∂z2 +
( sin2 α

C2 + cos2 α
) ∂2

∂Θ2

+ 2ε
{ ∂

∂z
+

(
Θ

S
C3 cos α sin2 α − z cos2 α − z

sin2 α

C2

) ∂2

∂Θ2

+
(

1 − 1
C2

)
sin α cos α

∂2

∂Φ∂Θ
− S

2C
cos α

∂

∂Θ

}
+ O(ε2), (4.18)

with

S = sin(θ0 + Φ sin α) and C = cos(θ0 + Φ sin α). (4.19)

As we shall see, this appearance of Φ is only parametric in the wave-evolution equation,
describing the distortion along the wavefront, consistent with using spherical coordinates. Finally,
we compute the corresponding form of the vorticity following the rotation of the horizontal
vectors; we find that

γ = 1
1 + εz

{
− ε sin α

S
C

V + ε
(

sin2 α + cos2 α

C

) ∂V
∂Φ

+
(

1 − 1
C

)
sin α cos α

∂V
∂Θ

}
er

+
{ε sin α cos α

1 + εz

(
1 − 1

C

) ∂w
∂Φ

+ 1
1 + εz

(
cos2 α + sin2 α

C

) ∂w
∂Θ

− ∂V
∂z

− εV
1 + εz

}
ef

+
{

− ε

1 + εz

(
sin2 α + cos2 α

C

) ∂w
∂Φ

+ sin α cos α

1 + εz

( 1
C

− 1
) ∂w

∂Θ

}
ed + O(ε2), (4.20)

where ed is the unit vector in the direction of propagation, and ef the unit vector along the
wavefront, directed such that the orthonormal basis {ed, er, ef } is positively oriented. We now
construct the asymptotic solution of equations (4.7), (4.13)–(4.17).

5. Asymptotic structure of the equations
We seek a solution of our transformed governing equations, (4.7), (4.13)–(4.17), by expanding all
the coefficients (and Q̂) in powers of ε, and then writing

q(Φ, Θ , z, t, ε) ∼
∞∑

n=0

εnqn(Φ, Θ , z, t),

where q (and correspondingly qn) represent each of the variables p, ρ, T, U, V, w. The asymptotic
solution is valid only for the three independent variables (Φ, Θ , z) each to be O(1); indeed, this
choice is controlled by the existence of the troposphere (whose top is, at most, at z = 1), and we
aim to find solutions which have suitable decay conditions at each end of the wave train and at
the extremities of the wavefront. The development of the solution proceeds in two stages: first, we
find the leading order and O(ε) that describe the background state of the atmosphere, and then
the leading-order velocity field, which is a nonlinear problem, is determined at O(ε2); we start
with the first two orders.

At O(1), i.e. the leading terms in the asymptotic expansion of the solution, we have

∂p0

∂Θ
= 0,

∂p0

∂z
= −gρ0, p0 = ρ0T0 , (5.1)

cp D0(T0) − 1
ρ0

D0(p0) − κ ∇2
0 (T0) = Q0, (5.2)
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where

D0 ≡ ∂

∂t
+

{
U0

(
1 − 1

C

)
sin α cos α + V0

(
cos2 α + sin2 α

C

)} ∂

∂Θ
+ w0

∂

∂z
,

∇2
0 ≡ ∂2

∂z2 +
(

cos2 α + sin2 α

C

) ∂2

∂Θ2 .

(Note that the first equation in the set (5.1)–(5.2) occurs twice.) The solution of this system will be
addressed when we have obtained the Φ-dependence that appears in the leading-order system;
this is generated by the equations at the next order.

We proceed to examine the O(ε) problem; this produces

sin α
∂p1

∂Θ
= cos α

∂p0

∂Φ
, (5.3)

cos α
∂p1

∂Θ
= − sin α

∂p0

∂Φ
− ρ0 SC, (5.4)

∂p1

∂z
= −gρ1 + [2gz + C2] ρ0, (5.5)

p1 = ρ0T1 + ρ1T0, (5.6)

cp {D0(T1) + D1(T0)} − 1
ρ0

{
D0(p1) + D1(p0) − ρ1

ρ0
D0(p0)

}
and − κ ∇2

0 (T1) − 2κ
∂T0

∂Z
= Q1, (5.7)

where we have written

D̂
Dt

≡ D0 + ε D1 + O(ε2).

Now (5.3) and (5.4) can be re-expressed as

∂p0

∂Φ
= −ρ0SC sin α ,

∂p0

∂Θ
= −ρ0SC cos α. (5.8)

The first equation in (5.8), in conjunction with (5.1), shows that p0, ρ0 and T0 are functions of

ζ = gz + 1
2

S2, (5.9)

with
dp0

dζ
= −ρ0 , p0 = ρ0T0, (5.10)

for some T0(ζ ). The first law of thermodynamics at this order, (5.2), gives

gw0

(
cp

dT0

dζ
+ 1

)
− κg2 d2T0

dζ 2 = Q0 (5.11)

and a solution for Q0 ≡ 0 is

T0(ζ ) = T0(0) − ζ

cp
, (5.12)

where T0(0) is an arbitrary constant. This is the familiar solution that describes the ambient
state of the troposphere (independent of the velocity field), with temperature decreasing linearly
upwards [8]. Further, because this solution corresponds to Q0 ≡ 0, no external heat sources are
required, at this order. However, as we will see later, other solutions of (5.11) must be considered
if we aim to provide a reasonable basis for the generation of waves such as the morning glory;
see §6b.
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Returning to equation (5.7), we find that it can be written as

cp D0(T1) − 1
ρ0

D0(p1) + ρ1

ρ2
0

∂p0

∂z

+
{

U0

(
sin2 α + cos2 α

C

)
+ V0

(
1 − 1

C

)
sin α cos α

}(
cp

∂T0

∂Φ
+ SC sin α

)
+ w1

(
cp

∂T0

∂z
+ g

)
− κ ∇2

0 (T1) = Q1 + 2κ
∂T0

∂z
, (5.13)

which can be used to determine the heat sources at this order, given the background
thermodynamic state and the velocity field (U0, V0, w0) and w1.

