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Abstract

Inverse Stochastic Resonance (ISR) is a phenomenon in which the average spiking rate of

a neuron exhibits a minimum with respect to noise. ISR has been studied in individual neu-

rons, but here, we investigate ISR in scale-free networks, where the average spiking rate is

calculated over the neuronal population. We use Hodgkin-Huxley model neurons with chan-

nel noise (i.e., stochastic gating variable dynamics), and the network connectivity is imple-

mented via electrical or chemical connections (i.e., gap junctions or excitatory/inhibitory

synapses). We find that the emergence of ISR depends on the interplay between each neu-

ron’s intrinsic dynamical structure, channel noise, and network inputs, where the latter in

turn depend on network structure parameters. We observe that with weak gap junction or

excitatory synaptic coupling, network heterogeneity and sparseness tend to favor the emer-

gence of ISR. With inhibitory coupling, ISR is quite robust. We also identify dynamical mech-

anisms that underlie various features of this ISR behavior. Our results suggest possible

ways of experimentally observing ISR in actual neuronal systems.

Author summary

The rhythmic activity of spiking neurons is known to be sensitive to noise. In such neu-

rons, inverse stochastic resonance (ISR), in which the average spiking activity of a neuron

exhibits a pronounced minimum as the noise intensity increases, can occur. But macro-

scopic phenomena such as information processing, cognition, and mental diseases take

place at the level of populations of neurons, and, presumably are strongly influenced by

the connectivity structure of the network. Here we investigate the occurrence of ISR in

large populations of networked spiking neurons. We find that ISR can emerge in such net-

works as a consequence of many different factors, including channel noise, connection

strength, synaptic currents with excitatory and inhibitory terms, and topological features

of the network including degree distribution and mean connectivity degree. We describe

the dynamical mechanisms that give rise to various features of ISR in such networks. We

find that inhibitory coupled networks favor ISR behavior and are more robust to changes
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in neural circuit features than electrically or excitatory coupled networks. Our work sug-

gests that network ISR may be observable in local field potential measurements of neuro-

nal activity in brain slice preparations, cultures, and perhaps even in EEG recordings.

Introduction

Noise is ubiquitous in the nervous system of living organisms, yet it remains unclear how

noise influences neuronal information processing. While noise is generally considered to be

something that should be filtered out or reduced, it is now widely accepted that noise can, in

some cases, enrich the stochastic dynamics of neuronal ensembles and facilitate their informa-

tion processing capabilities [1–3]. A well-known example of this is stochastic resonance (SR),

in which a certain amount of noise can enhance the detection and transmission efficiency of

weak signals [4–11]. In this scenario, for low noise levels, a system does not respond to a weak

signal due to its small amplitude. For moderate noise levels, however, the noise raises the

inputs closer to a threshold and thereby enhances signal detection. Finally, for high noise lev-

els, the system’s response is dominated by the noise, and therefore the signal is not detected.

Thus, a plot of the system’s response versus noise is bell-shaped, indicating that there is an

optimal value of the noise for signal detection and processing.

An interesting observation was reported in [12], where noise was found to have an inhibi-

tory effect on neuronal pacemaker activity in an in vitro preparation of squid axon. The

authors also found that small noisy input currents could induce switching between repetitive

firing and quiescent neuronal states, and that the timing of the switching depended on the

intensity and spectral properties of the noise. The effects of noise on the rhythmic firing activ-

ity of a pacemaker cell were also studied theoretically in a Hodgkin-Huxley model neuron

[13, 14]. These works reported that near the onset of firing, a minimum—possibly zero—

occurred in the average spiking activity of the model neuron with respect to noise intensity.

