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Diabetesmellitus is known to exacerbate acute cerebral ischemic injury. Previous studies have demonstrated that infarction volumes
caused by transient cerebral ischemia were greater in diabetic rats than in nondiabetic rats. Tumor necrosis factor-𝛼 (TNF-𝛼) is
a proinflammatory protein produced in the brain in response to cerebral ischemia that promotes apoptosis. Etanercept (ETN), a
recombinant TNF receptor (p75)-Fc fusion protein, competitively inhibits TNF-𝛼. Therefore, we evaluated the neuroprotective
effects of chronic or acute treatment with ETN on cerebral injury caused by middle cerebral artery occlusion/reperfusion
(MCAO/Re) in rats with streptozotocin-induced diabetes. Furthermore, we evaluated the effects of ETN against the apoptosis and
myeloperoxidase activity. Single administration of ETN before MCAO significantly suppressed exacerbation of cerebral damage
in nondiabetic rats, as assessed by infarct volume. In contrast, the diabetic state markedly aggravated MCAO/Re-induced cerebral
damage despite ETN treatment within 24 h before MCAO. However, the damage was improved by repeated administration of ETN
at 900𝜇g/kg/daily in rats in an induced diabetic state. These results suggested that repeated administration of ETN can prevent
exacerbation of cerebral ischemic injury in the diabetic state and is mainly attributed to anti-inflammatory effects.

1. Introduction

Diabetes mellitus (DM) is a metabolic disorder associated
with chronic hyperglycemia, which is known to enhance
systemic oxidative stress, predisposing patients to diabetic
complications. World Health Organization data show that
approximately 386 million people worldwide are currently
suffering from diabetes, which is a major risk factor for
atherosclerotic diseases, such as acute brain ischemia [1, 2].
Moreover, diabetic patients have a higher risk of stroke than
nondiabetic patients and are more likely to have a poor
prognosis and increasedmortality after stroke [3, 4]. Previous
studies have demonstrated that diabetes increased oxidative
stress and inflammation in the brain [5] and aggravated
cerebral ischemic injury in animalmodels [6–8]. Brain injury

induced by focal ischemia is characterized by significant
and rapid upregulation of cytokines, such as tumor necrosis
factor-𝛼 (TNF-𝛼). It is well known that inflammation has
an essential role in the pathogenesis of transient cerebral
ischemic injury [9].

TNF-𝛼 is a proinflammatory cytokine produced not only
by macrophages but also by a broad variety of other cell
types, such as endothelial cells, adipose tissue, fibroblasts,
and neuronal tissue. Furthermore, TNF-𝛼 has been impli-
cated in the pathogenesis of several central nervous system
disorders, including cerebral ischemia, Parkinson’s disease,
and brain injury [10], as central mediators of tissue injury
and inflammation. Extracellular TNF-𝛼 interacts with two
cognate receptors, such as low-affinity p55 (TNFR1) andhigh-
affinity p75 (TNFR2). Moreover, the activation of TNFR1
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predominantly results in initiation of caspases involved in
apoptosis [11, 12].Thus, intracellular signaling suppression by
TNF-𝛼 inhibition may be expected to be neuroprotective.

Etanercept (ETN) is a completely human fusion TNF-
soluble receptor that inhibits the effect of the proinflam-
matory cytokine TNF-𝛼, which has an important role in
synovitis and joint damage in rheumatoid arthritis (RA) [13].
ETN acts as a decoy receptor by binding to TNF-𝛼 and TNF-
𝛽. ETN has been approved for treatment of RA in Japan since
2005 to reduce the biological activity of TNF by inhibiting the
interaction between TNF receptors and TNF, and a marked
effect on RA has been observed. In contrast, patients with
ischemic stroke or diabetes have been recognized to show
higher plasma concentrations of TNF-𝛼, which is caused
by elevated inflammation. Moreover, it has been reported
that TNF-𝛼 concentration is increased in the cerebrospinal
fluid in the ischemia. In the previous report, the traumatic
brain injury- (TBI-) induced overproduction of IL-1𝛽, TNF-
𝛼, and IL-6 in serum was significantly reduced by anti-
TNF-𝛼 blockers. In contrast, etanercept therapy significantly
increased the serum levels of IL-10 during TBI in rats. Fur-
thermore, inhibition of gliosis has been observed in the brain
[14]. In addition, NMDA receptor antagonist (MK801) and
dexmedetomidine treatment has been reported to inhibit the
production of TNF-𝛼 and improve cerebral infarction in the
MCAOmodel [15, 16]. In recent years, inflammatorymarkers
have been attracting attention as potential diagnosticmarkers
[17, 18]. Therefore, the inflammatory reactions occurring
in ischemic brain damage have increased interest in the
development of therapies.

