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ABSTRACT

The development of the CRISPR-Cas9 technology
has provided a simple yet powerful system for
genome editing. Current gRNA design tools serve
as an important platform for the efficient application
of the CRISPR systems. However, most of the ex-
isting tools are black-box models that suffer from
limitations, such as variable performance and un-
clear mechanism of decision making. Here, we intro-
duce CRISPRedict, an interpretable gRNA efficiency
prediction model for CRISPR-Cas9 gene editing. Its
strength lies in the fact that it can accurately predict
efficient guide RNAs—with equivalent performance
to state-of-the-art tools—while being a simple linear
model. Implemented as a user-friendly web server,
CRISPRedict offers (i) quick and accurate predictions
across various experimental conditions (e.g. U6/T7
transcription); (ii) regression and classification mod-
els for scoring gRNAs and (iii) multiple visualiza-
tions to explain the obtained results. Given its perfor-
mance, interpretability, and versatility, we expect that
it will assist researchers in the gRNA design process
and facilitate genome editing research. CRISPRedict
is available for use at http://www.crispredict.org/.
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INTRODUCTION

The CRISPR-Cas9 system has revolutionized the field of
genome editing and promises the ability to study genetic
interactions at their origin and the opportunity to cure
severe inherited diseases. Compared with previous gene-
editing tools, such as zinc-finger nucleases (ZFNs) and
transcription activator-like effector nucleases (TALENS),
which bind to a specific DNA sequence by protein-DNA
recognition, the CRISPR-Cas9 system identifies target sites
by the complementarity between the guide RNA (gRNA)
and the DNA sequence, which is less expensive and time-
consuming, as well as more precise and scalable.

To effectively use the CRISPR-Cas9 system for gene edit-
ing, researchers need to identify target sites that can be
cleaved efficiently and for which the candidate gRNAs have
little or no cleavage at other genomic locations. Specifi-
cally, an ideal gRNA should maximize on-target activity
(guide efficiency) while minimizing potential off-target ef-
fects (guide specificity). Balancing these two requirements
can be a challenging task and, as a result, significant effort
in recent years has been focused on developing computa-
tional tools to assist in the design of gRNAs (1-4).

However, currently available tools still have some limita-
tions, such as their variable performance (5). In particular,
they cannot robustly predict experimental success on new
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Table 1. List of gRNA activity prediction web servers

Guide Interprets Provides

Name URL Input Promoter Predictions Classification
DeepCRISPR (9) http://www.deepcrispr.net/ N/A N/A N/A N/A
DeepSpCas9 (3) http://deepcrispr.info/DeepSpCas9/ 3000 gRNAs per input U6 No No
DeepHF (4) http://www.deephf.com/#/cas9 Single target sequence (1k) ue, T7 No No
Azimuth 2.0* (2) https://crispr.ml/ 300/500 gRNAs per input 18[9 No No
CRISPRscan (8) https://www.crisprscan.org/ Single target sequence (10k) T7 No No
CRISPOR (23) http://crispor.tefor.net/ Single target sequence (25k) ue, T7 No Yes
TSAM (12) http://www.aai-bioinfo.com/CRISPR/ N/A N/A N/A N/A
sgDesigner (13) http://crisprdb.org/wu-crispr/ Single target sequence (30k) 18[9 No Yes
CRISPRedict http://www.crispredict.org/ Unlimited sequences per file ue, T7 Yes Yes

The maximum accepted length of a single target sequence is provided in parentheses. The tool described in this work is marked in bold.
* Azimuth 2.0 is also available at https://portals.broadinstitute.org/gppx/crispick/public. N/A: Not available.

gene editing tasks that may deviate from the data the model
was trained on. In addition, most of the popular tools are
black-box models that do not provide intrinsically explain-
able predictions. Therefore, the specific factors that deter-
mine on-target activity remain largely unexplored. Finally,
many of the current gRNA design tools (e.g., TUSCAN
(6)) are not implemented as a web server but only provide
source code to obtain their predictions. A brief overview of
the existing activity prediction web servers is provided in
Table 1.

Here, we introduce CRISPRedict, a simple and inter-
pretable linear model that accurately predicts guide ac-
tivities. Comprehensive evaluation using independent data
demonstrated that CRISPRedict achieves equivalent per-
formance to the currently most accurate tools and outper-
forms many others (7). Moreover, it exhibits a robust per-
formance for different types of data, illustrating its general
applicability under different experimental conditions.

