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Summary

  Esophageal cancer is the eighth most common cancer and causes the sixth highest cancer-related 
mortality worldwide. The 5-year survival of patients suffering from esophageal cancer in either ad-
vanced stage or metastasis is less than 20%. MicroRNAs are small, well conserved, non-coding RNA 
molecules that either repress translation or promote mRNA degradation based on the degree of 
complementary between miRNAs and mRNAs. Based on biogenesis and function of microRNAs, 
specific microRNA profiles, either from cancerous tissues or serum, were able to serve as diagnos-
tic and prognostic biomarkers of esophageal cancer and predicted the effectiveness of surgery and 
chemoradiotherapy. MicroRNAs could also influence the biological behaviors of esophageal cancer 
cells, such as cellular proliferation, apoptosis, invasion and metastasis. MicroRNAs were also asso-
ciated with multi-drug resistance of esophageal cancer. Further studies on the roles of microRNAs 
in esophageal cancer would provide a strategy to prevent and treat esophageal cancer, and reverse 
multi-drug resistance of esophageal cancer.
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Background

Esophageal cancer is the eighth most common cancer and 
causes the sixth highest cancer-related mortality worldwide 
[1]. Its morbidity appears to be high in northern China, 
southeastern Africa and Japan, and is low in western Africa, 
showing a significant geographic difference [2]. The 5-year 
survival rate of patients with esophageal cancer, in either the 
advanced stage or metastasis, is less than 20%. More than 
90% of patients could survive past five years if the cancer 
could be detected and treated early [3,4]. Squamous cell 
carcinoma (SCC) and adenocarcinoma (ADC) are 2 histo-
logical types of esophageal cancer. It is well-known that to-
bacco and alcohol use are both independent risk factors 
of SCC, while ADC is susceptible to gastroesophageal re-
flux and obesity [5,6]. Based on a recent epidemical sur-
vey, the morbidity of ADC has increased 6-fold in the past 
3 decades [7–9].

MicroRNAs (miRNAs) were initially discovered in 
Caenorhabditis elegans in 1993 [10]. To date, over 9000 miR-
NAs have been recognized in primates, rodents, birds, fish, 
worms, flies, plants and viruses [11]. Over 700 human miR-
NAs have been deposited in the miRBase miRNA registry 
[12,13]. MiRNA are capable of regulating most of the cell 
processing procedures (eg, cellular proliferation, differen-
tiation and apoptosis) by inducing mRNA degradation and 
disturbing protein synthesis [14–16]. Specific miRNAs are 
capable of activating oncogenes or tumor suppressing genes 
involved in pathogenesis of tumors [17–21].

The MiRNA profiling platform has been established, provid-
ing a strategy to investigate the relationship between  miRNA 
profiles and esophageal cancer diagnosis and prognosis. 
In this review, we elucidate the biogenesis and function of 
miRNAs, reveal the relationship between esophageal can-
cer and specific miRNA profiles, and present specific miR-
NA profiles as promising diagnostic and prognostic predic-
tors for esophageal cancer.

Biogenesis of Mirnas

MiRNA genes are located in different genomic locations, 
such as introns or regions between genes, and assembled in 
clusters or dispersedly [22–26]. Some of the miRNA genes 
from introns share the same promoters and regulators of 
function genes, and, conversely, the miRNAs could coor-
dinately fine-tune expression of function genes [27–30]. 
Most mammalian miRNA genes are first transcribed into 
long primary miRNAs (pre-miRNAs) which are 5’ capped 
and 3’ polyadenylated in the nucleus by RNA polymerase 
II or III [31–33]. The pre-miRNA transcripts comprise 1 or 
more hairpin structures that are delineated by a ~32nt long 
imperfectly base-paired stem, a terminal loop and 2 single-
stranded flanking regions upstream and downstream of 
the hairpin, consequently producing 1 or more functional 
mature miRNAs by a series of splicing and processing pro-
cedures [34–38].