The objective of this study was to determine whether
ETN-induced inhibition of TNF-𝛼 biological activity could
improve brain damage caused by cerebral ischemia in
streptozotocin- (STZ-) induced diabetic rats.

2. Materials and Methods

2.1. Animals and Reagents. Male Sprague-Dawley rats (4
weeks old, weight 120–140 g) were purchased from Japan SLC
(Shizuoka, Japan) and housed under standard conditions in
a temperature-controlled environment (23∘C ± 0.5∘C) with
a cycle of 12 h of light and 12 h of darkness. The animals
were allowed free access to rodent chow (CE-2; CLEA Japan,
Tokyo, Japan) and water. Type 1 diabetes was induced in
the rats by a single intraperitoneal injection of STZ (Sigma-
Aldrich, St. Louis, MO, USA) (50mg/kg of body weight)
dissolved in 0.1mM sodium citrate, pH 4.5 (diabetic; DM
group), and the normal control rats (nondiabetic; non-DM
group) were injected with the buffer only [6, 19]. Seven days
after the injection of STZ, a blood sample was collected
by tail vein paracentesis, and then plasma glucose was
measured using a glucose analyzer (Ascensia; Bayer Yakuhin,
Osaka, Japan). Diabetes was defined as a blood glucose level
>300mg/dL. Following this, the DM and non-DM groups
were divided into two groups each, and the rats were housed
for additional 6 weeks until stroke was induced by middle
cerebral artery occlusion/reperfusion (MCAO/Re). Animal
care and surgical procedures were performed in accordance
with the guidelines approved by the National Institutes of

Health (USA) and the Josai University Animal Research
Committee. ETN was purchased from Pfizer Japan Inc.
(Tokyo, Japan). The rats subjected to MCAO were divided
into six treatment groups: Treatment 1, where non-DM rats
were treated with ETN (300, 450, and 900 𝜇g/kg, i.p.) within
24 h before MCAO, Treatment 2, where non-DM rats were
treated with ETN (300, 450, and 900𝜇g/kg, i.v.) immediately
after MCAO, Treatment 3, where non-DM rats were treated
with ETN (300, 450, and 900𝜇g/kg, i.v.) immediately after
MCAO/Re, Treatment 4, where DM rats were treated with
ETN (450 and 900 𝜇g/kg, i.v.) within 24 h before MCAO,
Treatment 5, where DM rats were treated with ETN (450
and 900𝜇g/kg, i.v.) immediately afterMCAO, and Treatment
6, where ETN (450 or 900𝜇g/kg, twice/week, i.p.) was
repeatedly administered after the onset of diabetes for 5
weeks.

2.2. Middle Cerebral Artery Occlusion/Reperfusion. The ex-
perimental MCAO/Re rat model was prepared as described
previously [6, 19]. The rats were anesthetized with 4%
halothane andmaintained with 1.5% halothane and 30% oxy-
gen under spontaneous respiration. After a midline incision
on the neck, the right common carotid artery was exfoliated
under an operating microscope. All of the branches of the
external carotid artery were ligated and isolated. The tip
of the 4-0 surgical nylon monofilament rounded by flame
heating was inserted through the internal carotid artery.
When mild resistance was felt, the insertion was stopped.
After occlusion for 2 h, the filament was withdrawn to enable
reperfusion. The distance from bifurcation of the common
carotid artery to the tip of the suture was approximately
20mm in all of the rats. Cerebral blood flowwasmeasured by
laserDoppler flowmetry (ATBF-LC1;UniqueMedical, Tokyo,
Japan), and approximately 50% reduction of the baseline flow
rate associated with MCAO was established in the non-DM
andDMrats.The ratswere allowed to recover fromanesthesia
at room temperature.The rectal temperature was maintained
at 37∘C using a heat lamp and a heating pad during the
operation. All of the rats were killed after 24 h of reperfusion.
A sham (control) operation involved the samemanipulations
but without insertion of the monofilament.