Since this behavior is essentially the reverse of SR, the authors called this phenomenon “inverse

stochastic resonance” (ISR). Recently, in [15], the impact of the temporal structure of noise on

ISR was investigated and the inhibitory effect of colored noise was found to be stronger than

that of the Gaussian white noise studied in [13, 14]. Furthermore, in [16], ISR studies were

extended to the case of a spatially-extended Hodgkin-Huxley system. These authors showed

that if the noise and signal inputs were uniformly distributed along the spatial extent of the

neuron, weak noise could strongly inhibit the occurrence of rhythmic spiking, but not its

propagation. However, if the noise and signal inputs were applied to separate regions of the

neuron, the noise had no effect on either rhythmic spiking or the propagation of spikes. Other

authors considered the Morris-Lecar model neuron [17], and showed that ISR can emerge as a

consequence of unreliable spike transmission [18]. In another work [19], the authors studied

the phenomenon of ISR in the Hodgkin-Huxley (HH) neuron based on biophysically realistic

ion channel noise. These authors also clarified the dynamical structure that underlies ISR.

More recently, a double inverse stochastic resonance (DISR) was reported in the response of a

HH neuron that receives synaptic inputs subject to different types of short-term synaptic plas-

ticity [20].

Although the ISR phenomenon has been studied extensively at the level of a single neuron,

to our knowledge there is no record investigating ISR at the level of large populations—only a

simple system consisting of two coupled neurons has been considered to date, and features

similar to single-cell ISR were reported [21]. In the current work, we are interested in whether

ISR can emerge, or not, in a neuronal medium consisting of a large number of interconnected
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neurons with non-trivial topology. As in other biological systems [22], one might expect that

the effects of voltage or ionic current fluctuations decrease when neurons are connected in

such networks, as the fluctuations can spread throughout the system via electrical connections,

and quickly damp out. On the other hand, for strong coupling, the system may become a

“supercell”, and effectively behave as a single unit with a very large membrane area consisting

of the entire population of ionic channels in the system. In this case, the collective dynamics

would be more deterministic, and ISR could be impeded. Similarly, when neurons are coupled

with electrical connections, they become more synchronized, which also decreases the effect of

noise in the coupled system [23]. On the the other hand, imperfect synchronization of afferents

onto a postsynaptic neuron (due for instance to spike train irregularity or other sources of ran-

domness) introduces current fluctuations whose relative amplitude with respect to the mean

synaptic current scales as hki−1/2, where hki is the mean number of presynaptic neighbors. This

is another factor that can influence the emergence of ISR in networked systems. If the network

is sparse, or the system is near a critical or a bifurcation point (as is the case in the ISR phe-

nomenon), these network fluctuations are not negligible and can be very important in deter-

mining the appearance and features of ISR.

Therefore, whether or not ISR can emerge in networked neuronal media is an interesting

issue to investigate, especially due to the possible effects that ISR might have in the context of

information coding and processing. The work presented here constitutes a first step towards

investigating the main factors and dynamical processes involved in ISR emergence in a large

neuronal population. This work can be easily extended to explore how other factors present in

a neuronal medium, such as other network topologies, degree correlations, different types of

synaptic dynamics and plasticity, etc., influence ISR.

Models and methods

The time evolution of the transmembrane potential of the HH neurons in our network is

given by:

Cm
dVi

dt
¼ � GNa

i ðmi; hiÞ Vi � ENað Þ � GK
i ðniÞ Vi � EKð Þ � GL

i Vi � ELð Þ þ I0 þ Isyni ð1Þ

where Vi denotes the membrane potential of i-th neuron in millivolts, i = 1, . . ., N, and

Cm = 1μF/cm2 is the membrane capacitance per unit area. I0, measured in μA/cm2, is an exter-

nal bias current injected into all neurons in the network and is used for the modulation of

neuronal excitability. In our study, we set I0 = 6.8 μA/cm2, for which the neuron exhibits bist-

ability between a resting and a spiking state. The parameters ENa = 115mV, EK = −12mV, and

EL = 10.6mV are the reversal potentials for sodium, potassium and leak channels, respectively.