The miRNAs maturing process has been divided into 2 path-
ways: the canonical pathway and the non-canonical path-
way. In the canonical pathway, 2 steps occur to achieve the 
functional miRNAs: pre-miRNAs are processed into precur-
sor miRNAs (pre-miRNAs) by Drosha, which is a member 

of polymerase RNAase III family in complex with DiGeorge 
Syndrome Critical Region 8 (DGCR8), which belongs to 
the double-stranded RNA Binding Domain Protein (dsRB-
DP) family in the nucleus. Then the Pre-miRNAs are pro-
cessed into mature miRNAs by Dicer, which is another mem-
ber of the polymerase RNAase III family in complex with 
Human Immunodeficiency Virus Transactivation-responsive 
RNA-binding Protein (TRBP) in the cytoplasm. Drosha en-
gages with DGCR8 and cofactors such as DEAD Box RNA 
Helicase p68 and p72, as well as heterogenous nuclear 
Ribonucleoprotein (hnRNP), assembling the Microprocessor 
complex [39]. Microprocessor complex is capable of medi-
ating pre-miRNA cleaving by taking away 3’ and 5’ end arms 
of hairpin, subsequently producing a ~70nt long  pre-miRNA 
[23,40–42]. Each element of the Microprocessor complex 
plays a specific role in pre-miRNA processing. DGCR8 
stretches out 2 dsRNA-binding domains that connect to 
the junctions between single-stranded and double-stranded 
regions of the pre-miRNA stem, directing Drosha to crop 
~11 bp single strands from pre-miRNA [39,42,43]. Drosha 
also is composed of 2 RNAase domains that can cleave 5’ 
and 3’ arms of hairpin and produce a 2nt 3’ overhang in 
the stem [36,44,45]. Other cofactors may function as pro-
moting fidelity, specificity and cleavable activity of Drosha.

Upon nuclear processing, Pre-miRNAs are exported from 
nucleus to cytoplasm by nuclear exporters, particularly 
Exportin 5 (Exp5). The precise recognition of Exp5 de-
pends on the RanGTP-dependent pathway, minimal-helical 
structure, 2nt 3’ overhang and the defined stem length of 
pre-miRNAs. Exp5 also could protect pre-miRNAs from nu-
clear digestion [25,35,46–49]. Once pre-miRNAs reach the 
cytoplasm, Dicer immediately recognizes and cleaves pre-
miRNA hairpins at junctions between stem and loop, pro-
ducing a ~22nt RNA duplex [50–54]. TRBP, a crucial cofac-
tor of Dicer, has 3 dsRNA-binding domains and maintains 
stability between pre-miRNA and Dicer. Dicer, in combina-
tion with TRBP, constitutes another Microprocessor in cy-
toplasm [55–59]. Upon being processed by Microprocessor 
in cytoplasm, a resultant miRNA/miRNA* duplex emerges. 
This short RNA duplex routinely releases 1 strand (the pas-
senger strand), which is consequently graded, while the oth-
er strand (the guide strand), with a less stable 5’ hydrogen 
bond, is incorporated into an Argonaute-containing RNA-
induced Silencing Complex (RISC) that is able to medi-
ate gene expression silencing [60, 61]. But why the guide 
strand is incorporated into RISC, but not the passenger 
strand, is a puzzling question. Generally speaking, the in-
trinsic characteristics of the miRNA duplex may help an-
swer this question [34, 35, 62]. The paramount determina-
tion of strand selection may be the duplex thermodynamic 
asymmetry. The 5’ end is less stably base-paired and more 
frequently selected as the guide strand, whereas the 3’ end 
is more stably base-paired and is chosen as the passenger 
strand [63, 64]. Several studies also revealed that a portion 
of miRNAs* were not degraded and have functions similar 
to those of mature miRNAs. This means that both miRNAs 
and their complementary strands may be functional [65,66].

