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In this paper, a feature fusion method with guiding training (FGT-Net) is constructed to fuse image data and numerical data for
some specific recognition tasks which cannot be classified accurately only according to images. The proposed structure is divided
into the shared weight network part, the feature fused layer part, and the classification layer part. First, the guided training method
is proposed to optimize the training process, the representative images and training images are input into the shared weight
network to learn the ability that extracts the image features better, and then the image features and numerical features are fused
together in the feature fused layer to input into the classification layer for the classification task. Experiments are carried out to
verify the effectiveness of the proposed model. Loss is calculated by the output of both the shared weight network and classification
layer. The results of experiments show that the proposed FGT-Net achieves the accuracy of 87.8%, which is 15% higher than the
CNN model of ShuffleNetv2 (which can process image data only) and 9.8% higher than the DNN method (which processes

structured data only).

1. Introduction

In order to identify objects directly from images, researchers
have proposed convolutional neural network (CNN), a deep
learning model or multilayer perceptron which is like ar-
tificial neural networks, to regard each pixel of the image as a
feature. CNN is commonly used to analyze visual images.
The first generation of CNN is LeNet [1], proposed by LeCun
in 1998. This network structure is proposed to solve the
visual task of handwritten digit recognition, and it is one of
the most representative structures in early CNNs. Since then,
the most basic architecture of CNNs has been determined:
the convolutional layer, the pooling layer, and the fully
connected layer. In 2012, Alex Krizhevsky proposed the
AlexNet [2] network structure, which proposed new acti-
vation function (ReLU), local response normalization

(LRN), dropout, and data augmentation methods to im-
prove the generalization ability of the network. AlexNet won
the first place in the ILSVRC2012 [3], and CNNs have re-
ceived extensive attention from researchers since then. After
AlexNet, many excellent CNN models have appeared, and
there are three main development directions: (a) deeper: the
network layer is deeper, and the representative network is
VggNet [4], ResNet [5]; (b) modularization: a modular
network structure (Inception), the representative network is
GoogleNet [6], Inceptionv2 [7], Inceptionv3 [8], and
Inceptionv4 [9]; (c) faster: lightweight network model, for
mobile devices, representative networks are SqueezeNet
[10], MobileNet [11], ShuffleNet [12], MobileNetv2 [13],
ShuffleNetv2 [14], and MobileNetv3 [15].

Images can provide feature information such as texture,
morphology, and color for CNNs. When extracting features
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from images, images are always affected by various uncertain
factors [16-18]. In order to reduce the impact of uncertainty,
researchers use some data enhancement methods [19-21].
However, only image data is not adequate for some specific
recognition tasks. For example, when a patient is diagnosed
whether having a lung disease, the patient’s x-ray film in-
formation and the other clinical symptoms would be applied
together to consider the patient’s condition and further
propose a treatment plan. Here, x-ray film information is
image data; the other clinical symptoms can be organized
into structured data; the patient’s condition or diagnosis is
the prediction result of classifier. In this case, image data is
not the unique and absolute criterion; the diagnosis should
be made by the combination of image data and structured
data.

Another example is about the recognition of three breeds
of dogs, Pomeranian, Samoyed, and Japanese Spitz. If they
are recognized only by images, as shown in Figure 1, it is
difficult to have a high recognition rate because they have
similar textures, appearances, and colors in the images. But
the real sizes of the three dogs are different. The actual
physical sizes could not be objectively reflected by different
images. Because it is hard for the shooting distances to be the
same in different images which are shot by different pho-
tographers and in different places. This kind of recognition
problems should be executed by images and other infor-
mation together to obtain a high recognition accuracy.

Therefore, in this paper, we design a novel framework to
fuse image features (which are obtained by CNN method)
with numerical features (which are obtained from structured
data) together to solve this kind of classification problems.
There are no such methods at present to combine CNN
network with structured data in the same framework.
Influenced by the idea of adaptive parameter selection in
[22], the shared weight network is adopted as the training
part designed by guided training. The fused features become
a feature vector, which is input to the classifier. It should be
noted that our approach is effective for the problems which
should be solved comprehensively by image data and
structured data together.