2.3. Plasma TNF-𝛼 Concentration. Enzyme-linked immun-
osorbent assay (ELISA) kits (Shibayagi, Gunma, Japan) were
used according to the manufacturer’s instructions to deter-
mine the secretion of TNF-𝛼 in plasma.

2.4. Infarction Assessment. After 24 h of reperfusion, the rats
were subjected to general anesthesia using halothane and
then decapitated. The brain was immediately removed and
placed in ice-cold saline. Each brain was then placed in a
brain matrix, and coronal sections were cut into 2mm slices.
The brain slices were immediately immersed in 2% 2,3,5-
triphenyl tetrazolium chloride (TTC) (Wako Pure Chemicals
Industries, Osaka, Japan) at 37∘C for 15min and then in 4%
formaldehyde [19, 20]. Following this, infarction areas were
identified by an image analysis system (Scion Image 1.62;
ScionCorporation, Frederick,MD,USA) andwere combined
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to obtain the infarction volumes per brain according to
the following formula: corrected infarction volume (%) =
[left hemisphere volume − (right hemisphere volume − the
infarction volume)] × 100/left hemisphere volume.

2.5. Neurological Evaluation. Postischemic neurological
deficits were evaluated after 24 h of reperfusion on a five-
point scale as follows: grade 0, no deficit; grade 1, failure to
fully extend the right forepaw; grade 2, spontaneous circling
or walking to a contralateral side; grade 3, walking only
when stimulated; grade 4, not responding to stimulation
and a depressed level of consciousness; and grade 5, death
[19, 20]. Before MCAO, the neurological score was zero in
all rats. The rats that did not exhibit neurological deficits
after MCAO/Re were excluded from the study. Scoring was
performed blindly on individual animals and averaged in
groups.

2.6. Terminal Deoxyribonucleotidyl Transferase-Mediated
Biotin-16-dUTPNick End-Labeling Staining. Apoptosis in the
brain tissueswasmeasured by theApoptosis In SituDetection
Kit Wako (Wako Pure Chemicals Industries), which is
based on the terminal deoxyribonucleotidyl transferase-
mediated biotin-16-dUTP nick end-labeling (TUNEL)
procedure and involves addition of fluorescein-deoxyuridine
triphosphate to 3-terminals of apoptotically fragmented
DNA with terminal deoxynucleotidyl transferase followed
by immunochemical detection using anti-fluorescein
antibody conjugated with horseradish peroxidase and 3-
3-diaminobenzidine tetrachloride as a substrate. Coronal
brain sections (8 𝜇m thick) were used for the assay. The
slides were lightly counterstained with hematoxylin and
observed under a microscope (BX51W1; Olympus, Tokyo,
Japan). Quantification of TUNEL-positive cells was achieved
by cell counting in areas of the penumbral cortex affected by
ischemia. Three randomly chosen visual fields were counted
in each region by an investigator without knowledge of the
experimental conditions. The percentage of apoptotic cells
was calculated by the apoptosis index, that is, dividing the
number of positive-stained nuclei by the total number of
nuclei [8].