Eliminating p1 between (5.5) and (5.6), and setting

T1 = T2
0

∂τ1

∂z
, (5.14)

we find that

p1 = p0

{
gτ1 +

∫ z

0

2gz + C2

T0(gz′ + 1
2 S2)

dz′ + F(Φ, Θ , t)
}

, (5.15)

and then the second equation of the pair in (5.8) gives

τ1 = −SC cos α

g
Θ

T0
+ G(Φ, z, t) − 1

g
F(Φ, Θ , t),

where F and G are arbitrary functions. We also have

ρ1 = gρ0G − p0
∂G
∂z

+ ρ0

∫ z

0

2gz + C2

T0(gz′ + 1
2 S2)

dz′ − ρ0

T0
SC Θ

(
1 + dT0

dζ

)
cos α (5.16)

and

T1 = SC cos α

g
Θ

∂T0

∂z
+ T2

0
∂G
∂z

. (5.17)

Combining all the above results, the first law, (5.13), which describes the internal heating and heat
sources for this flow at this order, can be written as

T0
∂

∂t

(
cpT0

∂G
∂z

− gG
)

+ w0

{
cp

∂

∂z

(
T2

0
∂G
∂z

)
+ g

(
T0

∂G
∂z

− gG
)

− C2 − 2gz
}

+
{

U0

(
sin2 α + cos2 α

C

)
+ V0

(
1 − 1

C

)
sin α cos α

}(
cp

∂T0

∂Φ
+ SC sin α

)
+ w1

(
cp

∂T0

∂z
+ g

)
− κ

∂2

∂z2

(
T2

0
∂G
∂z

)
= Q1 + 2κ

∂T0

∂z
. (5.18)

This completes the description of the background state, correct to O(ε), which permits, at this
stage, some choices via the arbitrary functions F and G. In our approach to the problem, we treat
(5.18) as an expression for Q1, enabling us to identify the heat sources required to drive and
maintain the motion (at this order), given the velocity field at leading order, (U0, V0, w0), and w1
from the next order. We note, however, that U0, V0 and w1 are eliminated from this expression if T0
is defined by (5.12). Further, we expect to be able to obtain sufficient information from the leading
order alone, and so provide a reasonable description of the atmospheric processes involved.

At the next order, O(ε2), we obtain the equations that govern the leading-order velocity field;
it is the construction and interpretation of these that is the main thrust of this work. We perform
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the combination that led to equations (5.8), and so we are able to obtain the equation

∂p1

∂Φ
= −ρ0D0

{
(sin2 α + C cos2 α)U0 + (1 − C)V0 sin α cos α

}
− 2ρ0S

{
(1 − C)U0 sin α cos α − (sin2 α + C cos2 α)V0

}
− 2ρ0C2w0 cos α

− ρ1SC sin α − ρ0 sin α
{

2z SC + Θ (C2 − S2) cos α
}

+ 1
Re

�0

{
(sin2 α + C cos2 α)U0 + (1 − C)V0 sin α cos α

}
, (5.19)

where we have written

�0 ≡ ∂

∂z

(
m(z)

∂

∂z

)
+ M(z)

(
cos2 α + sin2 α

C

) ∂2

∂Θ2 , (5.20)

and we also have

D0(ρ0) + ρ0

{(
1 − 1

C

)
sin α cos α

∂U0

∂Θ
+

(
cos2 α + sin2 α

C

) ∂V0

∂Θ
+ ∂w0

∂z

}
= 0. (5.21)

Expressions for ∂p2/∂Θ and ∂p2/∂z can also be found, but they are not needed for the
determination of the background state at leading order, nor for the construction of the nonlinear
wave equation; we would need to use them if we wish to find w1. Also, the equation of state and
the first law of thermodynamics, at this order, are not required for the description of the nonlinear
wave motion, nor for the background state, as presented here.

We see that equations (5.19) and (5.21) relate the components of the velocity field (U0, V0, w0),
knowing the background state to leading order. Once we have determined all these, we may
then use this information in the first law of thermodynamics to provide an interpretation of
the heat sources required to maintain the motion. Now, because (5.19) and (5.21) involve the
three components of the velocity field, we may proceed by assuming that there is no flow
along the wavefront: U0 ≡ 0. (We mentioned this possibility earlier, but have not invoked this
condition thus far.) This then produces two equations for (V0, w0). So, firstly, equation (5.19) can be
written as

∂p1

∂Φ
= −ρ0(1 − C) sin α cos α D0(V0)

+ 2ρ0S(sin2 α + C cos2 α)V0 − 2ρ0C2w0 cos α − ρ1SC sin α

− ρ0

{
2z SC + Θ (C2 − S2) cos α

}
sin α + 1

Re
(1 − C) sin α cos α �0(V0), (5.22)

where

D0 ≡ ∂

∂t
+

(
cos2 α + sin2 α

C

)
V0

∂

∂Θ
+ w0

∂

∂z
,

and then, using (5.15), the forcing term

∂p1

∂Φ
+ ρ1SC sin α + ρ0

{
2z SC + Θ (C2 − S2) cos α

}
sin α,

can be expressed as

p0

(
g

∂G
∂Φ

− SC sin α
∂G
∂z

)
+ ρ0SC sin α

{
4z + C2

g

(
1 + T0

T0(0)

)
− 4T0

∫ z

0

dz′

T0(gz′ + 1
2 S2

}
,
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which we note does not depend on Θ . The component of the Navier–Stokes equation, (5.22), can
then be written as

(1 − C) sin α cos α D0(V0) − 2S(sin2 α + C cos2 α)V0

+ 2C2w0 cos α − 1
Re

(1 − C) sin α cos α �0(V0) + T0

(
g

∂G
∂Φ

− SC sin α
∂G
∂z

)
+ SC sin α

{
4z + C2

g

(
1 + T0

T0(0)

)
− 4T0

∫ z

0

dz′

T0(gz′ + 1
2 S2)

}
= 0. (5.23)