The contributions of this article are as follows:

(1) A fusion framework FGT-Net is proposed, which has
the capability of fusing image data and numerical
data to enhance the representativeness of features for
the further classification.

(2) A guided training method is proposed. The training
method can promote the framework to learn the
features of images, so that the features of images
belonging to the same class are as the same as
possible.

(3) The function of CNN structure is extended to struc-
tured data except for image data. It increases the ability
of CNN to process image data and structured data at the
same time and solves some specific problems which
cannot be accurately classified according to images only.

There are many acronyms in this paper. The full names of
all acronyms in this paper are listed in Table 1.
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2. Related Work

2.1. Intraclass and Interclass Variance. At present, the main
idea of classification of these categories with small gap is to
reduce the intraclass variance and increase the interclass
variance. There are a lot of researches on reducing the
intraclass variance and increasing the interclass variance in
the field of face recognition. When the traditional Softmax is
used for training, the posterior probability of the sample’s
feature vector x (the input vector of the last fully connected
layer) belongs to class i is e“***/ ¥ e%i***; where n is
the number of classes, and w is weight of the last fully
connected layer, b is bias. In [23-25], it is proposed to set b;
to 0, so w;*x = ||wj|| w || x| % cos(Gj); Gj represents the
angle between x and the weight vector w;. In order to reduce
the intraclass variance and increase the interclass variance,
the authors in [26] proposed L-Softmax by adding angle
constraint cos (m6). On the basis of [26], SphereFace [23]
normalized the module length of weight vector to 1. In order
to further optimize the recognition effect, CosFace [24] and
ArcFace [25] further normalized the module length of
feature vector x to 1, and further proposed margin term
cos(0) —m in [24] and margin term cos (0 + m) in [25]. In
addition, some researchers have proposed auxiliary loss
function based on the existing loss function, such as Ringloss
proposed by [27] and Qrthogonal loss function proposed by
[28]. However, first of all, the same kind of images in face
recognition comes from the same person, and the similarity
is very large, while the images in our dataset belong to the
same category from different dogs, Therefore, the original
dataset of face recognition has reduced the intraclass vari-
ance to a certain extent, while our dataset has larger
intraclass variance, which makes classification more difficult.
In addition, these face recognition researches, whether face
verification or face identify, in the actual recognition, either
input two pictures for comparison to determine whether
they are the same identity (face verification), or input an
image, and compare with the existing image database, and
determine whether the image belongs to the same category
(face identify). In other words, face recognition needs an
image database corresponding to the image to be recognized.
The purpose of our research is to input only one sample and
output the corresponding category of the sample directly;
that is, we do not need to compare the sample database, so
our task of identification is more difficult.

2.2. Multisize Detecting. Recently, there are many methods
for detecting multi size targets. Singh and Davis [29] pro-
posed scaling an image at different scales, extracting features
at each scale, and fusing all features. The study in [30]
detected the feature map of different resolutions, combined
the prediction of multiple feature maps, and processed
targets of various sizes. Cai et al. [31] used features of dif-
ferent resolutions to detect targets of different scales. The
study in [32] combined bottom-up and top-down features to
detect targets with different scales on different levels of
feature maps. We find that these methods can only detect
objects of different sizes in the same image. If two objects
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FIGURE 1: The image examples of Pomeranian (a), Japanese Spitz (b), and Samoyed (c).

TaBLE 1: Acronyms and full names in this paper.

Acronyms Full names

FGT-Net Feature fusion network with guided training

CNN Convolutional neural network

LRN Local response normalization

DDE Dynamic differential entropy

AHNF Attribute heterogeneous network fusion

DFF-ADML Deep feature fusion method based on adaptive discriminant metric learning
GAN Generative adversarial network

MF-Net Multifeature fusion neural network

SWN Shared weight network

come from two images, these methods cannot distinguish
the size of the two objects, because the scenes taken in these
two pictures may be different. One may be obtained from a
distance from the camera, and the other may be obtained
from a relatively close distance. The paper [33] proposed a
dynamic differential entropy (DDE) algorithm to extract the
features of electroencephalogram signals. After that, the
extracted DDE features were classified by convolutional
neural networks. Therefore, here, we propose using auxiliary
information to help further classification, such as weight and
age, by fusing the features to distinguish objects in different
images. To judge the three classes of dogs, only image data
are not adequate. The supplement data, for example, real size
or weight, need to be fused.