Implementing the trained model as a user-friendly web
server, CRISPRedict not only delivers quick and accurate
predictions, but also provides visualizations to explain the
obtained results. These results can then be used to guide
genome editing experiments and make plausible hypothe-
ses for further investigation. Finally, in addition to the pop-
ular choice of regression models, the web server includes a
classification variant of CRISP Redict that provides the ad-
ditional benefit of a clear threshold for labeling gRNAs. In
the following sections, we give a quick overview of the server
and provide case studies to demonstrate its use.

MATERIALS AND METHODS

This section summarises the approach that we followed to
generate the prediction models and implement them as a
web server. Detailed information regarding the training and
evaluation process is provided in a separate study (7).

Model construction

A U6 and a T7 variant of CRISPRedict was created to im-
prove the prediction ability of the model under different
gRNA expression conditions. Each variant was trained on
a different dataset, using a similar modeling pipeline. The
pipeline is presented briefly below.

First, we defined the initial feature set using sequence
characteristics that have been shown to influence cleavage

efficiency (2,5,8). This includes overall and position-specific
nucleotide composition, as well as features that reflect the
structural properties of the guide sequence. Then, we ap-
plied a multi-step feature selection strategy to arrive at a
minimal and relevant-only feature subset. We also evaluated
a set of different algorithms at each step and selected the
appropriate one for each task. For each case, we chose the
model that balances best between performance and com-
plexity.

Having determined the set of features and the appropriate
algorithms, we trained one regression and one classification
model for each task. In particular, we trained a binomial
regression and a linear regression model to predict the per-
centage of efficient edits for the U6 and T7 variant, respec-
tively. Moreover, we used the same (i.e. 28 and 25) features
to train two logistic regression models by labeling the top
20% and bottom 20% gRNAs as efficient and inefficient,
respectively. Therefore, we created four models for the four
different tasks.

Performance evaluation

We evaluated CRIS PRedict using twelve published datasets,
derived from studies from independent laboratories (7).
These datasets included gRNAs expressed with the U6
or the T7 promoter and represented guide efficiency
using either a continuous or a discrete variable. Us-
ing these datasets, we compared CRISPRedict against
eight state-of-the-art gRNA design tools, including Deep-
CRISPR (9), DeepCas9 (10), DeepSpCas9 (3), DeepHF (4),
CRISPRLearner (11), Azimuth 2.0 (2), TSAM (12) and
sgDesigner (13).

Our thorough evaluation demonstrated that CRISP Re-
dict achieves an equivalent performance with the currently
most accurate tools. Moreover, it exhibited the most robust
performance for both U6 and T7 datasets, illustrating its
applicability to tasks under different conditions.

A summary of the results among selected models can be
seen in Figure 1. In particular, we chose the most popular
(Azimuth 2.0) and the most accurate deep learning (Deep-
SpCas9) and machine learning methods (sgDesigner) that
were also included in previous comparisons (3,5,13-14). We
also evaluated TUSCAN (6), a Random Forest (RF)-based
tool that is trained on sequencing data using 63 features and
provides scalable predictions. We selected two metrics for
the presented evaluation; namely Spearman correlation and
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Figure 1. Comparison of the general performance of the CRISPRedict model. Each bar demonstrates the mean performance of a model across all U6 or
T7 datasets, using a single evaluation metric. nDCG: normalized discounted cumulative gain, 7: number of total samples.

normalized discounted cumulative gain (nDCG) that cap-
ture the general performance and the top-ranking ability of
the models, respectively. We used these metrics to compare
the five selected models on four U6 and four T7 datasets.
The detailed results can be found in the Supplementary ma-
terial (Supplementary Table S1).

As shown in Figure 1, CRISPRedict outperforms the
chosen models on the T7 datasets and has the second-best
performance on the U6 datasets. In addition, it achieves
a more robust performance (smaller variance) across all
datasets.

Server implementation

CRISPRedict is written in Python 3 and uses the Streamlit
library for the web application. Files are parsed and writ-
ten using Biopython (15) and Pandas (16). The visualiza-
tions are generated using the Matplotlib (17) and Seaborn

(18) plotting libraries. All models are implemented using
the Statsmodels (19) library. The SHAP library (20) is also
used to obtain explainable predictions, along with custom
Python scripts.

RESULTS

In this section, we present an overview of the server’s capa-
bilities. We also describe case studies that utilize the differ-
ent functionalities in order to further demonstrate the gen-
eral use and applicability of the web server.