Although the canonical pathway is well understood, sev-
eral pathways associated with miRNA synthesis bypass the 
canonical pathway, namely the non-canonical pathway. 
Approximately 40% of miRNA genes reside in introns 
[32,35]. Mirtrons are defined by the short intronic hairpins 
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of genes, and are spliced and debranched by splicing ma-
chinery and lariat debranching enzyme, subsequently form-
ing pre-miRNA-like hairpins. The Mirtron pathway merg-
es with the canonical pathway during hairpin export by 
Exportin-5, and both types of hairpins are subsequently 
processed by Dicer [67,68].

Likewise, miRNAs may originate from small nucleolar 
RNAs (snoRNAs) characterized by 2 pre-miRNA-like hair-
pins bridged by a hinge [69]. SnoRNAs are a group of 
~70–200 nt-long conserved small RNAs and parts of small nu-
cleolar Ribonucleoprotein (snoRNP) complex functioning 
as a enzymatic modification of ribosomal RNA (rRNA) [70]. 
Dicer, not Drosha, mediates the processing from SnoRNA 
to miRNA. Endogenous short-hairpin RNAs (endo-shRNAs) 
and tRNA precursors may be the third origin of miRNAs. 
Endo-shRNAs are also structured by 2 pre-miRNA-like hair-
pins bridged by a hinge, similar to snoRNAs [70,71]. The 
first hairpins of endo-shRNAs are released by cropping at 
the 5’ end of the second hairpins, serving as suitable sub-
strates for Dicer in cytoplasm [69].

function of Mirnas

MiRNAs exist in organisms from procaryotes to eukary-
otes. In animals, miRNAs imperfectly base-pair with 3’ 
Untranslated Region (UTR) of target mRNAs, disturb-
ing target genes expression by either translation repress-
ing or target mRNAs degradation. Degradation of mRNAs 
is mediated by mRNAs deadenylation and/or decapping 
[72]. In plants and a minority of animals, miRNAs perfect-
ly match 3’ UTR of target mRNAs, consequently initiating 
a sequence-specific cleavage [73]. The specificity and ac-
curacy of matching between mRNAs and miRNAs largely 
depend on “seed region”, which is defined as a fraction of 
nucleotides positioned 2–8 from the 5’ end of miRNA. The 
“seed region’’ perfectly base-pairs with 3’ UTR, and thus it 
is important to delineate the repertoire of miRNAs [74,75]. 
MiRNAs induce target genes silencing via directly interacting 
with Argonaute (AGO) and Glycine-tryptophan protein of 
182kDa (GW182). AGO and GW182 are cores of miRNA-In-
ducing Silencing Complex (miRISC) [76].

MiRNAs are recognized as negative regulators in the pro-
cess of target genes expression as evidenced by a series of 
in vivo and in vitro studies, but the exact mechanisms by 
which miRNA leads to mRNAs degradation and translation 
repression are unclear. In order to clarify whether transla-
tion repression occurs in initial [77–82] or post-initial stage 
[83–86], further studies have been performed. Eulalio [87] 
indicated translation repression might simultaneously oc-
cur at initial and post-initial stages, which included peptide 
chain elongation, premature translation termination and 
co-translation protein degradation.

Several distinct insights into how miRISC represses transla-
tion initiation have been achieved. A large quantity of evi-
dences suggested the functional 7-methylguanine cap and 
polyadenylic tail are prerequisite for miRNA-mediated trans-
lation repression [77,78,88]. Kiriakidou [79], Mathonnet 
[80] and Thermann [89] demonstrated that AGO was able to 
bind 5’ cap structure via competing with eukaryon Initiation 
Factor 4E (eIF4E), inducing translation repression. AGO 
contains 2 phenylalanine residues located in the center of 