2.3. Feature Fusion. There have been some advances in the
direction of feature fusion. The study in [34] fuses textual
data and structured numerical data to improve the recog-
nition effect, and this feature fusion method improves the
accuracy of heart disease diagnosis. Yu et al. [35] proposed a
generic data fusion model called attribute heterogeneous
network fusion (AHNF), which encodes various internal
relations between objects and fuses information from
multiple data sources. Wang et al. [36] proposed a deep
feature fusion method based on adaptive discriminant
metric learning (DFF-ADML) to fuse different deep feature
vectors of the same image. Cai et al. [37] constructed global
feature vectors by fusing different images of the same object
to achieve feature fusion. Tabik et al. [38] and Pan et al. [39]
achieved feature fusion by fusing feature vectors obtained
from multiple classification network models, and improved

classification accuracy by combining the classification ability
of multiple classifiers. Lai et al. [40] controlled the traffic
lights by fusing the signals of traffic lights on different roads,
to improve the congestion of the whole road network. Bin
et al. [41] proposed using two deep neural networks to
extract the features of urban structured numerical data and
housing property structured data, respectively, and then fuse
the two type features to achieve more accurate property
value assessment for the real estate industry. Ma et al. [42]
proposed an unsupervised framework based on generative
adversarial network (GAN) [43] to realize the fusion of
panchromatic images and low-resolution multispectral
images, to obtain high-resolution multispectral images. Shao
et al. [44] proposed an enhancement deep feature fusion
method for fault diagnosis of rotating machinery. This
method can fuse the features of different layers from images
by neural network to further improve the quality of learning
features. Gomez-Rios et al. [45] built a classifier which can
use two kinds of images, namely, texture image and structure
image, to identify the species of corals. The method first
identifies whether the input image is texture image or
structure image by a ResNet model, and then constructs a
ResNet model for texture image and structure image, re-
spectively, to identify coral species. Wu and Li [46] proposed
an automatic architecture for detecting various kidney ab-
normalities, in which a multifeature fusion neural network
(MF-Net) was used to extract distinctive features for mul-
tiple views of images based on two input images.

All these studies have proved the importance of infor-
mation fusion, but there has never been a study on the fusion
of image data and structured numerical data. In this paper, a
novel network structure model, FGT-Net, is proposed to



improve the recognition rate of classification tasks by
combining numerical data with image data.

3. Proposed Approach

The framework of FGT-Net is proposed and constructed to
achieve this combined function. The structure of the FGT-
Net model is shown in Figure 2. It has three layers: shared
weight network (SWN) layer, feature fusion layer, and
classification layer. The function of shared weight network
layer is to extract the feature vector of the image. Feature
tusion layer is used to fuse the extracted image features and
the numerical data features (features beyond the image) of
the target to enhance the representativeness of the target
features. After feature fusion, classification layer is used to
classify the fused features and output the classification re-
sults. The training method of FGT-Net model is new: guided
training. Moreover, the structures of models applied for
training and testing are slightly different. The detailed
processes are described as follows. The structure of the FGT-
Net is introduced in Section 3.1, Section 3.2, and Section 3.3.
The introduction of guided training and test is in Section 3.4.

3.1. Shared Weight Network Layer. As shown in Figure 2,
Shared weight network layer consists of two identical CNNs,
which are represented as SWN1 and SWN2, respectively,
and they share weights. In the training, the input of SWNI1 is
representative image set XX;, ., and the input of SWN2 is
the picture in the training set Xj,,,;. In the test, only SWN2
is used to extract the image features. Representative image
set refers to the image set composed of one image of each
class. If there are C classes, the representative image set
contains C images. Therefore, SWNI1 outputs the feature
vector set XX, = (X, Xy .- .> X ) of the representative
image set, and SWN2 outputs the feature vector X, of the
training image. Here, X,, X, X,,, and so on are all n-di-
mensional vectors, for example, X, = (X;1, X .- >X)s
X = (Xg1>X412> - - -» Xg1)- The purpose of designing such a
shared weight network layer is to make the network learn the
features of each image class more directionally, that is, to
learn the characteristics of specific categories of images from
the representative image set, so that the features of the same
image class are closer. In order to achieve our goal, a distance
loss function like in [47] the following equation is designed
in the output part of shared weight network layer:

n

1
Lossl = loss (X, X,) = " Z (i = xn‘)z- (1)
i=1

Here, X, = (x;1, X4, .. .>X,,) represents the output of
SWN2, XX, = (X, X - - -» X) represents the output of
SWNI, c represents the real class of input image X, C
represents the total number of classes, and # represents the
dimensions of X and X,.

3.2. Feature Fusion Layer. Feature fusion refers to the fusion
of feature vectors of training images extracted from shared
weight network layer and feature vectors composed of other

Computational Intelligence and Neuroscience

numerical data, so that the proposed model can utilize
features as many as possible for the further classification.

The features from numerical data and the features
extracted by image processing techniques are both numerical
values. The feature vector extracted from the image is
X, = (X405 Xpp> - - > Xy,) € R R” represents an n-dimensional
vector. As shown in Section 2.1, X, is the output of SWN2. It
is the feature extracted by shared weight network layer and
expressed as a vector. Suppose the features obtained from
numerical data are denoted as X, = (x,;, X,5, - - - » X)) € R
R™ represents an m-dimensional vector. The feature fusion is
realized by the concatenation of X, and X,, and result is
represented by X  that is an (i + n)-dimensional vector. The
feature fusion is realized by the following formula:

Xf = XtGBXe = (xtl’xt2> s Xy Xels Xeps - - ’xem)’

n+m
X;eR™™,
(2)

where the elements (x,1, X5, . . ., X, ) of X, and the elements
(Xp15>Xpzs - > Xey) of X, construct a new vector
(%115 Xpg> -+ o> Xpy> X1 Xgp> « - - » Xopy)  tO express the fused
feature vector X .

3.3. Classification Layer. After the combination of the above
image mapped features and numerical features, we can
complete our classification task based on the fused features. We
use several fully connected layers to achieve classification. Each
neuron in the fully connected layer is fully connected with all
the neurons in the previous layer. In order to improve network
performance, the activation function of each neuron in the fully
connected layer generally uses the ReLU function [48]. The last
fully connected layer is the output layer, usually using the
Softmax function as the activation function. The output layer
implements the final classification. The input of classification
layer is X, and the output is Y, = (yo1, Y02 - - > Yoo) 2
C-dimensional feature vector in which the dimension is the
same as the total number of classes. In order to make the model
have better classification ability, cross-entropy loss function like
in [49] is used in this paper:

C
Loss2 =loss (Y, Y) = - Z yilog(yo;)- (3)
i=1
Here, Y = (y1, ¥, ..., ¥c) represents the label of X;
where y, = 1 if the class of X, is n; for the rest, y = 0.
Lossl can make the features of the same kind of images
output by the model closer to each other, while Loss2 is the
cross-entropy loss used by general classification models. In
order to make the model have better classification ability, we
set the loss function to guide the model training as the sum
of distance loss and classification loss, which is represented
by Losstotal:

LosS;o = Loss1 + Loss2. (4)

3.4. Guided Training and Test. Inspired by the method of
guided filtering in [50], we adopt an unconventional training
method: guided training, which is more conducive to model
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FiGURE 2: The framework of the FGT-Net model.

learning. Firstly, an image from each class in the dataset is
selected as the representative image set. The remaining
images are divided into training set and test set according to
a certain proportion. Firstly, the representative image set is
input into SWNI1 to obtain the corresponding feature vector
group XX, = (X, Xy, ..., X); the image in the training
set is input into SWN2 to obtain the feature vector
X, = (%0, X49> - - -5 Xp,). So far, the model can calculate the
Lossl. In this way, the feature vectors generated by shared
weight network layer can be guided to be closer to the feature
vectors of the same class in the representative image set, and
let feature vectors generated by the images belonging to the
same class in the model closer. This is the main purpose of
our proposed guided training. Then, in order to solve the
problem that only using images cannot correctly identify
specific tasks (such as medical diagnosis), we propose feature
fusion. The fusion feature vector X ; is obtained by fusing the
feature vector X, obtained from SWN2 and the feature
vector X, composed of additional numerical data. Finally,
the classification layer is used to classify the fused feature
vector X to get the classification result: Y. In this paper,
the cross-entropy loss Loss2 is used to calculate the classi-
fication loss, which makes the model learn better classifi-
cation ability.