2.7. Immunohistochemistry. Immunohistochemical staining
was performed as described previously [21, 22]. The brain
was fixed with 4% phosphate-buffered paraformaldehyde.
Coronal brain sections (8 𝜇m thick) were incubated with 3%
hydrogen peroxide for 40min at room temperature to inhibit
endogenous peroxidase and then incubated with blocking
buffer (4% Block Ace; Dainippon Sumitomo Pharma, Osaka,
Japan) for 2 h. Following this, the slices were incubated
with polyclonal rabbit anti-TNF-𝛼 antibody (1 : 200; Hycult
Biotech, PBUden, Netherlands) andmonoclonalmouse anti-
myeloperoxidase (MPO) antibody (1 : 100, Hycult Biotech)
in 10mmol/L phosphate-buffered saline (PBS) overnight at
4∘C. After washing with PBS, the slices were incubated
with either Cy3-conjugated donkey anti-rabbit IgG antibody
(1 : 200; Millipore, Billerica, MA, USA) or FITC-conjugated
goat anti-mouse IgG antibody (1 : 100; Zymed Laboratories,
San Francisco, CA, USA) at room temperature for 2 h.
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Figure 1: TNF-𝛼 concentrations in plasma after cerebral ischemia.
The quantity of TNF-𝛼 in plasma after ischemia was determined by
enzyme-linked immunosorbent assay. The open column is the non-
DM group, and the closed column is the DM group. Data are means
± SDs (𝑛 = 4-5 per time point). ∗𝑃 < 0.05 versus corresponding
values for non-DM. DM, diabetes mellitus; ND, not determined;
TNF, tumor necrosis factor.

Finally, the sections were incubated with the nuclear stain
TO-PRO-3 (1 : 10,000; Invitrogen, Carlsbad, CA,USA) in PBS
for 10min at room temperature with gentle agitation, washed,
and mounted using a 70% glycerol mounting medium.
Immunofluorescence was visualized by a laser scanning
confocal microscope (FluoView FV1000; Olympus). Fluores-
cence intensity was measured by imaging software (FV10-
ASW 1.7; Olympus). Analyses of immunohistochemistry
were performed by an investigator blinded to the treatment
protocol. Three sections per rat and three to four rats per
group were used for the analyses.

2.8. Statistical Analysis. The data are presented as mean ±
SD. Two-way ANOVA and the subsequent post hoc Tukey’s
multiple comparison test were used for statistical analysis.
Neurological deficit scores were analyzed by performing
Kruskal-Wallis test followed by Mann-Whitney 𝑈 test. In all
cases, a 𝑃 value of < 0.05 was assumed to denote statistical
significance.

3. Results

3.1. Blood Glucose and Body Weight. Body weight and blood
glucose data from the experimental rats were obtained
throughout the study period (Table 1). The DM group had
significantly decreased body weights and increased blood
glucose levels relative to those of the non-DM control group.
There were no significant differences in these parameters
between the ETN-treated groups and their controls (data not
shown).

3.2. Temporal Change in Plasma TNF-𝛼 Levels after Transient
MCAO with Reperfusion. The plasma levels of TNF-𝛼 in the
non-DMandDMgroupsweremeasured by ELISA (Figure 1).
The concentration of TNF-𝛼 was gradually increased after
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Figure 2: Effects of ETN on infarction induced by cerebral ischemia in non-DM andDM rat brains. (a) Representative coronal brain sections
of the non-DM rats and the ETN group stained by TTC for various ETN administration conditions after reperfusion. (b) Representative
coronal brain sections of the DM rats and the ETN group stained by TTC under various ETN administration conditions after reperfusion.
The closed and open columns are the vehicle and ETN groups, respectively. Scale bar = 5mm. Data are the means ± SDs (𝑛 = 3–6 per time
point). ∗,∗∗𝑃 < 0.05 and 0.01 for statistical significance compared with the vehicle group. DM, diabetes mellitus; ETN, etanercept; TTC,
2,3,5-triphenyl tetrazolium chloride.

Table 1: Body weight and blood glucose levels in the non-DM and
DM groups of rats.

Group Body weight (g) Blood glucose (mg/dL)
Non-DM 364 ± 27 123 ± 11
DM 261 ± 29∗∗ 423 ± 47∗∗

The data are the means ± SD.
∗∗

𝑃 < 0.01 versus the non-DM group (𝑛 = 60).
DM, diabetes mellitus (𝑛 = 60).

reperfusion in the non-DM rats. In contrast, the amount
of TNF-𝛼 was significantly increased (about 40-fold) in the
sham-operated DM rats relative to that in the sham-operated
non-DM rats. Furthermore, in the DM rats, TNF-𝛼 remained
constant after reperfusion. No difference in the concentration
of TNF-𝛼 in the DM rats was observed between sham-
operation rats and after-reperfusion rats.