GNa
i , GK

i , and GL
i represent the corresponding channel conductances. In the model, the leak

conductance is assumed to be constant, with GL
i ¼ 0:3mS=cm2, while the sodium and potas-

sium conductances vary according to the following equations [24]:

GNa
i ðm; hÞ ¼ gmax

Na m3
i hi ð2Þ

GK
i ðnÞ ¼ gmax

K n4
i : ð3Þ

Here, gmax
Na ¼ 120mS=cm2 and gmax

K ¼ 36mS=cm2 are the maximal sodium and potassium con-

ductances. mi and hi are the activation and inactivation gating variables of the sodium channel,

respectively, and the product m3
i hi represents the mean proportion of open sodium channels

in the membrane patch of neuron i. The potassium channel includes an activation gating vari-

able ni, and similarly, n4
i is the mean proportion of open potassium channels in neuron i.
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To incorporate ion channel noise into the dynamics of each individual neuron, we use the

well-known algorithm proposed by Fox [25], both because it is widely used (e.g., [18, 26–29]),

and because it is computationally efficient. Since we consider a large range of model parame-

ters (patch size, synaptic coupling, network parameters) throughout this work, the latter con-

sideration is important. The approach put forward by [25] expresses the gating variable

dynamics in terms of Langevin equations as follows:

dxi=dt ¼ axi
ð1 � xiÞ � bxi

xi þ xxi
ðtÞ; ð4Þ

where axi
and bxi

are rate functions for the gating variable xi (x = m,n,h) and can be found in

[30]. The probabilistic nature of the channels appears as a noise source xxi
ðtÞ in Eq (4). This is

an independent zero-mean Gaussian white noise source whose autocorrelation function is

given as follows [25]:

hxmi
ðtÞxmi

ðt0Þi ¼ f2ami
bmi
=½NNaðami

þ bmi
Þ�gdðt � t0Þ ð5Þ

hxhi
ðtÞxhi

ðt0Þi ¼ f2ahi
bhi
=½NNaðahi

þ bhi
Þ�gdðt � t0Þ ð6Þ

hxni
ðtÞxni

ðt0Þi ¼ f2ani
bni
=½NKðani

þ bni
Þ�gdðt � t0Þ; ð7Þ

where NNa and NK represent total number of sodium and potassium channels within a

membrane patch. Assuming homogeneous sodium and potassium ion channel densities of

ρNa = 60μm−2 and ρK = 18μm−2 [24], the total channel numbers are calculated by NNa = ρNaA,

NK = ρKA. Here, A is the membrane patch area of each neuron.

Note that constant ion channel densities means that for large membrane area A, many ion

channels are involved, and accordingly the stochastic contribution of individual ion channels

becomes negligible. In this case the collective dynamics of all channels approaches the deter-

ministic description. However, when A is small, membrane conductance fluctuations signifi-

cantly increase, since relatively fewer channels are involved [27, 31, 32]. Thus, membrane area

and effective noise amplitude are inversely related. We will use A as the channel noise control

parameter throughout this study.

Finally, in Eq (1), Isyni denotes the total synaptic current received by neuron i. We consider

coupling via electrical gap junctions and chemical synapses. In the case of linear electrical cou-

pling via gap junctions, the synaptic current is proportional to the transmembrane potential

difference between neuron i and that of its neighbor, summed over neighbors:

Isyni ¼
X

j� neighðiÞ

geðVj � ViÞ ð8Þ

where ge is the conductance of the gap junction, and the sum runs over the neighbors that feed

the neuron i. For coupling via chemical synapses, the synaptic current takes the form [33]:

Isyni ¼
X

j� neighðiÞ

gcaðt � tj0ÞðErev � ViÞ; ð9Þ

where the alpha function α(t) describes the temporal evolution of the synaptic conductance.

Here, gc is the maximal conductance of the synaptic channel, and tj0 is the time at which pre-

synaptic neuron j fires. In our study, we use exponential synapses such that aðtÞ ¼ e� t=tsynYðtÞ
with τsyn = 3ms, and Θ(t) is the Heaviside step function. In practice, exponential synapses are
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implemented as follows:

Isyni ¼
X

j� neighðiÞ

gcsjðErev � ViÞ ð10Þ

_sj ¼ � sj=tsyn þ dðt � tj0Þ; ð11Þ

where sj is the fraction of open receptor channels for neuron j. The parameter Erev is the

synaptic reversal potential, and its value determines the type of synapse. If it is larger than the

resting potential (around 0 mV), e.g. Erev = 70mV, the synapse is excitatory; if it is smaller, e.g.