In the test, SWNI is no longer used shown in Figure 3,
because the function of the SWNI1 is to guide the model to

learn the ability to obtain the image features during the
training process, so that the characteristics of the images
belonging to the same category are closer. Once the training
is finished, the model has such ability, so this network layer is
not needed in the test. When testing, we only need to put the
image into SWN2, and then we can get the classification
result of the image through one forward propagation.

4. Experiments

In order to verify the performance of the FGT-Net model
method, experiments were conducted and the results of
these experiments are shown below. The results of these
experiments show that the FGT-Net framework can solve
the classification objects. The accuracy of our FGT-Net
(fused with image data and structured data) is higher than
CNNss (with only image data).

4.1. Dataset. The images used in the experiment are col-
lected from the Internet, the numerical data used are
artificially generated according to the actual situation of
each dog, and a dataset was made as shown at the end of this
paper. There are four classes of data in the dataset, in-
cluding class 0 (Japanese Spitz), class 1 (Pomeranian), class
2 (Samoyed), and class 3 (Husky). Each data in the dataset
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Ficure 3: The FGT-Net model used in test.

contains an image and 3 structured numerical data: sex,
weight, and age. Sex is represented by 0 and 1 (0 for male
and 1 for female). The unit of weight is kg. Samoyed’s
weight is less than 30kg, Japanese Spitz’s weight is below
10 kg, Pomeranian’s weight is below 3.5 kg, and Husky’s
weight is below 30 kg. Age is based on months. If the age is
less than 15 days, it is calculated as half a month, that is, 0.5
months. If it is more than 15 days, it is calculated as one
month.

Among the dataset, representative image set includes 1
image of Japanese Spitz, 1 image of Pomeranian, 1 image of
Samoyed and 1 image of Husky, training set including 186
images of Japanese Spitz, 107 images of Pomeranian, 330
images of Samoyed, and 353 images of Husky, and test set
includes 46 images of Japanese Spitz, 27 images of Pom-
eranian, 84 images of Samoyed, and 89 images of Husky.
Some examples of the data in the dataset are shown in
Figure 4.

4.2. The Model. The model used in the experiment is de-
scribed in this section.

First, for shared weight network layer, SWN1 and SWN2
are built for features extraction based on ShuffleNetv2. Only
the front of the full connection layer of ShuffleNetv2 is used,
that is, only the portion from the input layer to the average
pooling layer. After the mapped features extraction, each
input image can be transformed into a 1024-dimensional
feature vector, which represents the mapped image features.
At the same time, other numerical features from structured

data corresponding to each image in the dataset are also
constituted into a numerical feature vector. There are 3
numerical features in this experiment, so the numerical
feature vector is a 3-dimensional feature vector. Second, the
above 1024-dimensional image feature vector and 3-di-
mensional numerical feature vector are converted into a
1027-dimensional feature vector using the feature fusion
method described in Section 2.2; then, the feature fusion is
completed. Finally, two full connection layers and an output
layer are added to the model, with 512 neurons, 256 neurons,
and 4 neurons (corresponding to the output of 4 classes),
respectively. The combined 1027-dimensional feature vector
is used to complete the recognition of the object in the input
image.