3.3. Infarction Volume after Transient MCAO with Reperfu-
sion. Figure 2 shows representative coronal brain sections

of the non-DM and DM rats stained by TTC after various
ETN treatments and after or before cerebral ischemia. In the
sham-operated rats, there was no apparent damage in any
brain region.The infarction area in the non-DM afterMCAO
with 24 h reperfusion (vehicle-treated) rats was extended to
the corpus striatum and cortex, whereas it was significantly
decreased by ETN treatment (all groups within 24 h before
MCAO or at 450𝜇g/kg ETN immediately after MCAO).
In contrast, ETN administration to rats immediately after
MCAO/Re did not improve brain damage (Figure 2(a)).
Because the improvement effect was not observed for admin-
istration immediately after MCAO/Re in the non-DM group,
this condition was not examined in the DM group. Instead,
because increased expression of TNF-𝛼was already observed
in the sham DM group, a new group was prepared which
received repeated ETN doses immediately after the onset of
diabetes. Brain injury induced by MCAO/Re was remarkably
exacerbated by DM state. In contrast, reduction of infarction
was not observed in the single-dose group within 24 h before
MCAO/Re or immediately after MCAO in the DM rats.
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Figure 3: Effects of ETN on neurological deficits induced by cerebral ischemia in non-DM and DM rats. Assessment of neuronal damage
after ischemia in non-DM (a) and DM (b) rats was determined by neurological score. Postischemic neurological deficits were evaluated at 2 h
of MCAO and various ETN administration conditions after reperfusion.The shaded column is the MCAO-vehicle group; the closed column
is the MCAO/Re-vehicle group; the open column is the MCAO-ETN group; the hatched column is the MCAO/Re-ETN group. Data are the
means ± SDs (𝑛 = 3–6). ∗,∗∗𝑃 < 0.05 and 0.01 versus corresponding values for the MCAO/Re-vehicle group. DM, diabetes mellitus; ETN,
etanercept; MCAO/Re, middle cerebral artery occlusion/reperfusion.

However, repeated administration of 450𝜇g/kg ETN led
to a decreasing trend of infarction. In addition, significant
improvement was clearly shown by the 900𝜇g/kg dose
(Figure 2(b)). The timing of administration of saline had no
effect (data not shown).

3.4. Neurological Deficits after Transient MCAO with Reper-
fusion. MCAO for 2 h in rats resulted in moderate neuro-
logical deficits, and the neurological evaluation value was
increased (Figure 3). However, the ETN-pretreated (within
24 h before MCAO) non-DM rats showed significant allevia-
tion in the neurological deficits relative to that in the vehicle-
treated non-DM rats. In contrast, in the DM rats subjected
to transient MCAO, severe neurological dysfunction was
observed relative to that in the non-DM rats. In addition,
ETN effect was not observed in the preischemic (within
24 h beforeMCAO) and immediately afterMCAO-treatment
rats. However, ETN-repeated treatment showed a significant
improvement effect on neurological dysfunction caused by
MCAO with reperfusion in diabetic rats. These results were
consistent with those of the cerebral infarction volume.

3.5. Apoptosis Evaluation after MCAO with Reperfusion.
Representative histological images of TUNEL staining in the
non-DM vehicle, ETN-pretreated non-DM, DM vehicle, and
ETN-pretreated DM groups subjected to MCAO and 24 h
reperfusion are shown in Figure 4. Similar to the results
of TTC staining, the number of TUNEL-positive cells was
remarkably increased by MCAO/Re in the DM vehicle group
relative to that in the non-DM vehicle group. Pretreatment
of ETN (300, 450, and 900𝜇g/kg) significantly inhibited
apoptosis activation induced by MCAO/Re in the non-DM
groups. In contrast, ischemia treatment after administration

of ETN (450 and 900 𝜇g/kg) did not inhibit apoptosis in the
DM rats. However, the DM rats were remarkably suppressed
by repeated administration of ETN (450 and 900 𝜇g/kg).