Correspondingly, the equation of mass conservation at this order, (5.21), reduces to

w0
∂ρ0

∂z
+ ρ0

{(
cos2 α + sin2 α

C

) ∂V0

∂Θ
+ ∂w0

∂z

}
= 0, (5.24)

because ρ0 = ρ0(Φ, z).
We now examine equations (5.23) and (5.24) in a little more detail; for convenience we write

(5.23) as

(1 − C) sin α cos α D0(V0) − 2S(sin2 α + C cos2 α)V0

+ 2C2w0 cos α − 1
ρ0Re

(1 − C) sin α cos α �0(V0) = K(Φ, z, t), (5.25)

where the forcing term

K(Φ, z, t) = −T0

(
g

∂G
∂Φ

− SC sin α
∂G
∂z

)
+ SC sin α

{
4z + C2

g

(
1 + T0

T0(0)

)
− 4T0

∫ z

0

dz′

T0(gz′ + 1
2 S2)

}
,

(5.26)

can be regarded as arbitrary, because G is. If we elect to use a particular K, in order to produce
a suitable solution, we may then identify G. Finally, we see that equation (5.24) leads to the
introduction of a stream function, Ψ (Φ, Θ , z, t), with(

cos2 α + sin2 α

C

)
ρ0V0 = ∂Ψ

∂z
, ρ0w0 = − ∂Ψ

∂Θ
, (5.27)

and then equation (5.25) becomes

∂2Ψ

∂z∂t
+ 1

ρ0

∂Ψ

∂z
∂2Ψ

∂z∂Θ
− ∂Ψ

∂Θ

∂

∂z

( 1
ρ0

∂Ψ

∂z

)
− σ

(
S

∂Ψ

∂z
+ C cos α

∂Ψ

∂Θ

)
− 1

Re
�0

( 1
ρ0

∂Ψ

∂z

)
= K(Φ, z, t), (5.28)

where

σ = 2(sin2 α + C cos2 α)
(1 − C) sin α cos α

. (5.29)

This is our fundamental nonlinear equation, which describes the properties of the wave, given
the background state of the atmosphere; we note that Φ appears only as a parameter in this
equation, although its retention is important when we note that the wavefront can extend as much
as 1000 km. Equation (5.28) describes the leading-order velocity field, i.e. the solution at O(1), even
though the balance that produces it appears at O(ε2). In addition, we are able to determine the
vorticity associated with this solution; from (4.18), we see that the vorticity vector, at leading
order, becomes

γ 0 =
(

1 − 1
C

)
sin α cos α

∂V0

∂Θ
er +

{(
cos2 α + sin2 α

C

) ∂w0

∂Θ
− ∂V0

∂z

}
ef

+ sin α cos α
( 1

C
− 1

) ∂w0

∂Θ
ed. (5.30)

Note that if we regard (5.28) as an evolution equation for a two-dimensional flow with velocity
components (V0, w0, 0), dependent on the variables (X, z, Φ) with X = Θ/(cos2 α + sin2 α/C), with
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respect to the orthogonal frame (ed, er, ef ), the corresponding curl of the velocity is

∂V0

∂Φ
er +

{∂w0

∂X
− ∂V0

∂z

}
ef − ∂w0

∂Φ
ed = ∂V0

∂Φ
er +

{(
cos2 α + sin2 α

C

) ∂w0

∂Θ
− ∂V0

∂z

}
ef − ∂w0

∂Φ
ed.

(5.31)
The discrepancy in the directions ed and er between the expression (5.31) and the vorticity vector
(5.30), which is the appropriate one for the underlying fluid flow, is due to the fact that the
transformation (4.12) involves a stretching along the ef direction, which does not alter the ef
component of the vorticity but intensifies the other two components, changing their leading order.
Therefore, from the curl of the velocity of the model equation (5.28) we can recover only the ef
component of the vorticity of the original system. Note that one immediate consequence of (5.30)
is that the flow is irrotational only if w0 does not depend on Θ , and V0 does not depend on both
Θ and z. Such a restriction makes it impossible for the type of waves that we seek to exist within
the irrotational framework. Correspondingly, with regard to (5.28), the constraint

∂w0

∂X
= ∂V0

∂z
, i.e.

(
cos2 α + sin2 α

C

) ∂w0

∂Θ
= ∂V0

∂z
,

expressing the irrotationality of the (V0, w0)-flow in the (X, z)-variables, for fixed values of Φ, is
also very restrictive. We also note that the inviscid assumption is not adequate for atmospheric
flows in the lower troposphere. We conclude, therefore, that any models which build on
irrotational inviscid flow (such as the Korteweg–de Vries and Benjamin–Ono equations) cannot
be regarded as relevant or reliable descriptions of phenomena such as the morning glory.

With this derivation and these observations in place, we now study the nonlinear wave
equation, (5.28), in the light of the many observations of waves similar to the morning glory,
and relate its solution to the associated properties of the atmosphere that make these type of
phenomena possible.

6. Nonlinear wave propagation
The main purpose of this work has been to obtain, using systematic asymptotic methods, an
equation for nonlinear wave propagation that captures the essential elements of morning glory-
type waves, incorporating all the relevant dynamics and thermodynamics without recourse to
additional simplifications. Equation (5.28) has been derived and the obvious next stage is to solve
it, aiming to find relevant solutions. This, however, has proved impossible in sufficient generality
to produce the detailed structure of waves such as the morning glory; nevertheless, there is much
that we can deduce from our formulation of this wave problem, all of which sheds light on its
dynamics. In addition, we are able to provide some compelling arguments for indicating that
(5.28) is relevant to the description of nonlinear waves in the atmosphere and, as such, is worthy
of further investigation (some of which will probably need to be numerical).