the structure, while eIF4G similarly has 2 tryptophan resi-
dues. AGO, instead of eIF4G, engages with 5’ cap, inhibiting 
assembly of mRNA into 40s pre-initiation complex. Behm-
Ansmant [90], Giraldez [91] and Wu [92] demonstrated 
miRISC induced polyadenylic tail deadenylation, shutting 
off the interaction between cap structure and free-tail, in-
ducing translation repression. It was discovered that GW182 
was the key factor for mRNA deadenylation because of in-
teracting with AGO and Polyadenylic Acid-Binding Protein 
(PABP) [93,94]. It was also found that miRISC interfered 
with assembly of 60s ribosomal subunit and 40s pre-initia-
tion complex, inducing translation repression. The emer-
gence of eIF6 was responsible for 60s ribosomal subunit 
maturation, and prevented premature 60s and 40s subunit 
from assembling. eIF6 could be disturbed by miRISC, re-
pressing translation by preventing 40s and 60s ribosomal 
subunits from assembling.

Degradation of miRNAs is another result of miRNA-induced 
target genes silencing. It was shown that decreased levels 
of mRNAs probably were related to increased mRNAs deg-
radation [90–92,95,96]. Also, mRNA degradation may be 
ascribed to mRNA deadenylation, decapping and exonu-
cleolytic digestion [90–92]. The determinants of miRNA-
mediated genes expression repression were associated with 
the number, the type and the position of mismatch in miR-
NA/mRNA duplex [97].

Mirnas and esophageal cancer

With promotion of high-throughput profiling platforms 
(such as miRNA Microarray, MMA) [17,98], differential ex-
pression of miRNAs has been identified in normal tissues 
vs. pathological tissues and in the same tissues at different 
stages. Aberrant miRNA profiles in cancerous tissues have 
potential to distinguish different histopathological types in 
cancerous tissues [99], suggesting aberrant miRNA profiles 
might serve as a diagnostic tool for tumors. The miRNA pro-
files from solid tumors and hematological malignancy have 
been studied extensively, such as lung cancer [100], breast 
cancer [101], gastric cancer [102], prostate cancer [103], 
colorectal cancer [104], and chronic lymphocytic leukemia 
[105]. Mitchell [106] indicated upregulated miR-141 in se-
rum of prostate cancer patients, to some extent, could serve 
as a diagnostic biomarker. In addition to the diagnostic role, 
miRNAs also could potentially be used as prognostic factors 
predicting tumor recurrence. In non-small-cell lung cancer, 
upregulated miR-155 and downregulated let-7a indicated 
poor overall prognosis [100]. It was suggested that the spe-
cific miRNA profiles were tightly associated with prognosis 
and histopathological features simultaneously, such as stag-
es and types. Iorio [101] demonstrated that the miRNA pro-
file of breast cancer was closely associated with tumor stag-
es and types, tumor proliferation index, vascular invasion, 
and receptor status of estrogen and progestogen in breast 
cancer. We expect to recognize specific biomarkers unique 
to esophageal cancer, guiding tumors diagnosis and prog-
nosis. Further study of miRNA profiles gives us an oppor-
tunity to predict tumor genesis and turnover.

MiRNAs as diagnostic biomarkers

MMA, as a high-throughput screening means, is designed to 
detect and quantify miRNAs using the Applied Biosystems 
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real-time PCR instrument. This technology is highly quan-
titative, highly sensitivity, highly specificity, high speed and 
convenient. Feber [19] detected the miRNA profiles from 
29 tissues including 10 ADC, 10 SCC and 9 normal esopha-
geal epithelia by MMA, revealing that the levels of miR-194, 
miR-192 and miR-200c from ADC were upregulated, where-
as the level of miR-342 from SCC was downregulated. The 
levels of miR21 and miR93 were upregulated simultaneous-
ly in ADC and SCC, and the levels of miR205 and miR93 
downregulated. Mathé [107] collected 170 pairs of cancer-
ous tissues and adjacent normal tissues from 100 ADC pa-
tients and 70 SCC patients; the levels of miR-21, miR-223, 
miR-192 and miR-194 were upregulated, while the level of 
miR-203 was downregulated in ADC. Highly expressed miR-
21 and lowly expressed miR-375 were discovered in SCC. 
Kan [108], using non-immortalized primary normal esoph-
ageal epithelia (HEEpiC) and EAC-derived cell line (OE-
33), indicated the level of miR-106b-25 polycystron, which 
was composed of miR-25, miR-93 and miR-106b in OE-33, 
was higher than that in HEEpiC.