3.6. Inflammatory Activity after Transient MCAO with Reper-
fusion. To assess the effects of ETN treatment on expression
of inflammatory factors, we performed immunohistochem-
ical staining for TNF-𝛼 and MPO activities (Figure 5). The
effect of expression of TNF-𝛼 in the brain cortex penumbra
on infarction was evaluated by TTC staining in the non-
DM and ischemia-treatment groups. Expression of TNF-
𝛼 was reduced in a dose-dependent manner in the previ-
ous ETN treatment group. Furthermore, non-DM rats that
were injected with ETN immediately after MCAO showed
improvements at both concentrations of ETN (450 and
900 𝜇g/kg). In contrast, the sham-operated DM rats had
an increased number of TNF-𝛼-positive cells. Expression
of TNF-𝛼 was remarkably suppressed by repeated admin-
istration of ETN (450 and 900𝜇g/kg) in the DM rats. To
examine the effect of ETN on the leukocytic infiltration, we
investigated the expression of MPO (Figure 6). The MPO
activity was decreased in a dose-dependent manner of ETN
by the administration within 24 h before MCAO in the non-
DM group. On the other hand, theMPO activity in the cortex
that was increased during ischemia was enhanced in the DM
group relative to that in the non-DM group. However, this
activity was significantly suppressed by repeated administra-
tion of ETN from immediately after the onset of diabetes.

4. Discussion

Presence of diabetes is a risk factor for exacerbation of
acute cerebral ischemic injury after cerebral infarction. In
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Figure 4: Effects of ETN on neuronal apoptosis induced by cerebral ischemia in rat brains. Representative photomicrograph and apoptosis
index showing terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick end-labeling-positive cells in the penumbra cortex
in the non-DM group (a) and DM group (b) treated with ETN before and after ischemia. The closed column is the vehicle group, and the
open column is the ETN group. Scale bar = 100 𝜇m. Data are the means ± SDs (𝑛 = 3–7). ∗,∗∗𝑃 < 0.05 and 0.01 for statistical significance
compared with the vehicle group. DM, diabetes mellitus; ETN, etanercept.

previous studies, we demonstrated that STZ-induced diabetic
state markedly aggravated MCAO/Re-induced neurological
deficits, infarction, and apoptosis in the rat brain [21].
Furthermore, we showed that levels of superoxide generation
and proinflammatory cytokines (TNF-𝛼 and IL-1𝛽) were
upregulated in theDMcortex andwere remarkably enhanced
during reperfusion after ischemia [21, 22]. Therefore, we
have assumed that the inflammatory response aggravates
ischemic brain damage. The results of microarray analysis
by IL-1𝛽 treatment of primary cultured astrocytes have been
reported to give a change in the expression of 1,400 genes such
as cytokines, chemokines, and matrix metalloproteinases
(MMP) [16, 23]. In addition, TNF-𝛼 and IL-1𝛽 activate the
NF-𝜅B pathway, producing inflammatory materials such as
IL-6. On the other hand, TNF-𝛼 and IL-1𝛽 are also known to
promote release and production of neuroprotective factors.
Therefore, the balance of the released inflammatory cytokines
and anti-inflammatory cytokines will affect the subsequent
cell failure [23, 24].

Blocking TNF-𝛼 has been proven to reduce brain damage
and is considered to provide neuroprotective effects [25].
However, it is not clear if brain damage caused by cerebral
infarctions exacerbated by diabetes is reduced by blocking

TNF-𝛼. We determined whether ETN-induced inhibition of
TNF-𝛼, which is upstream in the inflammatory response
pathway, could provide protective effects against brain dam-
age.