(a) Direction of propagation of the waves
An unexpected prediction from our theory concerns the direction of propagation of the waves
described by equation (5.28). It is clear from equation (5.25) that both the material-derivative
term and the viscous term vanish for α ∈ {0, ±π

2 } and so a nonlinear wave (with any associated
dissipation) cannot exist within our asymptotic formulation for these specific angular values. In
particular, for α = ±π

2 , we obtain

V0 = − K
2S

and C
∂(ρ0w0)

∂z
+ ∂(ρ0V0)

∂Θ
= 0,

from (5.25) and (5.24), respectively; thus we have a solution, which, in its most general form, is a
uniform flow with

V0 = − K(Φ, z, t)
2 sin(θ0 ± Φ)

, ρ0w0 = L(Φ, Θ , t),
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where L is an arbitrary function. Similarly, for α = 0, we obtain

2 cos θ0(w0 cos θ0 − V0 sin θ0) = −T0g
∂G
∂Φ

and
∂(ρ0w0)

∂z
+ ∂(ρ0V0)

∂Θ
= 0 ,

which has the solution

ρ0V0 = N(z cos θ0 − Θ sin θ0) + g
sin(2θ0)

p0
∂G
∂Φ

,

and correspondingly for ρ0w0, where N is an arbitrary function. We conclude, therefore, that any
nonlinear waves that are recovered from our asymptotic procedure must necessarily propagate
in directions other than North–South or East–West. Consistent with this conclusion, we note
that many morning-glory waves, for example, do not propagate in the azimuthal or meridional
directions, particularly when they appear over the open ocean; see, for example, the data
presented in [6,28]. This result is based on the waves—or lack of them—being generated by
pressure or temperature gradients that exist in the atmosphere by virtue of appropriate heat
sources (and so consistent with our equations describing the atmosphere). Any external guides,
such as the position of land masses or their orography, are not included in our current model of
the Earth; this important extension is left for future investigation.

(b) Breeze-like flows
We can expect that any useful application of our theory should allow the waves to propagate in
the presence of a background flow, e.g. in the presence of a breeze in the lower troposphere (as
typically occurs for the morning glory). We thus seek a solution of equation (5.28) in the form
Ψ = Ψ (z, Φ), which gives

−σS
∂Ψ

∂z
− 1

Re

∂

∂z

(
m(z)

∂

∂z

)( 1
ρ0

∂Ψ

∂z

)
= K(z, Φ),

and, using (5.27), this becomes

ρ0σS V0 + 1
Re

∂

∂z

(
m(z)

∂V0

∂z

)
= −

{
cos2 α + sin2 α

C

}
K(z, Φ). (6.1)

This equation describes a property of the solution that must hold in any regions where the wave
profile asymptotes to uniform conditions, i.e. as Θ → ±∞. Thus, in this context, we have a breeze
described by a horizontal velocity V0(z, Φ), which we require to be zero on z = 0 (the no-slip
condition at the Earth’s surface) and on z = z0 (and above it), this being the level where the
temperature inversion occurs. This breeze then exists only in a rather thin region above the Earth’s
surface. From (5.30), we compute the vorticity

γ 0 = −∂V0

∂z
ef ;

this shows that non-trivial flows of this type are never irrotational. A simple model profile is

V0(z, Φ) = 4Vm(Φ) z/z0

(
1 − z/z0

)
, 0 ≤ z ≤ z0 ,

which has maximum speed Vm(Φ) at z = z0/2; this function can be chosen to limit the lateral extent
of the breeze by requiring that Vm(Φ) = 0 outside −Φ0 < Φ < Φ0 (for some Φ0 > 0). We observe in
passing, because Re is large, that the specification of K is dominated by V0 alone:

K(z, Φ) ≈ − σS

cos2 α + sin2 α/C
ρ0(z)V0(z, Φ).

We therefore interpret equation (6.1) as determining K for a given V0 at one asymptotic direction
in Θ and then, at the other, we could have a different form (based on the solution of equation
(6.1), given K), although we are likely to require no more than that the same V0 exists throughout.
Now, consistent with this formulation, and particularly relevant to the appearance of waves in the
presence of an inversion layer, we choose T0(ζ ) so that the temperature increases (typically almost
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linearly) up to the height at which the inversion occurs (i.e. at z = z0). Thereafter, the temperature
decreases in the familiar linear fashion according to (5.12).

Thus, given the velocity profile of the breeze, V0(z, Φ), we can find K(z, Φ), which, from (5.26),
determines G(z, Φ); we then calculate ∂G/∂z and so obtain the temperature correction, T1, from
(5.17). This allows us to write down

T = T0

[
gz + 1

2
sin2(θ0 + Φ sin α + ε Θ cos α)

]
+ εT2

0
∂G
∂z

+ O(ε2) ,

which describes the temperature in the atmosphere, including any temperature inversion, as
well as a contribution from the detailed structure of the breeze. We can also obtain expressions
for the pressure, p ∼ p0 + εp1, from (5.10) and (5.15). Conversely, given T2

0 (∂G/∂z) as the
deviation away from the background-temperature profile, we may, through a sequence of routine
integrations, determine G, then K and finally the associated breeze, V0(z, Φ). In some locations this
breeze always exists throughout the region where the nonlinear wave evolves while, in others,
equation (6.1) can only be solved for certain types of forcing K.

For example, the geographical coordinates of the Gulf of Carpentaria being 14◦S 139◦E, we
have C ≈ 0.97, S ≈ −0.24 and σ ≈ 133 for α = 5π/4 (suitable for a breeze propagating in the south-
west direction), so that we can write (6.1) in the form

β V0 − ∂

∂s

(
m̂(s)

∂V0

∂s

)
= k0(s, Φ), 0 < s < 1, (6.2)

with

β = −σSRe > 0, s = 1∫ z0
0 ρ0(ξ ) dξ

∫ z

0
ρ0(ξ ) dξ ,

m̂(s) = ρ0(z)m(z)( ∫ z0
0 ρ0(ξ ) dξ

)2 , k0(s, Φ) = Re

{
cos2 α + sin2 α

C

} K(z, Φ)
ρ0(z)

.

