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The adsorption of Cd(II) and Pb(II) by squid melanin was investigated. At a metal ion concentration of 2 mM/L, the biosorption
efficiency of melanin reached 95% for Cd(II) and Pb(II). The maximum content of bound Cd(II) and Pb(II) was 0.93 mM/g and
0.65 mM/g, respectively. Temperature had no obvious effect on the adsorption of the metals, and in a pH range of 4.0–7.0, the
adsorption yield was high and stable. Macrosalts such as NaCl, MgCl2, and CaCl2 had no obvious effect on the binding of Pb(II)
but greatly diminished the adsorption of Cd(II), which indicated that different functional groups in squid melanin are responsible
for their adsorption. IR analysis of metal ion-enriched squid melanin demonstrated that the possible functional groups responsible
for metal binding were phenolic hydroxyl (OH), carboxyl (COOH), and amine groups (NH). This study reports a new material
for the removal of heavy metals from low-strength wastewater.
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1. Introduction

Several active components, including melanin, a tyrosinase,
and an angiotensin-converting enzyme inhibitor, have been
identified in squid ink [1–4]. Squid belong to the invertebrate
phylum Mollusca and rely on the ejection of dark, opaque
ink for defense as other cephalopods. The ink consists of
a suspension of eumelanin granules in a viscous and colo-
rless medium. Eumelanin is a heterogeneous, generally ins-
oluble polymer developed through enzymatic oxidation of
the amino acid tyrosine [5–7]. The production of eume-
lanin in pigment-generating cells occurs in the specific
organelles known as melanosomes. The indolic molecules
5,6-dihydroxyindole and 5,6-dihydroxyinodole-2-carboxylic
acid are postulated to be the main monomeric building
blocks of eumelanins [5].

Natural eumelanins are reported to have a considerable
affinity for metal ions [8–10] and can serve as reservoirs
of metal ions (e.g., Ca(II); see [11]) or as traps for heavy
metal ions (e.g., Cu(II) and Fe(III); see [12, 13]). It has
been suggested that the molecular structure of the pigments
could be impaired by high metal concentrations [13]. Such

a change could result in the release of heavy metal ions (e.g.,
Fe(III)) into the cytosol, which could induce cellular damage.
Eumelanin’s binding capacity, affinity, and sites for metals
are important parameters for understanding the nature and
consequences of metal-melanin complexation.

Contamination of the environment by heavy metals is of
growing concern because of the health risks posed to humans
and animals because of exposure to these metals. The
vast majority of toxic metal pollutants are waste products
of industrial and metallurgical processes. In particular,
effluents from electroplating plants, extractive metallurgy
processes, and metal-treatment finishing operations contain
high concentrations of dissolved metals. In some industrial
wastewater, lead ion concentrations can approach 200–
250 ppm; by contrast, water-quality standards state that the
Pb(II) concentration in wastewater should be reduced to a
value of 0.5–1 ppm [14]. The most common methods used to
remove metals from wastewater are chemical precipitation,
solvent extraction, dialysis or electrodialysis, electrolytic
extraction, cementation, reverse osmosis, evaporative meth-
ods, ion-exchange resins, carbon adsorption, and dilution
[15]. The increasing problem of heavy metal contamination
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has stimulated a search for new mechanisms to remove these
pollutants. Attempts have been made to harness the metal-
binding capacity of various microorganisms such as yeast,
algae, and bacteria to clean up industrial effluents [16, 17].

The melanin in sepia ink has been reported to bind with
many ions, including Fe(III), Cu(II), Zn(II), and Ca(II) [18–
23]. No reports, however, have discussed the application
of squid melanin to remove heavy metals from solution,
in particular the biosorption of Cd(II) and Pb(II), which
might contribute to the pigment’s dark color. We found
that after binding with heavy metals squid melanin could
form a sediment, leaving the supernatant transparent, which
indicates its potential as a new material to remove heavy
metals from wastewater. In the present study, we focused on
the application of squid melanin to absorb cadmium and
lead ions in concocted metal solutions. IR spectrum was
applied to reveal the likely binding sites for these two metals
in squid melanin.