The specific miRNA profiles might serve as efficient clas-
sifiers distinguishing different clinicopathological types of 
esophageal cancer. Mathé [107] evaluated the predictive 
capacity of miRNA profiles in esophageal cancer. The pre-
dictive rate of ADC was increased to 77% in ADC patients 
with Barrett’s esophagus (BE); 78% accuracy was achieved 
when discriminating ADC with BE from ADC without BE. 
The miRNA profile of SCC also achieved 82% accuracy when 
comparing cancer with normal squamous epithelia (NSE). 
Yang [109], collecting the specimens from BE with low-grade 
dysplasia (LGD), BE with high-grade dysplasia (HGD), ADC 
and NSE, demonstrated the predictive rates were 60%, 90% 
and 100% in BE with LGD, HGD and ADC, respectively, vs. 
NSE. The specific miRNA profiles were closely associated 
with TMN staging. Ogawa [110] investigated the association 
of primary tumor (T), lymph node metastasis (N), vascu-
lar invasion (VI) and lymphatic invasion (LI) in SCC with 
the specific miRNA profiles, and found T factor was cor-
related with 12 miRNAs, N factor with 17 miRNAs, LI fac-
tor with 2 miRNAs and VI factor with 2 miRNAs. Guo [20] 
compared miRNA profiles with age, sex, gross pathological 
types and tumor cells differentiation, revealing that 5 miR-
NAs were correlated with gross pathological types (fungus 
and medullar), and 2 miRNAs with tumor cells differenti-
ation (low-, middle- and high-differentiation. But surpris-
ingly, the study found no relationship between miRNA pro-
files and tobacco and alcohol use, which are 2 independent 
risk factors of SCC. It was concluded that the specific miR-
NA profiles have the potential to be promising diagnostic 
biomarkers for esophageal cancer.

MiRNAs as tumor prognostic biomarkers

The morbidity of esophageal cancer has been steadily in-
creasing due to dietary structure alteration, tobacco and al-
cohol consumption, inflammation and trauma in the esoph-
agus, as well as genetic factors. Although eradicative surgical 
resection and chemoradiotherapy have been extensively 
deployed [111–114], the overall prognosis of patients with 
esophageal cancer is still poor. However, esophageal can-
cers diagnosed at the early stage have a good chance of ex-
tending a patient’s life. Research on prognostic biomark-
ers is capable of predicting patient survival and treatment 

effectiveness, and monitoring tumor recurrence. Many prog-
nostic biomarkers for esophageal cancer have been present-
ed, such as Cyclin D1, Epidermal growth factor receptor, 
Her-2/Neu, Activated protein C, Transforming growth fac-
tor-b, Endoglin, Connective tissue growth factor, p53, Bcl-2, 
NF-kB, Cox-2, E-cadherin, b-catenin, uPA, Matrix metallo-
proteinase-1,3,7,9, Tissue inhibitor of metalloproteinase, 
Th1/Th2 balance, C-reactive protein and Parathyroid hor-
mone-related peptide [115]. However, these molecules have 
intrinsic advantages (eg, lack of specificity and sensitivity), 
thus the establishment of ideal prognostic biomarkers is 
able to minimize those disadvantages. The specific miRNA 
profiles may serve as biomarkers for assessing prognosis of 
patients. Mathe [107] indicated that low expressed miR375 
and miR233 in ADC with BE had a relationship with poor 
prognosis, concluding that both miRs might be indepen-
dent prognostic factors for predicting therapy effectiveness 
in addition to tumor stages and types. It was also demon-
strated that highly expressed miR-21, miR-146b, miR-155 
and miR-181b in non-cancerous tissues adjacent to cancer-
ous tissues and low expressed miR-223 in cancerous tissues 
of SCC were associated with poor prognosis; revealing the 
specific miRNA profiles might be independent prognos-
tic factors of SCC. Ogawa [110] investigated the relation-
ship between miRNA profiles and survival of post-surgery 
SCC patients, concluding that the patients with highly ex-
pressed miR-23a, miR-26a, miR-27b, miR-96, miR-128b and 
miR-129 showed poor prognosis. In particular, the overex-
pressed miR-129 might be an independent prognostic fac-
tor of post-surgery patients. In the contrary, low expressed 
miR-103 and miR-107 in SCC showed a strong link to a long 
survival time. Full advantage has been taken of miRNA pro-
files of disease prognosis in diversity of tumors, such as non-
small-cell lung cancer [116,117], breast cancer [118–121], 
gastric cancer [102] and hematological tumor [122]. In 
summary, miRNA profiles may be novel and effective tools 
for predicting esophageal cancer prognosis in the future.