For every fixed Φ, the boundary conditions associated with (6.2) are V0 = 0 at s = 0 and at s = 1:
this is a regular Sturm–Liouville problem [29]. Assuming that ρ0 and K are continuous functions,
while m is continuously differentiable, the self-adjoint unbounded linear operator S = β −
(∂/∂s)(m̂(s) ∂

∂s ), acting in L2(0, 1) with domain the Sobolev space H2
0(0, 1) = {V ∈ H2(0, 1) : V(0) =

V(1) = 0}, has a discrete spectrum with simple eigenvalues λ1 < λ2 < . . . < λn < . . . accumulating
at infinity, and with the corresponding eigenfunctions {fn}n≥1 forming an orthonormal basis of
L2(0, 1); see [30]. Multiplying both sides of Sf1 = λ1f1 by f1, an integration on (0, 1) yields∫ 1

0
m̂(s) [f ′

1(s)]2 ds = λ1 − β,

after performing an integration by parts. Therefore λ1 > β, so that zero is not an eigenvalue of S.
The inverse S−1 of S being compact and self-adjoint, the Fredholm alternative now ensures that
the equation SV = k has, for every k ∈ L2(0, 1), a unique solution

V(s) =
∫ 1

0
G(s, s̃) k(s̃) ds̃ =

∞∑
n=1

1
λn

〈fn, k〉 fn,

in L2(0, 1), expressed in terms of the Green function

G(s, s̃) =
∞∑

n=1

1
λn

fn(s) fn(s̃);

here 〈·, ·〉 is the scalar product of L2(0, 1). Moreover, if ρ0, m and K are smooth, Sobolev inequalities
ensure that this solution is also smooth [30]. This argument has demonstrated that the breeze
solution exists in the Gulf of Carpentaria under very general conditions, not restricted by special
choices of the flow properties. Note that the high-resolution numerical simulations in [6] indicate
that the orography representative of the Cape York Peninsula is not a major factor in the
generation of the morning glory.
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In contrast to the situation described above, in some cases β < 0 in (6.2) might lead to zero
being an eigenvalue of the operator S; for example, if m(z) = m0(

∫ z0
0 ρ0(ξ ) dξ )2/ρ0(z) for some

m0 > 0, then m̂ ≡ m0 and the eigenvalues are λk = β + m0π
2k2, with corresponding eigenfunctions

fn(s) = √
2 sin(kπs) for k ≥ 1. If n ≥ 1 is such that λn = 0, then the Fredholm alternative ensures

that equation (6.2) can be solved if and only if 〈k0(·, Φ), fn〉 = 0. For example, in the context of
the roll cloud over land photographed in Calgary on 18 June 2013 (figure 1a), its propagation
in the North–West direction corresponds to α = π/4, and since the geographical coordinates of
the Calgary are 51◦N 114◦W, we have C ≈ 0.62, S ≈ 0.77 and σ ≈ 8.5, so that β = −σSRe < 0. This
example may, at first sight, appear to be unrelated to a sea breeze: Calgary is far from any coastal
region. However, sea breeze-like flows can arise in landlocked regions. In this case, cool air,
driven by the downdraft associated with a thunderstorm’s cloud, spreads out in an outflow that
undercuts the warm air being drawn upwards by the storm’s updraft (see also the discussion in
[31,32]). These are precisely the general conditions described earlier as pertaining to offshore and
onshore breezes associated with the morning glory. Further, as the cool air lifts the moist, warm
air, water condenses and may create a roll wave (as observed on 18 June 2013).

(c) Bore-like flows
We now discuss a special solution which admits one of the crucial properties that we expect: a
rapid vertical displacement of the flow streamline, similar to that of the free surface in river bores
[33]. For this, we seek a solution of (5.28) in the form

Ψ (Θ , z, t; Φ) = A(z, t; Φ) + B(z, t; Φ) η(Θ , t; Φ), (6.3)

and then we make the choices

∂2B
∂z∂t

− σS
∂B
∂z

− 1
Re

∂

∂z

{
m(z)

∂

∂z

}( 1
ρ0

∂B
∂z

)
= 0 , (6.4)

1
ρ0

∂A
∂z

∂B
∂z

− B
∂

∂z

( 1
ρ0

∂A
∂z

)
− σBC cos α = 0, (6.5)

1
ρ0

(∂B
∂z

)2 − B
∂

∂z

( 1
ρ0

∂B
∂z

)
= a(Φ)

∂B
∂z

(6.6)

and
M(z)

Re

1
ρ0

(
cos2 α + sin2 α

C

)
= ν(Φ) , (6.7)

with the condition (6.7) implying that the horizontal kinematic eddy viscosity, M/ρ0, varies, at
most, as a function of Φ. Further, we set

K̂(t; Φ) = 1
∂B/∂z

{
K(z, t; Φ) − ∂2A

∂z∂t
+ σS

∂A
∂z

+ 1
Re

∂

∂z

(
m(z)

∂

∂z

)( 1
ρ0

∂A
∂z

)}
,

which restricts the form taken by the forcing function K, so that (5.28) becomes

∂η

∂t
+ a η

∂η

∂Θ
= ν

∂2η

∂Θ2 + K̂(t; Φ). (6.8)

Equation (6.8) is essentially a Burgers equation, which can be recast as such by writing

η(Θ , t; Φ) =
∫ t

0
K̂(t′; Φ) dt′ + X(ξ , t; Φ), ξ = Θ + f (t; Φ),

which gives
∂X
∂t

+ aX
∂X
∂ξ

= ν
∂2X
∂ξ2 , (6.9)

for

f (t; Φ) = −a(Φ)
∫ t

0

∫ t′

0
K̂(t′′; Φ) dt′′dt′.
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The problem is therefore reduced to a classical Burgers equation, but with special choices (as is to
be expected); we now examine what these restrictions imply.