Erev = −10mV, the synapse is inhibitory.

We base the connection topology of our neurons on random scale-free (SF) networks. This

is a well-known and widely-used connectivity paradigm in computational studies of local

microcircuits, since such connectivity has been observed in many functional brain regions via

neuroimaging and electrophyisiological studies [34–37]. Graph analyses of resting-state fMRI

data from experimental studies have also suggested an efficient organization of functional

communication in brain networks, indicating that the human brain is not just a random net-

work, but one with an organization optimized towards a high level of local and global effi-

ciency. This can be modeled with a SF structure [38]. In our setup, unless otherwise noted, our

SF networks are composed of N = 200 nodes with a neuron at each node.

To construct the connectivity matrix of the SF network, we first draw N random numbers

ki, which represent the connectivity degree of each neuron, from a distribution p(k) * k−γ

with mean connectivity hki in the thermodynamic limit (N!1), and which is normalized in

the interval (k0, kmax) with k0 ¼ hki
ðg� 2Þ

ðg� 1Þ
1 � N

2� g
g� 1

� �� 1

and kmax ¼
ffiffiffiffiffiffiffiffiffiffi
hkiN

p
. (See, for instance,

[39]). We then set the elements of the connectivity matrix to �ij = �ji = 1 with probability

pij ¼
kikj
Nhki, and �ij = 0 otherwise (configurational ensemble), until the degree of each node

matches the desired values ki, 8i.
We calculate the mean firing rate of the network for fixed values of membrane area A and

input current I0 as follows. First, we select separate initial conditions for each neuron ran-

domly and uniformly from within a fixed region of the four-dimensional state space (V, m, n,

and h). Specifically, this region ranges from −10mV to 80mV for the trans-membrane voltage

variable V, and from 0 to 1 for each of the gating variables m, n, and h. Then, the network

equations are integrated for a time T = 1 s. After this, for each neuron, we count the number of

spikes Nspikes
i that occur in an additional time interval of length τ = 5 s. Each spiking event is

defined by the upward crossing of the membrane potential past a threshold of 20 mV. The

mean spiking rate is then calculated by:

n ¼
1

Nt

XN

i¼1

Nspikes
i

 !

; ð12Þ

where the index i refers to each neuron.

To quantify the synchronization of the network, we use a dimensionless synchrony measure

sync as in [40–42]. For a given time t, the average membrane potential in the network can be

evaluated by the following equation:

VðtÞ �
1

N

XN

i¼1

ViðtÞ ð13Þ
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and its time fluctuation can be characterized by the variance

D ¼ hVðtÞ2it � hVðtÞi
2

t ð14Þ

where h�it denotes averaging over time. To normalize this quantity, we calculate the variance

of the membrane voltage of a single neuron,

Di ¼ hViðtÞ
2
it � hViðtÞi

2

t ð15Þ

and construct the synchronization measure

sync ¼
D

1

N

XN

i¼1
Di

ð16Þ

This quantity is a dimensionless value between 0 and 1 and measures the degree of coherence

in the system in the infinite size limit (N!1), with larger values indicating more synchroni-

zation in the network.

The model is integrated numerically using the fourth-order Runge-Kutta algorithm with a

fixed temporal resolution of 10 μs. For statistical accuracy, each data point in the following

results is obtained by averaging 50 independent network realizations.

Results

ISR in networks with electrical synapses

We begin by exploring the emergence of ISR in scale-free networks coupled via gap junctions

as in Eq 8. We find that indeed, ISR appears for a range of gap junction conductances and net-

work topology parameters, as shown in Figs 1 and 2. In both figures, the mean firing rate of

the neurons in the network is plotted versus membrane area for various values of the gap junc-

tion conductance ge (Note that the horizontal axis can be interpreted as the noise level, with

noise decreasing as membrane area increases.). Fig 1 considers networks with mean connectiv-

ity degree hki = 5 and various values of the degree distribution exponent γ (panels A-C). Fig 2

considers networks with γ = 3 and various values of hki. In all cases, the ISR effect is seen most

prominently for low values of ge. In particular, for low ge we observe that for increasing A (that

is, decreasing noise), the mean firing rate first decreases, reaches a minimum, and then

increases again. This is the ISR phenomenon. For the lowest values of ge, the mean firing rate

remains very low, and in some cases is actually zero, over a significant interval of A (i.e., chan-

nel noise amplitude).