2. Materials and Methods

2.1. Materials. Ink was extracted from fresh squid (Ommas-
trephes bartrami) obtained from Zhou-Shan Fishery Com-
pany (Zhejiang, China) and stored at −40◦C before use. For
the preparation of samples with different metal contents,
only nanopure water (>18.2 MX) obtained from a Simplicity
TM system (Millipore, Billerica, MA) was used in the
washing and for preparing solutions. The highest purity
salts available (>99.99%, Sigma-Aldrich), including PbCl2,
CdCl2, MgCl2, CaCl2, NaCl, EDTANa2, and NaOH, were
used.

2.2. Preparation of Intact Squid Melanin. Melanin isolation
and purification procedures have been described previously
[22]. Briefly, ink was drained from the fresh ink sacs and
diluted in nanopure water by at least 20-fold. The processes
of centrifugation (5000 g, 15 min) and resuspension of the
resulting pellet in water were repeated six times to remove
water-soluble impurities present in the ink. The final pellet
was resuspended in nanopure water and lyophilized to
obtain the intact natural squid melanin. The sample, thus,
obtained was examined by scanning electron microscope,
which showed high purity without contamination by any
cellular components [22].

2.3. Biosorption Studies

2.3.1. Effect of Metal Ion Concentration on Biosorption. Squid
melanin’s adsorption of Cd(II) and Pb(II) was tested by
suspending 200 mg of the intact squid melanin powder
in 50 mL of CdCl2 (99.999% pure, Aldrich) and PbCl2
(99.999% pure, Aldrich) solutions of varying concentrations
at room temperature. Each mixture was centrifuged, and the
upper solution was filtered and analyzed to determine the
quantity of metal ions remaining.

2.3.2. Influence of pH Value on Biosorption. For all the tests,
200 mg squid melanin was suspended in 2 mM/L metal ion
solutions. Initially, pH was adjusted to values below the metal

precipitation point to assure complete dissolution of each
metal ion.

2.3.3. Effect of Temperature on Biosorption. For all the
tests, 200 mg squid melanin was suspended in 50 mL of
2 mM/L metal ion solutions. The temperature was raised
incrementally from 15◦C to 100◦C for the analysis. The metal
contents remaining in the solution were then analyzed.

2.4. Effect of Macrosalts on Biosorption. Varying concentra-
tions of MgCl2, CaCl2, and NaCl were added to 50 mL
of 2 mM/L heavy metal ion solutions, and the prepared
solutions were each mixed with 200 mg of squid melanin.
The salt concentrations varied from 1% to 5% for MgCl2 and
CaCl2 and from 1% to 10% for NaCl. Subsequently, the metal
contents remaining in the solution were analyzed.

2.5. Desorption of Heavy Metal-Enriched Squid Melanin.
Tests were performed in much the same manner as the
adsorption tests, except that in this case, they began with
dried squid melanin that had previously been loaded with
metal ions (using 2 mM/L solutions). The melanin was
mixed with an eluent reactant solution at room temperature
for 24 h and then centrifuged; the resulting solids were
washed four times with nanopure water and analyzed for
metal contents. Once the experiment was concluded, the
squid melanin was collected for reuse in a new adsorption-
desorption cycle. Two different reactants were used: HCl, at
0.5, 0.1, and 0.01 M/L concentrations, and EDTA, at 1, 10,
and 40 mM concentrations. Each experiment was performed
with 50 mL of solution.

2.6. Metal Content Analysis by Atomic Absorption Spectropho-
tometer. The metal ions in water were directly measured
using an Atomic Absorption Spectrophotometer (AAS;
Shimadzu AA 6800, Japan). Deuterium background cor-
rection was used, and the spectral slit width was 0.5 nm.
The working currents/wavelengths for Pb(II) and Cd(II)
were 10 mA/283.3 nm and 8 mA/228.8 nm, respectively. The
instrument response was periodically checked with known
metal solution standards. For each set of data presented,
standard statistical methods were used to determine the
mean values and standard deviations. Confidence intervals
of 95% were calculated for each set of samples in order to
determine the margin of error.

2.7. Amino Acid Analysis. The amino acid content of the
melanin was measured by the method described previously
[8]. Melanin (5 mg) was heated in 5 mL of 6 M HCl at 110◦C
for 24 h in an evacuated, sealed tube. The hydrolysate was
evaporated under vacuum until dryness and was dissolved
in 800 μL of a pH 2.2 buffer for amino acid analysis. An
aliquot of 0.1 mL was injected into the amino acid analyzer
(Hitachi High Speed Amino Acid Analyzer L-8500, Hitachi
Ltd., Tokyo, Japan).