From equation (6.6), we find that

B(z, t; Φ) = − a(Φ)
λ(t; Φ)

+ b(t; Φ) exp
[
λ(t; Φ)

∫ z

0
ρ0(z′) dz′

]
, (6.10)

where b and λ are arbitrary functions.
The degenerate case, λ = 0, produces the solution

B(z, t; Φ) = b̂(t; Φ) + a(Φ)
∫ z

0
ρ0(z′) dz, (6.11)

where b̂ is arbitrary. Knowing B, we see that equation (6.5) gives

A(z, t; Φ) = A0(t; Φ)
∫ z

0
ρ0(z′)B(z′, t; Φ) dz′

− σC cos α

∫ z

0

∫ z′

0

ρ0(z′)B(z′, t; Φ)
B(z′′, t; Φ)

dz′′dz′ + A1(t; Φ), (6.12)

where A0, A1 are arbitrary functions. Finally, equation (6.4) determines the vertical eddy viscosity
which is consistent with these various choices (and which must be a function of z, but with
parametric dependence on Φ, if required); using (6.10), we find that

m(z)
Re

= 1
ρ0

{β − σS
λ2 − γ exp

[
− λ

∫ z

0
ρ0(z′) dz′

]}
, (6.13)

where γ (Φ) is arbitrary,

β(Φ) = 1
b

db
dt

,

and we must have λ = λ(Φ) for m to be independent of t. On the other hand, if we use (6.11), then
we see that, although m(z) is arbitrary, we must take a = 0, i.e. the nonlinear term is absent from
the Burgers equation—and we anticipate that nonlinear evolution is an important ingredient.

For λ �= 0 the Burgers equation (6.8) admits bore-like solutions, for example, the travelling
wave

η(Θ , t) = c
a

− 2γ b
a

tanh[b(Θ − ct)] with bc �= 0,

if K̂ ≡ 0, and so, from (6.3), we have a corresponding solution of our model equation, (5.28).
However, solutions of this form are valid only in a neighbourhood of the thermal inversion layer
and have to be matched with suitable air flows in the regions of the troposphere below and above
it. Indeed, using (6.10) and (6.12), with the constraints just noted, we see that (5.27) gives

w0 = − 1
ρ0

{
− a

λ
+ b0 eβt exp

[
λ

∫ z

0
ρ0(z′) dz′

]} ∂X
∂ξ

, (6.14)

where b0(Φ) is arbitrary. We may impose w0 = 0 on z = 0 at all times t, by choosing β = 0 and
b0 = a/λ. Correspondingly, we obtain(

cos2 α + sin2 α

C

)
V0 = − a

λ

(
1 − exp

[
λ

∫ z

0
ρ0(z′) dz′

])(
A0(t; Φ) − σC cos α

∫ z

0

dz′

B(z′, t; Φ)

)
+ a exp

[
λ

∫ z

0
ρ0(z′) dz′

]( ∫ t

0
K̂(t′, Φ) dt′ + X(ξ , t; Φ)

)
, (6.15)

but we are unable to impose the no-slip condition here (because the necessary z-derivatives have
been absorbed into the definition of our special viscosity); indeed, on z = 0, we have(

cos2 α + sin2 α

C

)
V0 = a

( ∫ t

0
K̂(t′, Φ) dt′ + X(ξ , t; Φ)

)
.

Thus we may have breezes described by the behaviour of X far ahead, and far behind, the
wavefront (as mentioned earlier), but their vertical structure is prescribed in this special, exact
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solution. From (6.13), a requirement for this special solution to exist is that

m(z)
Re

= − 1
ρ0

{σS
λ2 + γ exp

[
− λ

∫ z

0
ρ0(z′) dz′

]}
, (6.16)

where we may choose γ and λ to produce a reasonable model for the variation of the vertical
dynamic eddy viscosity in the lowermost region of the troposphere. Finally, we may compute the
vorticity associated with this bore-like flow. At leading order, we find that

γ 0 =
(
− (C cos2 α + sin2 α)

B
Cρ0

∂2η

∂Θ2 + C
[
∂/∂z

(
(1/ρ0)(∂A/∂z)

) + η (∂/∂z)
(
(1/ρ0)(∂B/∂z)

) ]
C cos2 α + sin2 α

)
ef

+ (C − 1) sin α cos α
B

Cρ0

∂2η

∂Θ2 ed + (C − 1) sin α cos α

(C cos2 α + sin2 α)ρ0

∂B
∂z

∂η

∂Θ
er.

This shows that the flow cannot, in any circumstances, be regarded as irrotational; indeed, even
with the special choice α = 0 (which can never correspond to a morning glory wave) there is a
component of vorticity perpendicular to the direction of travel.

(d) Oscillatory-like solution
In §2, we described the general properties of the morning glory clouds, which are often seen as a
sequence of such clouds; to generate these, an oscillatory structure is required. This type of flow
will then provide regions of updraft and downdraft that allow the creation of a wave train of
clouds. We now show that our model equation (5.28) possesses solutions of the appropriate form,
although to extract this property as an exact solution requires a few simplifying assumptions. We
expect that such a solution will be relevant to a neighbourhood of the thermal inversion layer,
about which there will be only small changes in the density and viscosities of the air. Indeed, the
field data in [1] show that the density variation across the thermal inversion layer is only about
1% and so we can take advantage of this, if expedient. In this discussion of equation (5.28), we
first allow the background density, ρ0(gz + 1

2 S2), to take any (reasonable) general form, and then
introduce

Z =
∫ z

0
ρ0(gz′ + 1

2 S2) dz′. (6.17)

We now transform equation (5.28), treating Ψ = Ψ (Φ, Θ , Z, t), to give

∂2Ψ

∂Z∂t
+ ∂Ψ

∂Z
∂2Ψ

∂Z∂Θ
− ∂Ψ

∂Θ

∂2Ψ

∂Z2 − σ
(

S
∂Ψ

∂Z
+ C cos α

d0

∂Ψ

∂Θ

)
− 1

Re

{ ∂

∂Z

(
m̂

∂

∂Z

)
+ M̂

(
cos2 α + sin2 α

C

) ∂2

∂Θ2

}∂Ψ

∂Z
= K̂(Φ, Z, t), (6.18)

where

ρ0 = d0(Φ, Z), mρ0 = m̂(Φ, Z),
M
ρ0

= M̂(Φ, Z) ,
K
ρ0

= K̂(Φ, Z, t). (6.19)