We observe that as ge increases, the ISR effect gradually disappears in the sense that the dip

in the mean firing rate is less and less pronounced. Indeed, for the largest values of ge that we

investigated, ISR is not apparent at all. This observation is summarized in Figs 1D and 3,

which show the minimum values of the mean firing rate over the entire range of A studied ver-

sus the gap junction conductance. As ge increases from zero, this minimum firing rate remains

very low, and then quickly increases. Note that for low values of γ and k, the transition is more

gradual. The transition becomes sharper for larger values of these parameters. Furthermore,

the critical value of ge for this transition decreases as these same parameters increase. This last

observation is most evident in Fig 3.

Lower values of the degree distribution exponent γ correspond to a wider range of possible

node degrees, indicating more heterogeneous networks in terms of connectivity. We conclude

then that more heterogeneous networks favor the occurrence of ISR. By this we mean that it

occurs over a wider range of ge, as compared to more homogenous and strongly coupled net-

works. Fig 1D shows that for hki = 5 and γ = 2.1, ISR can be observed for values of ge 2 [0,

Inverse stochastic resonance in networks
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0.04], approximately, whereas for γ = 3.5, ISR only occurs in an interval half as big, i.e., for

ge 2 [0, 0.02]. On the other hand, we can also conclude by inspecting Fig 3 that for a certain

level of heterogeneity in the network, sparser connectivity favors the emergence of ISR for

a wide range of ge. For instance, Fig 3 shows that ISR can be observed for ge 2 [0, 0.04] for

hki = 3 whereas for hki = 20, ISR occurs only in ge 2 [0, 0.005].

To gain an understanding of the basic mechanisms behind the occurrence of ISR, and in

particular its disappearance in networks with increasing gap junction conductance (as shown

above), we examined the behavior of seven randomly-chosen neurons from a network with

hki = 3 and γ = 3 (i.e, the case depicted in Fig 2A). Voltage traces for these neurons at different

values of ge and A are shown in Fig 4. The left column shows the case for ge = 0, corresponding

to a network of isolated neurons. The middle column has ge = 0.005, corresponding to a net-

work in which the ISR effect is quite pronounced, and the right column has ge = 0.03, for

which the ISR effect is less pronounced.

Fig 1. The emergence of ISR in scale-free networks of electrically-coupled neurons for different levels of network

heterogenity. The panels show the mean firing rate as a function of cell membrane area for various values of gap junction

conductance ge, with networks having degree distribution p(k) * k−γ and mean connectivity degree hki = 5. Analysis has been

performed using three different values of degree distribution exponent γ, (A) γ = 2.1, (B) γ = 2.5, and (C) γ = 3.5. Note that

lower values of γ indicates a more heterogenous network in terms of connectivity. (D) The minimum values of the mean firing

rates in panels (A)-(C) versus the gap junction conductance ge. As γ increases, the transition becomes sharper and occurs at

lower values of ge.

https://doi.org/10.1371/journal.pcbi.1005646.g001
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The occurrence of ISR in a network of isolated neurons (i.e., with ge = 0; see left column in

Fig 4) is equivalent to ISR in a single neuron, in which the mean firing rate is obtained by aver-

aging over repeated trials (with different initial conditions). The fundamental mechanisms at

play in this case were described in detail in [19], and we briefly summarize the main points

here. In the case of small membrane area, i.e., large noise, the neurons in the network spike at

a high rate, but randomly, with essentially no quiescent periods. This can be seen in the top

traces of the left column of Fig 4. We observed that as the noise decreases (or A increases),

brief, random periods of quiescence appear, and these get increasingly longer in duration as

the noise level decreases (similar to the middle panel, right column of Fig 4). Eventually these

periods of quiescence become effectively permanent, as shown in the middle traces, left col-

umn of Fig 4. The noise levels at which this occurs correspond to the lowest portions of the

ISR curve, i.e., the lowest values of mean firing rate.