The whole training process is carried out on GPU. The
loss function described in Sections 2.1 and 2.3 was used in
the training of the model. Adam [51] was used as the op-
timizer; the initial learning rate is 0.001. There were 32
samples in each training batch of the model, 100 epochs were
trained for the whole training set, and the model parameters
were updated 3100 times. The training and validation ac-
curacy figures are shown in Figure 5, and the training and
validation loss figures are shown in Figure 6. As shown in
Figures 5 and 6, the model converges gradually, and the
change trend of the two curves is basically the same, which
shows that the model can learn the characteristics of par-
ticles from the training dataset and can accurately identify
the unknown wear particle samples in the verification
dataset. Finally, the performance of the model is evaluated
on the test set.
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Weight Age Sex Image Weight Age Sex
5.8 5.5 0 25.5 9.5 0
6.6 6 0 17.4 7 0
9.5 8 0 224 9 1
3.8 3.5 1 21.5 8.5 1
7.8 6.5 1 6.5 4 0

(a) (b)

Image Weight Age Sex Weight Age Sex
1.5 3 1 18.5 8.5 1
1.4 2 0 21.5 15 1
2.2 5 0 22.1 9 1
1.2 2.5 0 14.2 6.5 0
2.8 9 1 17.5 7.5 0

(c)

(d)

FIGURE 4: Data examples in the dataset. (a) Japanese Spitz data example (class 0), (b) Pomeranian data example (class 1), (c) Samoyed data

example (class 2), and (d) Husky data example (class 3).

4.3. Guided Training. The purpose of this part of the ex-
periment is to prove that the guided training is more
conducive to the final classification of the model. We
designed two experiments to compare, Experiment 1: only
using SWN2 and classification layer, using training set
training model, test set testing; Experiment 2: using SWN1,
SWN2, and classification layer. The representative image set
and training set are used to train the model, and the test set is
used to test the model. Experiment 2 uses the guided training
method to train. The only difference between Experiment 1
and Experiment 2 is whether to use SWN1 and represen-
tative image set. The experimental results are shown in
Table 2. It shows that the classification accuracy of the model
with guided training method (Experiment 2) is higher than
that of the model learned by ordinary self-training mode
(Experiment 1). It is proved that the training mode designed
is more beneficial to the model training.

4.4. Discussion of Feature Fusion. In order to compare the
performance of feature fusion, the comparison experiments
were conducted with the same hyperparameter setting. In
the first comparison experiment, only image data was used
to train CNN model (here ShuffleNetv2 is utilized) to predict
the classes of dogs. In the second comparison experiment,
only structured numerical data was used to train a simple 5-
layer-deep fully connected neural network (DNN) to predict
the classes of dogs. The final experimental results are shown
in Table 3. As can be seen from the experimental results,
CNN model with only image data has relatively low rec-
ognition accuracy for Pomeranians and Japanese Spitzes
when only image data was used to identify the classes of
dogs. This is because the appearance, texture, color, and
other characteristics of Japanese Spitzes and Pomeranians
are very similar, so only using these characteristics extracted
from CNN model cannot accurately identify them.
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TaBLE 2: The accuracy and other performance evaluation indexes of Experiment 1 and Experiment 2 of guided training.
Experiment Class TP FP FN Precision Recall F1-score Accuracy
Japanese Spitz 10 9 36 0.526 0.217 0.308
. Pomeranian 9 4 18 0.692 0.333 0.450
Experiment 1 Samoyed 69 49 15 0.585 0.821 0.683 0-707
Husky 86 10 3 0.896 0.966 0.930
Japanese Spitz 18 9 28 0.667 0.391 0.493
. Pomeranian 15 8 12 0.652 0.556 0.600
Experiment 2 Samoyed 63 38 21 0.623 0.750 0.681 0.728
Husky 83 12 6 0.873 0.933 0.902

Moreover, when only structured numerical data was used to
identify the classes of dogs, DNN model tends to confuse
Huskies and Samoyeds, and the identification accuracy of
Huskies and Samoyeds is relatively low. This is because these
two kinds of dogs are very similar in weight features; they
cannot be well identified only by these structured numerical
features. However, when the FGT-Net model was used to
combine image data and structured numerical data, the two
problems can be solved well. Firstly, although Pomeranians
and Japanese Spitzes are similar in appearance, texture,
color, and other characteristics, their weight features are
quite different (Pomeranian is small sized dog and relatively
light in weight; Japanese Spitz is medium sized dog and
relatively heavy), so they can be identified by using