We note that the positivity of the density function allows us to redefine this function in terms
of Z; the other definitions are required for consistency (and are therefore part of the process of
simplification needed to develop this special solution). To proceed, we seek a solution

Ψ (Φ, Θ , Z, t) = τ (Φ, Z) + χ ekZ cos[k(Θ − s0 t)], (6.20)

where χ , k and s0 depend on only Φ. (The addition of a term proportional to Θ is possible, but
this generates a uniform flow in the vertical direction which is not appropriate for the phenomena
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that we are examining here.) We find that (6.20) solves (6.18) if

∂2τ

∂Z2 − k
∂τ

∂Z
= −ks0 − σC cos α

d0
, (6.21)

k2 M̂
(

cos2 α + sin2 α

C

)
− k

(∂m̂
∂Z

+ k m̂
)

= σSRe (6.22)

and K̂ = −σS
∂τ

∂Z
− 1

Re

∂

∂Z

(
m̂

∂2τ

∂Z2

)
. (6.23)

Now, for equation (6.22) to be consistent, we set M̂ = M̂(Φ) and m̂ = m̂(Φ) (although a slightly
more general version is allowed with ∂m̂/∂Z + k m̂ a function of only Φ), to give

k2 = σSRe

M̂
(

cos2 α + sin2 α
C

)
− m̂

,

and oscillatory solutions require

M̂
(

cos2 α + sin2 α

C

)
> m̂.

Thus, we have shown that a solution of the form (6.20) exists, where

τ = s0Z − σC cos α

∫ Z

0

∫ Z′

0

ek(Z′−Z′′)

d0(Φ, Z′′)
dZ′′dZ′ + A ekZ + B,

is determined from equation (6.21), given the density function d0(Φ, Z) and a suitable choice of
wave speed, s0; here A(Φ) and B(Φ) are arbitrary. This, in turn, enables the forcing function,
K̂(Φ, Z), to be found from equation (6.23), and then K̂ can be used to identify the heat sources for
this flow. However, this solution does not exist if the terms that do not follow the Burgers pattern
in (5.28) are absent, i.e. for σ = 0 we have k = 0. This property of our special solution indicates that
the terms involving σ play a critical rôle in confirming the existence of an oscillatory component
to the available solutions. Further, the solution that we describe here is nonlinear, in the sense that
the horizontal background flow

∂τ/∂Z

d0

(
cos2 α + sin2 α/C

) ,

depends on both the wavenumber and the wave speed (via τ ), although it is independent of
the wave amplitude, χ . Indeed, this solution also allows for the specification of the wave speed
independently of the wavenumber determined above. The vertical velocity component

w0 = kχ
d0

ekZ sin[k(Θ − s0 t)],

shows that we do have alternating regions of updraft and downdraft, as time passes, heralding
the formation of the sequence of roll waves. Furthermore, associated with this oscillatory solution,
we have the vorticity

γ 0 =
{

(C cos2 α + sin2 α)
k2χ

Cρ0
ekZ cos[k(Θ − sot)]

− Cρ0

C cos2 α + sinα

( ∂2τ

∂Z2 + k2χ ekZ cos[k(Θ − sot)]
)}

ef

+
{

(1 − C)
k2χ

Cρ0
ekZ cos[k(Θ − sot)] sin α cos α

}
ed

+
{ (1 − C)k2χ sin α cos α

C cos2 α + sinα ekZ sin[k(Θ − sot)]
}

er,

which again demonstrates that irrotationality is very wide of the mark. Indeed, we see that the
horizontal background flow (given by τ ) has vorticity aligned only with the wavefront, whereas
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the oscillatory component generates a far more complicated flow, with vorticity components in
all three directions.

7. Discussion
The investigation that we have described here provides a derivation of a nonlinear wave equation,
(5.28), from the full set of governing equations for the atmosphere on Earth, written in rotating,
spherical coordinates. So, starting from the equations for a viscous, compressible fluid, coupled
to a suitable prescription of the thermodynamics of the atmosphere (an equation of state and
the first law), the equations for unsteady motion (using the timescale 1/Ω ′ ≈ 3 1

2 h) have been
non-dimensionalized and the thin-shell parameter (ε) introduced; all other physical properties
are represented by suitable parameters, which are held fixed as ε → 0. To consider atmospheric
waves propagating in a particular direction over the surface of a spherical Earth, we prescribe
scales associated with the direction of propagation, and with the extent of the wavefront. In
terms of the fundamental parameter used for the construction of the asymptotic expansion (ε),
a natural choice is to make the scale in the propagation direction (defined by Θ) O(ε) smaller than
that along the wavefront (defined by Φ). Not only is this reasonable on physical grounds, but it
is almost essential as we aim to derive a nonlinear wave equation consistent with the higher-
order perturbation terms. This introduction of a single parameter, and the scaling associated
with it, is the sole basis for the development of the asymptotic solution, i.e. no other simplifying
assumptions are invoked. The general pattern for the asymptotic development then follows the
familiar route when perturbing a leading-order solution.

Here, however, apart from the general complexity of the governing equations, the main
complication in this type of problem arises from the need to perturb a background state
that represents a realistic model of the steady atmosphere. Of course, showing how this is
accomplished, using only the thin-shell parameter, is an important part of the development
presented here. The leading order produces a description for the background state, which is
necessarily steady (on our chosen timescale) and governed, in the main, by its dependence on the
vertical coordinate; a solution of this system is the familiar linear reduction of the temperature
with height. At the next order, i.e. terms O(ε), we obtain a correction to the background state that
determines its Φ-dependence and, in consequence, also the Φ-dependence of the leading-order
velocity field. At these first two orders, the leading-order velocity field appears (in the first law)
but cannot be determined; in addition, at O(ε), the vertical velocity component w1 also appears.
Finally, at O(ε2), we obtain two equations that define the leading-order velocity field (U0, V0, w0),
given the dominant description of the background state of the atmosphere. That we have all three
components appearing here is consistent when we specify that the wave is moving in the Θ-
direction only; thus we set U0 ≡ 0 and we can then solve for the two-dimensional velocity field
(V0, w0), but which can still admit a structure in the Φ-direction. This is best accomplished by
introducing a stream function, Ψ , and then obtaining the model equation (5.28), which describes
how this evolves. This resembles a generalization of the boundary-layer equations [34,35] and
appears to be Burgers-like, although of one higher order, with variable coefficients, with terms
not normally associated with a Burgers equation and with a general forcing term (independent
of Θ). It is certainly unrealistic to expect that we can find a suitable exact solution which relates
directly to observed atmospheric waves. Nevertheless, we have been able to obtain some useful
pointers as to the properties and relevance of this equation, although far more investigation is still
needed (both analytical and numerical). Furthermore, an important element in the development
was to find the leading-order approximation to the vorticity, which provides some fundamental
information about the nature of the flows.