Circulating miRNAs as diagnostic and prognostic 
biomarkers of esophageal cancer

Although gastroscopic biopsy and pathological examination 
are standards for esophageal cancer diagnosis, they have un-
avoidable disadvantages such as invasiveness, susceptibili-
ty to infection, discomfort for patients, easily missed diag-
nosis and limited physician experience with endoscopy. To 
some extent these disadvantages, taken together, impede 
the application of endoscope biopsy in larger-scale popu-
lations [123]. The sensitivity and specificity of early tumors 
diagnosis by endoscope biopsy were low And only 1–2% of 
early tumors and 15–20% of precancerous lesions in an as-
ymptomatic population aged more than 35 years were diag-
nosed by endoscope examination [124]. Circulating miRNA 
may serve as new biomarkers for promotion of sensitivity 
and specificity of early tumor diagnosis, monitoring tumor 
progress, evaluating tumor prognosis and detecting tumor 
recurrence. To date, more than 100 circulating miRNAs have 
been recognized in healthy individuals. Circulating miRNAs 
are suitable for biomarkers as evidenced by their being tis-
sue-specific [17,21,125], stable, reproducible and consistent 
among individuals in the same species [106,126–132]. In ad-
dition to the above, high throughput technology, accessible 
manipulation, low cost and high sensitivity promote the ex-
tensive application of circulating miRNAs [133].
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Some studies have revealed a relationship between 
Circulating miRNA profiles and varieties of tumors. Ng 
[134] found that miR-92 was significantly upregulated in 
plasma of patients with colorectal cancer. The levels of miR-
155 of hormone-sensitive and hormone-insensitive breast 
cancer in serum potentially could predict early breast cancer 
and evaluate treatment effectiveness and prognosis [135]. 
Charles [136] also found that circulating miR-21, miR-155 
and miR-210 were upregulated in serum of diffuse large B 
cell lymphoma. It was further found that circulating miR-
21 was associated with relapse-free survival. Circulating miR-
NAs were also specifically and responsively recognized in 
gastric tumors and pancreatic adenocarcinoma [137,138].

To date, although no articles related to circulating miRNAs 
in esophageal cancer have been published, the prerequi-
sites of research on circulating mRNAs in esophageal can-
cer have been satisfied:
•	 	biotechnology	promotion,	such	as	MMA	[21],	bead-based	

flow-cytometric technology [125], miRNA interfering 
[139], etc;

•	 	characteristic	geographical	distribution,	sufficient	sam-
ples and convenient collection;

•	 establishment	of	animal	models.

Surgical models of gastroesophageal reflux have been es-
tablished in mice and dogs, subsequently leading to ADC 
[140–142]. Several carcinogens, such as diethylnitrosamine, 
were used to induce SCC in mice [143,144]. All in all, circu-
lating miRNAs may predict genesis and turnover of esoph-
ageal cancer as accessible and economical biomarkers for 
diagnosis and prognosis.