Web server usage

CRISPRedict offers three different modes of operation
(Figure 2). The ‘Explore’ mode provides visualizations to
explore the features and parameters of the predictive mod-
els. Its purpose is to familiarize the users with the pro-
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Figure 2. Overview of the CRISPRedict webserver. Illustrates the different functionalities with example input/output.

vided models before choosing the appropriate one for their
experiments. The second mode (‘Predict’) can be used to
obtain guide efficiency predictions for one or more tar-
get sequences. It accepts 30-nucleotide (nt) sequences given
in a FASTA or comma separated values (CSV) file. In-
structions regarding the expected file format are provided
along with example data for demonstration. The results
are displayed in a sortable table that can be downloaded
for future use. Finally, the ‘Interpret’ mode provides visu-

alizations that help interpret the predictions obtained for
a particular sequence. It accepts a 30-nt sequence as in-
put with an example sequence already provided. Informa-
tion regarding sequence formatting is also presented, along
with a way to generate random valid sequences. The re-
sulting visualizations are provided as downloadable im-
ages. Features are also displayed in a table below the ob-
tained results. All the described modes include configu-
ration options and tool-tips for guidance. A help page
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Figure 3. Weight plot of the trained T7 regression model. Weights are displayed as points and the 95% confidence intervals as lines. The x-axis includes
position-dependent features, such as the presence of adenine in position 19 (A_19), as well as global features, such as the total number of guanines (G

count).

is also provided with an example input/output for each
category.

Case study 1: exploring trained models

Before choosing the appropriate model for a given task, it is
crucial to understand its parameters and how they might in-
fluence the final result. For this reason, the ‘Explore’ mode
provides various visualizations to investigate the features of
each predictive model. An example output is shown in Fig-
ure 3.

In the case of the T7 regression model, we observe that
many of the model’s weights exhibit great variability. How-
ever, features like ‘G count’ and ‘GC count’ have a more re-
liable, albeit lower, contribution to the final predictions. In
contrast, the U6 variant of CRISPRedict consists of more
stable weight parameters (Supplementary Figure S1), at-
tributed to the larger dataset on which it has been trained.

Case study 2: predicting multiple sequences

In this case, we examine how researchers can use CRISP Re-
dict predictions and the knowledge about on-target activity
in their experiments. To accomplish this, we present a study
that involves the treatment of a genetic disorder. In partic-
ular, we use CRISPRedict to select the appropriate gRNAs
and illustrate how the information provided by the server
can inform the experimental design. Similar to Peng et al.
(12), we use retinitis pigmentosa (RP) as an example.

Results
1 AGCTGTGGAGCTGCTGCAGAACCAG... 0.800
8 TCGGGCTGAGTCCCGACGAAGCTGTG... 0.749
32 AGGTGTGTGTGGTCGTCGGACCCAGG. .. 0.723
1 11 GGCCCTTCCATAGAGACAGGACCCTG... 0712
E 0 AGCTGTATGGTGTGGAGCCCAACGAG... 0711}
3 GCGCGAGTTGAACCGGCAGCTGCGG... 0.696
15 15 GAGGCGCCGCACGCTCAAGAACCGC... 0.695
12 CATCCGACCCCAGCTGCTGCTGCAGG. . 0.693
1 17 AAGGAGGCACCGAGCTGTATGGTGTG... 0.687
20 GACGAGGCTCTGCGGCTGAAGCAGA 0 AR7

Download results

Download CSV file
Took 0.19 seconds to run.

Figure 4. Prediction output for the 147 candidate gRNAs of the Yu er al.
study. The output of the table has been sorted based on the predicted score
in order to select the most efficient guide sequences. The NT2 gRNA that
was selected by Yu et al. for the in vivo study is marked.

Yu et al. (21) attempted to knockdown the Nr/ gene to
prevent retinal degeneration in a mouse model and sug-
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Effect plot of an efficient guide sequence

Sequence: TTTTCACCCAGATGAATTGTACGTGGGCAG
Predicted value for sequence: 0.679 (Efficient)
Average predicted value: 0.5
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Figure 5. CRISPRedict output for an efficient and inefficient guide RNA. The effect plot shows the distribution of effects (= feature value times feature
weight) across the training data using boxplots. The boxes contain the effect range for half of the data (25-75% effect quantiles). The horizontal lines
extend to the +1.5 inter quartile range (IQR), while the vertical lines are the median effect. The diamonds represent outliers. The crosses show the actual
feature effects for the provided instance.



gested an adeno-associated virus (AAV)-based CRISPR-
Cas9 system for gene disruption as a promising treatment
option for patients with RP. To accomplish that, they de-
signed five candidate gRNAs (denoted NT1 to NT5) against
the mouse Nrl coding region. Among those, they selected
NT?2 for the in vivo study based on its higher ability to gen-
erate indels and lower predicted off-target potential.