TNF-𝛼 is a proinflammatory cytokine that is synthesized
in the brain within 1 h of an acute experimental ischemic
stroke [26]. Intracerebroventricular injection of TNF-𝛼 exac-
erbates the extent of infarctions in experimental stroke [27].
Recent studies have reported that ETN suppressed brain
injuries, such as cerebral contusions and subarachnoid hem-
orrhages [14, 28, 29]. Therefore, anti-TNF-𝛼 blockers such as
ETN are expected to suppress aggravation of brain injury in
diabetes. Measurements of blood TNF-𝛼 levels in rats with
diabetes and ischemia showed that TNF-𝛼 increased with
elapsed time after ischemia in the non-DMgroup. In contrast,
TNF-𝛼 plasma concentrations in the DM group were about
40 times higher than those in the non-DM group. Thus,
the diabetes pathology of chronic inflammatory reaction
may have been enhanced in the whole body. Furthermore,
because the plasma concentration of TNF-𝛼 was increased
after cerebral ischemia, we assessed the cerebroprotective
effect of ETN. In addition, to elucidate the effectiveness
of administration of the drug, we examined the dose and
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Figure 5: Immunohistochemical study of TNF-𝛼 in the cortex. Detection of TNF-𝛼 in the sham-operated non-DM (a) andDM (b) rat cortical
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timing of administration.We also examined the effectiveness
of administration before and after treatment of cerebral
ischemia. When ETN was intravenously administered after
reperfusion in the non-DM rats, a cerebroprotective effect
was not observed at any dose. However, improvement was
observed at doses >450𝜇g/kg after ischemia. In addition,
the non-DM group showed significantly decreased infarction
size in all groups which were injected with ETN within
24 h before ischemia. In contrast, the DM group did not

show any reduction of infarction size under all conditions.
Therefore, we tried repeated administration of ETN for the
purpose of inhibiting TNF-𝛼 in DM rats. A cerebroprotective
effect was observed after repeated administration of ETN
(900 𝜇g/kg) immediately after diabetes onset. As shown
in Figure 1, the amount of TNF-𝛼 in the sham-operation
DM group was significantly increased relative to that in
the non-DM group. Therefore, the cerebroprotective effect
may depend on an effective ETN dose level. Activation of
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TNF-𝛼 signaling has been reported to induce apoptosis [30–
33]. Moreover, TNF-𝛼 was shown to promote expression
of MMP-9 and ICAM-1, induce infiltration of cells, and
induce destruction of the blood-brain barrier (BBB) [34–
36]. Furthermore, we confirmed that expression of TNF-
𝛼 infiltration in leukocytes and apoptosis was observed
after ischemia. However, ETN administration significantly
inhibited inflammation and apoptosis. Expression of TNF
receptors, such as TNFR1, was found to be elevated in
the brain cortex in the DM and non-DM groups after
ischemia (data not shown here). Therefore, diabetes, which

may promote intracellular signaling by interaction with TNF
receptors, may have enhanced inflammatory response.

For a drug to act in the brain, it is necessary to consider
the permeability of the BBB. We do not have any data for
the transition rate of ETN into the brain at present. Macro-
molecules in the blood are known to migrate to the brain
from the results of permeation experiments after ischemia,
as shown by Evans blue staining [22, 37, 38]. Consequently,
ETN might have passed through to brain by the BBB failure
after ischemia. The reason that there was no effect of the
drug in the DM rats, compared with non-DM rats, may
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be because of inflammation and nerve damage caused by
ischemia. Recent evidence suggests that high-mobility group
box 1 (HMGB1) prompted induction of proinflammatory
mediators, including TNF-𝛼, IL-1𝛽, and cyclooxygenase-2
(COX-2), and contributed to postischemic brain damage [39–
41]. In a previous study, we demonstrated that HMGB1 was
released from necrotic cells in the early stage of ischemia
in DM rats compared with non-DM rats [42]. Moreover, a
COX inhibitor significantly attenuated TNF-𝛼-induced BBB
breakdown and free radical formation, which indicated that
MMP-mediated BBB disruption during neuroinflammation
can be significantly reduced by administration of COX
inhibitors [43, 44]. It has been reported that the various
cytokines causing ischemic brain disorders participate in
complicated ways [9, 45]. Furthermore, TNF-𝛼, which is
involved in inflammation and cell injury, may affect the
efficacy of a drug through two different activities that protect
cells through TNFR2 [11, 12, 46]. To elucidate the details of
ischemic injury in DM rats, further analysis is necessary in
the future.

These results suggested that repeated administration of
ETN relieves exacerbation of cerebral ischemic injury in
diabetic rats primarily by its anti-inflammatory effects.

5. Conclusions

Our study results showed that inhibition of TNF-𝛼 by
repeated ETN administration resulted in significant reduc-
tion of inflammation and neuronal cell death after experi-
mentally induced cerebral ischemic brain injury in DM rats.
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