structured numerical data. Secondly, although Huskies and
Samoyeds are similar in weight, their appearance, texture,
color, or other features are quite different, so they can be
identified by using image data features. Therefore, the FGT-
Net model can use both image data and structured nu-
merical data to identify the classes of dogs. As shown in
Table 3, the recognition accuracy of the FGT-Net model
reaches 87.8%, the recognition accuracy of CNN (Shuf-
fleNetv2) model which is learned only by image data is
72.8%, and the recognition accuracy of the DNN model
which is learned only by structured numerical data is 78.0%.
From these experimental results, we can see that the FGT-
Net model can identify not only Pomeranians and Japanese
Spitzes well, but also Huskies and Samoyeds well.
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TaBLE 3: The accuracy and other performance evaluation indexes of models with fused data and separate data.
Model Class TP FP FN Precision Recall F1-score Accuracy
Japanese Spitz 40 6 6 0.870 0.870 0.870
Pomeranian 27 6 0 0.818 1.000 0.900
FGT-Net (fused data) Samoyed 71 9 13 0.888 0.845 0.866 0-878
Husky 78 9 11 0.897 0.876 0.886
Japanese Spitz 18 9 28 0.667 0.391 0.493
. Pomeranian 15 8 12 0.652 0.556 0.600
CNN (ShuffleNetv2) (only image data) Samoyed 63 38 21 0.623 0750 0.681 0.728
Husky 83 12 6 0.873 0.933 0.902
Japanese Spitz 45 0 1 1.000 0.978 0.989
Pomeranian 27 1 0 0.964 1.000 0.982
DNN (only structured data) Samoyed 46 15 38 0.754 0.548 0.634 0780
Husky 74 38 15 0.661 0.831 0.736

TaBLE 4: Accuracy comparison with other advanced models.

Model

Accuracy

FGT-Net
0.878

AlexNet
0.728

VGGl16
0.691

ResNet50
0.675

TaBLE 5: Time comparison with other advanced models.

Model FGT- )\ jexNet ShuffleNetV2 VGG16 ResNet50
(s) Net
Time 1039  10.57 10.31 11.66 1091

Because ShuffleNetV2 belongs to lightweight net-
work, the network level is not deep. In order to further
prove the effectiveness of our method, we compare FGT-
Net with other well-known CNNs (ResNet50, VGGI6,
and AlexNet). As shown in Table 4, FGT-Net achieves the
highest accuracy, because FGT-Net is based on the fused
features of image data and structured data. The other
CNN models (ResNet50, VGG16, and AlexNet) are
produced with only image data. It proves that our method
is effective in solving the problems with comprehensive
data merged by image and structured data. Our method is
a framework based on CNN structure, so it enlarges the
function of CNN models. In terms of test time, as shown
in Table 5, FGT-Net is faster than other models except
that it is 0.08 seconds slower than ShuffleNetV2.
Therefore, FGT-Net not only improves the accuracy, but
also improves the speed.

5. Conclusion

In some recognition tasks, there is a problem that images
could not be the only criteria for classification, or objects
from different images cannot be well classified by CNN due
to the similar features (color, texture, appearance, etc.). In
order to solve these kinds of problems, a novel FGT-Net
framework that can combine image data and structured
numerical data is proposed. A guided training is adopted for
the learning process so that the feature vectors generated by
the similar targets are closer to each other. Therefore, FGT-
Net could surpass the ordinary training method and obtain
higher recognition accuracy. Experiments are executed for

the fusion of image level features and numerical features
extracted from structured data. The accuracy of the model
with guided tra[[parms resize(1),pos(50,50),si-
2e(200,200),bgcol(156)]]et is 2.1% higher than that of the
model without guided training. The accuracy of FGT-Net
reaches 87.8%, which is 15% higher than CNN model of
ShuffleNetv2 (which can process image data only) and 9.8%
higher than DNN method (which processes structured data
only). The proposed model is feasible for the future appli-
cations in the fields of industry or medical diagnosis which
are considered by the merging of image data and structured
data together. And the framework of the proposed model
can extend the processing ability of CNNs for the merging of
image data and structured data.
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