2.8. Scanning Electron Microscopy (SEM) Assay of Squid
Melanin. The squid melanin samples were coated with
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Au/Pd, and SEM was used to examine any morphological
changes by means of an XL30 SEM-FEG scanning electron
microscope (FEI Company, Hillsboro, Oregon, USA).

2.9. IR Analysis of Heavy Metal-Enriched Squid Melanin. All
samples were freeze dried, and Fourier transform infrared
spectra were recorded on a Bruker Vertex-70 FT-IR instru-
ment equipped with a DTGS detector.

3. Results and Discussion

3.1. Biosorption

3.1.1. Effect of Metal Ion Concentration. The metal-removal
efficiency (Figure 1(a)) indicates that for a concentration
of 0.1 mM the removal rate was relatively low, accounting
for 73% of the initial concentration of Cd(II) and 90%
for Pb(II). However, at concentrations in the range of 0.5–
2 mM, the uptake of both Cd(II) and Pb(II) was very
high, accounting for 95% of the initial concentration. For
higher metal concentrations, significant decreases in the
Cd(II) uptake could be observed, which indicated that the
adsorption capability was limited; however, Pb(II) uptake
was still very high, about 90%, at a concentration of
3 mM/L. This might indicate that comparing to Cd(II), the
adsorption of sepia melanin with Pb(II) was less affect by
the concentration of metal, and they may have different
groups in squid melanin accounting for the adsorption.
Higher concentrations approached the saturation limit, with
significant decreases in adsorption yields. The maximal
adsorption rates of Cd(II) and Pb(II) by squid melanin were
determined to be 105 mg/g and 135 mg/g, respectively, which
are 0.93 mM/g of Cd(II) and 0.65 mM/g of Pb(II).

These results can be compared to the capacity of other
biosorbents, both on a weight basis and in a batch system.
The amount of Pb(II) that formed complexes with the
squid ink (135 mg/g) was 2-fold higher than with either
blast furnace sludge (64 mg/g) [24] or fungal mycelia
byproducts (55 mg/g) [25]. For Cd(II), the complexation
ratio (105 mg/g) was 3- to 7-fold higher than that for a
rhamnolipid biosurfactant (45 mg/g) [26] or Saccharomyces
cerevisiae (18 mg/g) [27]. Thus, the metal uptake capacity
of squid ink melanin appears to be of great interest, given
its superiority over other biosorbent efficiencies, as listed
previously in a survey of biosorption of heavy metals by
biomass materials [27].

3.1.2. Effect of pH Value. The effect of pH on heavy metal
uptake was investigated in the range of pH 1–8 at an initial
ion concentration of 2 mM/L suspended with 200 mg of
squid ink melanin (Figure 1(b)). Changes in the solution’s
pH were shown to have a significant affect on the uptake
of Cd(II) and Pb(II). At pH levels below 3.0, both metals
showed a poor uptake; adsorption yield increased signifi-
cantly when the solution’s pH value was changed from 3.0
to 4.0. Adsorption of both metals was very good in the range
of 4.0–7.0 and then showed a reduction in uptake after 7.0.

The low uptake of heavy metals at pH 3.0 may have been a
result of hydrogen ions competing with copper ions to inter-
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Figure 1: Absorption of heavy metals with squid melanin: (a) The
influence of metal concentration on adsorption performance; (b)
the influence of pH on biosorption performance; (c) the influence
of temperature on biosorption performance.

act with the available binding sites. The reduced adsorption
when the pH was greater than 7.0 might have been caused
by neutralization of some of the carboxylic groups in the
melanin by alkali, and the main adsorption site turned to be
phenolic hydroxyl (OH) and amine groups (NH).
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Figure 2: Effect of macrosalts on the biosorption performance: (a) Influence on the biosorption of Cd(II); (b) influence on the biosorption
of Pb(II).