MiRNAs as gene expression regulators in esophageal 
cancer

Effects of miRNAs on biological behaviors of esophageal cancer 
cells

The miRNA genes are usually located in or near tumor-re-
lated genomic regions. The miRNA profiles of tumor tis-
sues could be regulated by oncogenes, tumor suppressing 
genes and epigenetics [105,125]. The miRNAs also could 
affect biological behaviors of tumor cells, including self-re-
newal, apoptosis, limitless replicative potential, angiogen-
esis, invasion and metastasis [145]. The miRNAs match 3’ 
UTR of cancer-related gene transcripts, subsequently silenc-
ing cancer-related gene expression.

Annexin A1 (p35), belongs to the calcium- and phospho-
lipid-binding protein family, and associates with arachidon-
ic metabolism and epidermal growth factor receptor tyro-
sine kinase pathway [146]. Annexin A1 was able to prohibit 
over-proliferation, promote differentiation and apoptosis, 
regulate cellular migration, membrane trafficking, exocyto-
sis and signal transduction [147,148]. A diversity of tumors 
was generated partly due to Annexin A1 expression inhibi-
tion or loss of ANXA1, such as prostate cancer, breast can-
cer, esophageal cancer and hematological tumors [149–152]. 
Luthra [146] revealed that miR-196a matched 3’ UTR of 
ANXA1 mRNA and disturbed ANXA1 protein biosynthesis, 
consequently enhancing cancerous proliferation and colony-
forming ability and suppressing apoptosis in an esophageal 
cancer cell line. ANXA1 expression suppression induced by 

miR-196a also leads to resistance to preoperative chemora-
diotherapy in esophageal cancer [153,154]. Maru [155] in-
dicated miR-196a expression could reflect progression of 
Barrette’s esophagus-dysplasia-adenocarcinoma and malig-
nant transformation of normal esophageal epithelia by as-
sociating with 3 target genes – S100A9, SPRR2C and K 5.

Kan [108] reported the expression of miR-106b-25 poly-
cystron, which is an oncogene for tumor transformation, 
was upregulated in ADC, which might result from elevat-
ed copy numbers of MCM7. This highly expressed polycys-
tron was associated with ADC pathogenesis by directly sup-
pressing the CDKN1A expression, which could cause tumor 
cells ceasing in G1 phase [156], and by negatively regulat-
ing pro-apoptotic gene expression, BCL2L11, leading to in-
creased cellular apoptosis [157].

The miR-10b, miR-21 and miR-373 were capable of modulat-
ing biological behaviors of squamous carcinoma cells. Lee 
et al. [158,159] elucidated upregulated miR-373 in SCC was 
directly associated with tumor suppressing gene LATS2, en-
hancing tumor cell proliferation, invasion, migration and 
metastasis. Hiyoshi et al. [160–163] revealed that overex-
pressed miR-21 interacting with PDCD4, a tumor-suppress-
ing gene transcript, promoted eIF4a transcriptional activ-
ity and activator protein-mediated transactivation, as well 
as inhibited p21 expression, subsequently facilitating ma-
lignant transformation of squamous epithelial cells. Tian 
[164] indicated overexpressed miR-10b in SCC could pro-
mote cellular migration and invasion by inhibiting KLF4 
expression. KLF4 is a zinc finger protein in the KLF family 
and plays key roles in regulating cell cycle and cellular dif-
ferentiation. It is also activated in response to DNA damage, 
serum starvation and contact inhibition [165].