Firstly, and quite unexpectedly, the particular asymptotic route that we have followed—others
are possible but, we suggest, ours is arguably the most natural and direct—leads to a restriction
on the direction of propagation around the sphere. No wave evolution, governed by equation
(5.28), is possible in the East–West or the North–South directions. The equation, in these two cases,
simply predicts the existence of uniform flows without a wave-like structure. It is possible that
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wave propagation, of the general type described here, still exists (in our sense of a perturbation of
a background state) but where this corresponds to equations which appear at even higher order.
We have not investigated this possibility, which, in any event, will certainly involve considerable
algebraic complexity.

Secondly, and not at all surprisingly, we have shown that there are special solutions that are
independent of Θ and t (and so cannot exhibit wave-like properties). These solutions represent
breezes and can take many different forms, being generated by any suitable forcing function,
K(z, Φ). Such flows are expected to be relevant both as the initial state before waves are generated,
and to give the behaviour some distance away from any oscillatory or bore-like regime. Note that
there are several aspects of the dynamics of sea-breezes that remain to be elucidated (see the
discussion in [36]).

Thirdly, by seeking a special similarity solution-structure (of the type pursued in [34,37] but
with an acceptable physical basis), we have seen that equation (5.28) can be reduced to a standard
Burgers equation that admits bore-like solutions. Although this exact solution does require, in
addition, some special choices of the variable coefficients (in particular the viscosities) and a
relaxation of the bottom boundary condition, the result is encouraging. The fact that the equation
can be used to recover bore-like solutions is an important element in applying it to some of the
wave phenomena that are observed. While theories for the dynamics of atmospheric bores have
largely relied on analogies with those of shallow-water flow (for which we refer to the discussions
in [33,38]), the atmospheric case is considerably more complex due to thermodynamical effects
associated with density and pressure variations (see [2,39–41] for numerical simulations and
field data indicating that the analogy with shallow-water dynamics is quite limited). Indeed, our
evaluation of the vorticity shows that this is zero only in the absence of oscillations, and so any
model that is based on the assumption of irrotationality must be suspect. Note also that morning-
glory clouds typically occur within the atmospheric boundary layer, where viscosity plays a role
in the air-flow dynamics.

Finally, because the wave propagation that we are trying to model often appears as a sequence
of undulations (which are essential to the creation of the morning-glory cloud patterns), we
would want the equation to exhibit some oscillatory properties. We have shown, under a
transformation admitting a general background density, that an oscillatory solution does exist
for some special choices of the viscosities. This, in the context of a typical morning-glory
wave, is the appropriate description of the wave structure that appears around the level of
the thermal inversion. Furthermore, this oscillatory solution is absent if the non-Burgers-like
terms in equation (5.28), i.e. those terms associated with σ , are removed by setting σ = 0.
These terms therefore provide a dispersion-like element to the solutions, producing oscillations
that are necessary for the existence of solutions that mirror the morning glory as typically
observed.

In summary, therefore, the model equation (5.28) appears to possess all the properties that we
need: uniform flow, bore-like solutions and oscillatory solutions. However, to combine all these
in one solution is beyond us at this stage. This does, however, open the door to a more extensive
investigation. So, for example, the construction of numerical solutions might be the way forward;
also it might be possible to prove some general results indicating the existence of solutions of the
appropriate form satisfying suitable initial and boundary data.

This development also provides us, via the first law of thermodynamics, with the opportunity
to identify the heat sources that drive wave systems such as the morning glory. Equation (5.11),
the leading-order approximation to the first law, is not particularly informative although, if the
temperature does not decrease linearly according to equation (5.12), then there is necessarily
a heat source associated with points that move vertically in the atmosphere: a latent-heat
contribution. On the other hand, equation (5.18) shows that, in general, we have a far more
complicated set of heat sources. Nevertheless, if the background temperature satisfies (5.11),
then we have both a moving heat source (via w0) and some background (solar) heating. These
heat sources are driven by G(Φ, z, t), which can be determined (see (5.26)) if we know K(Φ, z, t),
which itself drives the wave motion. Conversely, given the flow structure (in the morning glory,
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for example), we can determine K, and hence G, and then we may identify the associated heat
sources that drive and maintain the motion. An important element in our approach, which has
emphasized the dynamical properties of the flow, is that the details of the thermodynamic forcing
are not critical to the development. Thus, the nature of the heat sources, and any evaporation or
condensation associated with cloud formation, can be added later, as part of the interpretation
of the forcing that drives the motion (and makes some of it visible to the observer). This, we
suggest, is the most useful way to tackle these problems: produce the best approximation (in
the asymptotic sense) to the dynamics, and then identify the detailed thermodynamics and air
properties to match the motion.

In conclusion, we have developed, using a systematic asymptotic procedure, a nonlinear wave
equation that is consistent with a set of general, governing equations for a compressible fluid. This
equation appears, on the basis of the results obtained so far, to possess all the essential properties
needed for a description of wave formations such as the morning glory. Of course, more work
must be done to elucidate the possible wave structures that can be generated by our nonlinear
wave equation. The details presented here, particularly connecting the wave motion to the heat
sources, allows for a comprehensive investigation of wave phenomena in the atmosphere. And
we have not touched on the role of topography in controlling the wave development: there are,
we submit, many avenues that are still to be explored.
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