3.1.3. Effect of Temperature. The uptake of both metals was
not noticeably affected by changes in temperature in the
range of 15–40◦C (Figure 1(c)). Even when the temperature
reached 100◦C, the adsorption yield of Pb(II) was only
slightly reduced. However, the adsorption of Cd(II) dropped
significantly. This indicates that different adsorption or
binding sites in squid melanin reacted with Cd(II) and
with Pb(II), and this subject requires further investigation.
Generally, squid melanin’s adsorption of metals was not
greatly affected by temperature, which suggests that cautions
taken in previous research on the complexion of squid
melanin with metal cations were unnecessary.

3.2. The Effect of Macrosalts. The effects of MgCl2, NaCl, and
CaCl2, the salts that are most often used in natural products
enriched with heavy metals, on the biosorption of Cd(II)
and Pb(II) were studied (Figure 2). The salt concentrations
ranged from 1% to 5% for MgCl2 and CaCl2 and from 1% to
10% for NaCl, as this compound appears in a relatively high
concentration in some heavily salted foods.

The presence of these salts was found to significantly
affect the binding of Cd(II) (Figure 2(a)). When the con-
centrations of the three salts rose to 5%, the melanin’s
adsorption yield was only 30% for MgCl2, 19% for CaCl2,
and 7% for NaCl. This indicates that the Cd(II) binding was
interfere with these salts. In other words, Cd(II) competed
with Na(I), Ca(II), and Mg(II) for COOH group in squid
ink melanin; thus, squid melanin can only be used to remove
Cd(II) from solutions with a low concentration of salts.

However, all three salts had a minor effect on adsorption
of Pb(II) (Figure 2(b)). Even when the concentration of NaCl
was very high, 10% of the solution, the Pb(II) adsorption rate
was 74%. Likewise, the addition of various concentrations
of MgCl2 and CaCl2, from 1% to 5%, scarcely affected
the adsorption of Pb(II); the yield was reduced slightly
but still exceeded 80%. This is unequivocal evidence that
Na(I), Ca(II), and Mg(II) bind to the COOH group, and

Pb(II) mainly biding to the other sites. Furthermore, the
salts binding does not interfere with Pb(II) binding. Squid
melanin could successfully be used to remove Pb(II) from
products containing these salts.

3.3. Desorption. Regeneration of a biosorbent for repeated
use is a critical issue in practical application. The recov-
ery of heavy metals from metal-laden biomass has been
approached by utilizing various desorption agents, including
HCl, H2SO4, Na2CO3, EDTA, and mercaptoethanol [28–
31]. Among these approaches, decreasing the pH value using
HCl and EDTA appears to have had the best desorption
efficiency and was thus selected as the desorption agent in
the present study. To determine the optimal HCl and EDTA
concentrations for metal desorption, the amount of metals
released from treated squid melanin at different concentra-
tions of desorption agents was observed in Table 1. Briefly, it
appears that both Cd(II) and Pb(II) can be almost completely
recovered by washing twice with 0.01 M HCl, about 95%
and 98.5%. An increase in the acid or EDTA concentration
resulted in a more complete desorption of Cd(II) and Pb(II);
the desorption rate can exceed 99.5%. After desorption, the
squid melanin was reapplied to 2 mM/L metal ion solutions,
with adsorption rates of 88.6% and 92.3%, respectively; this
indicates that squid melanin is a reasonable natural source to
absorb heavy metal contaminants.

3.4. IR Analysis. Binding of metal ions was expected to
affect the transition frequencies of the coordinated func-
tional groups. If metal ions bound to a COO–group,
then concentration-dependent changes would appear in
the infrared region characteristic of the C=O stretching
frequency of the acid moiety. Likewise, if ions are bound
with OH or NH groups, we would anticipate changes in the
infrared spectrum (loss of N-H and O-H intensity) reflecting
deprotonation to accommodate binding of metal cations.
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Figure 3: IR spectrum of heavy metal enriched squid melanin as a function of the solution concentration of Cd(II) in spectral region of (a)
900–1900 cm−1; (b) 2000–4000 cm−1. The spectra are normalized to the intensity of the 1598 cm−1 peak.
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Figure 4: IR spectrum of heavy metal enriched squid melanin as a function of the solution concentration of Pb(II) in spectral region of (a)
900–1900 cm−1; (b) 2000–4000 cm−1. The spectra are normalized to the intensity of the 1598 cm−1 peak.