Effects of miRNAs on Multi-Drug Resistance (MDR) in 
esophageal cancer

Chemotherapy is an important treatment strategy for esoph-
ageal cancer. Chemotherapy could down-stage tumors ahead 
of surgery, inhibit tumor recurrence, and kill metastatic tu-
mor cells [166]. Adjuvant and neoadjuvant chemothera-
py have been applied clinically; however, a great number 
of studies have indicated chemotherapy was unable to im-
prove overall survival of patients. Pouliquen [167] revealed 
no significant difference in overall survival between cisplat-
in-based chemotherapy and surgery. The incidence of clin-
ically complete response to chemotherapy ranged from 
19–58%, whereas that of pathologically complete response 
was only 2.5–13%, suggesting chemotherapy ineffectiveness 
[168,169]. It was known that the poor prognosis of esopha-
geal cancer may be partly due to lack of response of tumor 
cells to chemotherapy. The oncologists observed that SCC 
was resistant to anti-tumor drugs and developed multiple-
drug resistance (MDR), subsequently leading to treatment 
failure. Wei [120] demonstrated that the EC109/CDDP cell 
line, which is a MDR SCC cell line, exhibited strong resis-
tance to CDDP, capoblatin, 5-fluorouracil, Taxol, Navelbine, 
irinotecan and etopocide. This cell line showed alteration 
in cellular morphology, tumor doubling time and cell cycle 
distribution compared to EC109. Allen [171,172] proposed 
a difference of response to neoadjuvant chemotherapy be-
tween SCC and ADC (SCC vs. ADC, 61% vs. 20%). Darnton 
[173] revealed the response to anti-tumor drugs in SCC was 
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more sensitive than that in ADC (SCC vs. ADC, 74% vs. 30%) 
by analyzing the different levels of P-glycoprotein (P-GP), 
which is the product of Multi-Drug Resistance-1 (MDR-1), in 
biopsy samples from SCC and ADC before and after treat-
ment with Mitomycin, Ifosfamide and cisplatin. There are 
close links between MDR, P-GP and MDR in esophageal can-
cer [170–173]. Further studies on molecular mechanisms of 
MDR are required to discover effective strategies to atten-
uate or reverse MDR of esophageal cancer. Emerging evi-
dence suggests aberrantly expressed miRNAs might regulate 
MDR-related genes expression and play key roles in MDR 
[174,175]. Zhang [176] found that decreased miR-27a ex-
pression might enhance the response of anti-tumor drugs to 
SCC and promote ADR-related tumor cells apoptosis. Bcl-2 
and Bax are involved in tumor cells apoptosis and response 
of tumor cells to chemotherapy [177]. Overexpression of 
Bcl-2 in a variety of human cancers exhibits poor clinical re-
sponse to anti-tumor drugs [178]. Deceased miR-27a expres-
sion is capable of decreasing Bcl-2 and MDR-1 and increas-
ing Bax, resulting in reversed MDR in esophageal cancer 
[176]. Hong [179] also discovered that decreased miR-296 
expression promotes the response of tumor cells to anti-
tumor drugs, probably due to increased apoptotic tumor 
cells and decreased MDR-1. MDR in esophageal cancer is 
a complicated process involving in a great number of drug 
resistance-related genes and intracellular signaling path-
ways. Re-shaping the miRNA profiles is a promising strat-
egy to reverse MDR and enhance the response of esopha-
geal cancer cells to anti-tumor drugs.

conclusions

MicroRNAs are small (~20–24 nucleotides), well conserved, 
non-coding RNA molecules that either repress translation or 
promote mRNA degradation based on complementary de-
gree between miRNAs and mRNAs. MiRNA profiles in can-
cerous tissues or serum have potential to be used as diagnos-
tic and prognostic biomarkers of esophageal cancer. MDR 
is one of the leading causes for poor prognosis in esopha-
geal cancers. Re-shaping miRNA profiles have potential to 
reverse MDR and enhance response of esophageal cancer 
cells to chemotherapy. The relationship between miRNA 
profiles and MDR of esophageal cancer is particularly com-
plex because miRNAs affect biological behaviors of esoph-
ageal cancer cells by targeting hundreds and thousands of 
tumor-related gene transcripts, while a single tumor-relat-
ed gene transcript is able to be simultaneously recognized 
by multiple miRNAs. Progress in understanding the patho-
genesis of esophageal cancer appears to be slow, which hin-
ders treatment and prevention. This situation is both a chal-
lenge and an opportunity for future research on this disease.
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