In our experiment, we used CHOPCHOP (1) to retrieve
all the candidate sequences for Nr/ gene knockdown in
the mouse genome (mm39). In total, 147 potential spacer
sequences were identified with the PAM 5-NGG-3'. The
cleavage efficiencies of the 147 candidate gRNAs were pre-
dicted by CRISPRedict and are shown in Figure 4.

We observe that CRISP Redict ranks the gRNA selected
by Yu et al. (NT2) in the 5th position. Therefore, researchers
could have identified the efficient gRNA by experimenting
with the top five of the 147 possible sequences. Such a rec-
ommendation approach can save time and cost, without
sacrificing accuracy and efficiency.

Case study 3: interpreting efficiency predictions

We now highlight the ability of CRISPRedict to provide
interpretable and explainable predictions for the CRISPR-
Cas9 system. To accomplish that, we present a different case
study involving again the treatment of a genetic disorder,
namely X-linked chronic granulomatous disease (X-CGD).
Specifically, we use the classification model of CRISPRedict
to differentiate between efficient and inefficient gRNAs and
explain their differences.

De Ravin et al. (22) used CRISPR-Cas9 to repair a muta-
tion in the CYBB gene of CD34+ hematopoietic stem and
progenitor cells (HSPCs) from patients with the immunod-
eficiency disorder X-CGD. Unlike our case study 2, the cut-
ting site should be close to the mutation site in order to
promote homology-directed repair (HDR) and correct the
point mutation. Four guide sequences (gRNA1, gRNA2,
gRNA3 and gRNAS) around the CYBB mutation site were
evaluated, of which gRNA2 displayed maximal cutting ef-
ficiency.

Similar to case study 2, we used CRISPRedict to predict
the cleavage efficiency of each gRNA. However, we focused
here on the most and least efficient guide sequence and used
the ‘Interpret’ mode to illustrate their differences (Figure 5).
In particular, the effect plot was used to demonstrate how
the combination of model weights and feature values results
in the final prediction. We chose this plot because it com-
bines global (visualizing feature distribution) and instance-
based (marking actual feature effect) information.

We observe that the predicted scores are 0.679 and 0.004
for the efficient and inefficient guide sequence, respectively.
Thus, CRISPRedict differentiates the efficient and ineffi-
cient gRNAs by a large margin. In addition, the effect plots
provide a direct interpretation for these predictions. For in-
stance, the inefficient gRNA includes mostly features that
negatively impact on-target activity, such as extreme GC
content and increased TTT count, confirming the results of
previous studies (5). Similarly, the efficient guide sequence
mostly includes features with positive impact, such as the
AG count and the number of adenines (As) in the middle
of the sequence. Therefore, CRISPRedict not only differen-
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tiates between active and non-active gRNAs but provides
visual explanations for its predictions.

CONCLUSION

Due its simplicity and versatility, the CRISPR-Cas9 system
has been widely adopted by the scientific community to tar-
get and modify the genomes of a vast array of cells and or-
ganisms. Computational gRNA design tools facilitate the
efficient application and development of CRISPR system:s.
However, the existing models have several limitations, such
as their variable accuracy and unclear mechanism of recom-
mendation.

In this work, we have introduced CRISPRedict, an easy-
to-use web tool for gRNA activity prediction. Having been
extensively evaluated in terms of accuracy and robustness,
CRISPRedict provides interpretable efficiency predictions
with comparable performance to state-of-the-art design
tools. Given its performance and versatility, we expect that
it will greatly facilitate genome editing research. To ensure
that CRISPRedict remains competitive and up-to-date, it
will be periodically updated as new data become available.

DATA AVAILABILITY

CRISPRedict is implemented in Python and is freely avail-
able as both web server and standalone software under the
Apache 2.0 license. The web server can be accessed at http:
/Iwww.crispredict.org/ without a login process. The stan-
dalone version can be downloaded from the GitHub repos-
itory: https://github.com/VKonstantakos/CRISPRedict.
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