Previously reports about analyses of the infrared spectra
of natural and synthetic melanins indicate the following.
In indole or pyrrole systems, For NH (∼3200 cm−1) and
OH stretching (∼3400 cm−1), the peak assignments were
3200–3500 cm−1. For COOH and C=O stretching, the peak
assignment was 1710 cm−1; for aromatic C=C and C=N
bending and C=O stretching (non-carboxylic acid), it was
1590–1690 cm−1; for C=O stretching ionized COO–, it was
1580 cm−1; and for phenol OH and the carboxyl OH, it was
1250 cm−1.

All the tests on this subject were conducted in pH
6.0 conditions. Figures 3 and 4 show the effect of added

metal on the intensity of observed infrared transitions. With
increasing concentrations of bound Cd(II), the intensity
of the protonated NH (3200 cm−1) and phenolic OH
(3400 cm−1) bands decreased notably (Figure 3(b)), which
indicated deprotonation of the OH group of phenolic groups
upon metal binding. However, the intensity of the COOH
(1710 cm−1) adsorption band was not affected (Figure 3(a)).

In contrast to Cd(II), the intensity of the COOH
adsorption band increases upon the binding of Pb(II) for
solution concentrations increase (Figure 4(a)). At the same
time, the intensity of the OH and NH band decreases
(Figure 4(b)). This suggests that unlike Cd(II) binds only to
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Figure 5: SEM images of squid melanin with heavy metals. (a)
Natural squid melanin; (b) Cd(II)-enriched (105 mg/g); (c) Pb(II)-
saturated (135 mg/g). The scale bar in each panel corresponds to
100 nm.

the catechol groups and amino groups, Pb(II) also binds to
the carboxyl group .

All these results indicate that phenolic hydroxyl (OH),
carboxyl (COOH), and amine groups (NH) are likely
potential binding functional groups for metal ions. However,
the specific binding sites for Cd(II) and Pb(II) are different.

3.5. SEM Assay. Resuspended squid melanin was exposed
to a 5 mM solution of Cd(II) (or Pb(II)), and the resulting
preparations were washed and freeze-dried. Amino acid

Table 1: Effect of different concentration of EDTA and HCl on
desorption of Pb(II).

Desorption agents
Desorption rate (%)

Cd(II) Pb (II)

0.5 M HCl 99.82 99.88

0.1 M HCl 99.46 99.83

0.01 M HCl 98.62 99.48

1 mM EDTA 95.06 98.59

10 mM EDTA 98.54 99.79

40 mM EDTA 99.76 99.83

analysis indicated no change of amino acid composition.
SEM images (Figures 5(a), 5(b) and 5(c)) of the squid
melanin granules before (Figure 5(a)) and after binding with
Cd(II) (Figures 5(a) and 5(b)) and Pb(II) (Figure 5(c)) con-
firm that binding to iron does not affect their morphology;
the granules are nearly spherical in shape, with a mean
diameter of 50 ∼ 150 nm. Further DSC curve analysis
indicated that the squid melanin’s stability rises after it is
enriched with heavy metals (data not shown).

4. Conclusion

The biosorption of two heavy metals, Cd(II) and Pb(II),
using squid melanin was evaluated in the present study.
At a concentration of 2 mM/L metal ions, 95% adsorption
efficiency was reached for both Cd(II) and Pb(II), with
maximum binding contents of 0.93 mM/g and 0.65 mM/g,
respectively. Temperature had no obvious effect on the
adsorption of the metals, and in a pH range from 4.0 to
7.0, the adsorption yield was high and stable. Salts had
no obvious effect on the binding of Pb(II), though they
greatly reduced the adsorption of Cd(II), suggesting that
they bound to the same functional groups in squid melanin.
Infrared analysis revealed phenolic hydroxyl (OH), carboxyl
(COOH), and amine groups (NH) as the possible functional
groups responsible for metal binding in squid melanin;
however, the specific binding sites for Pb(II) and Cd(II)
were different. Squid ink is the waste of squid products
processing; it has caused a lot money and labor to disposal.
However, there was no report on reasonable utilize of it,
especially melanin, which is the main component of squid
ink. We have thus demonstrated squid melanin’s potential as
a new material for removing heavy metals from low-strength
wastewater, an application not previously considered by
other scientists.
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