The effective permanence of these quiescent periods can be understood as follows. The neu-

rons exhibit bistability at the chosen parameters (here, I0 = 6.8 μA/cm2) such that a stable equi-

librium (corresponding to the resting state) coexists with a stable limit cycle (corresponding to

Fig 2. The emergence of ISR in scale-free networks of electrically-coupled neurons for different levels of mean

connectivity. The panels show the mean firing rate as a function of cell membrane area for various values of gap junction

conductance ge, with networks having degree distribution p(k) * k−γ and mean connectivity degree hki. Analysis has been

performed in networks with fixed γ = 3, and four different values of hki, (A) hki = 3, (B) hki = 5, (C) hki = 7, and (D) hki = 20.

https://doi.org/10.1371/journal.pcbi.1005646.g002
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Fig 3. Transition from the appearance of ISR to its disappearance in networks of electrically coupled

neurons with different values of mean connectivity. The plots depict the minimum values of the mean

spiking rate in panels (A)-(D) of Fig 2 versus the gap junction conductance ge. As hki increases, the transition

becomes sharper and occurs at lower values of ge.

https://doi.org/10.1371/journal.pcbi.1005646.g003

Fig 4. Behavior of the neurons in the network for different gap junction strengths and internal noise levels. Spike trains from seven randomly-

selected neurons in a network with parameters hki = 3 and γ = 3, for various values of A (rows) and ge (columns) as shown. Reading downward, the

columns show spiking patterns as the channel noise decreases. The left column has ge = 0, and therefore the network consists of isolated neurons. The

middle and right columns show behaviors with weak coupling (ge = 0.005) and relatively larger coupling (ge = 0.03), respectively.

https://doi.org/10.1371/journal.pcbi.1005646.g004
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the spiking state). These are separated by a boundary, which is mediated by an unstable limit

cycle. (For a more detailed description of the HH model bifurcation diagram, see for instance

[19, 20]). Notably, the minimum distance from the stable equilibrium to this boundary is

much larger than the minimum distance between the boundary and the stable limit cycle.

Thus, for low noise levels, a neuron in the spiking state is likely to encounter a noise kick that

sends it across the boundary and into the basin of the stable equilibrium, where it becomes

trapped. Once trapped, this low-amplitude noise is not large enough to kick the neuron back

into the spiking state with any reasonable probability. Thus, after a sufficient amount of time,

the majority of neurons in the isolated network under these conditions become quiescent, and

hence the mean firing rate becomes small, if not zero. We call this mechanism the “trapping

effect”.

As the noise amplitude continues to decrease, the mean firing rate grows due to a mecha-

nism that we call the “initial condition effect”. With very small noise, neurons which are initi-

ated in a spiking state remain spiking, and neurons that begin at rest remain at rest. This can

be seen in the lower traces, left column, of Fig 4. Thus, the mean firing rate calculated over all

the neurons of the isolated network increases as the noise amplitude goes to zero (i.e., large

membrane area), eventually saturating at a value related to the proportion of initial conditions

that are in the basin of the spiking state [19].

On the other hand, neurons in networks with non-zero coupling experience two sources of

noise: the channel noise, here parameterized by the membrane area, and noise due to inputs

from other neurons in the network, i.e. synaptic noise. The cause of the destruction of the ISR

effect as the gap junctional conductance increases is this latter noise source, as is evident in

Fig 4. The top set of traces in each column, which are for high channel noise (i.e., small mem-

brane area), are qualitatively the same. The behavior shown in the middle traces for low values

of ge corresponds to the trapping effect described above, in which the isolated neurons eventu-

ally get captured by the stable equilibrium and therefore cease firing. But as the gap junction

conductance increases, synaptic noise soon becomes large enough to kick quiescent neurons

back across the boundary and into the spiking state. We call this mechanism the “kickout

effect”. As ge increases, we see a restoration of intermittent firing states in the network, as is

shown in the middle traces of the right column of Fig 4. Hence, for larger values of ge, the inter-

action among the neurons due to the network connectivity prevents the dip in the ISR curve

from occurring, and the ISR effect is thus removed.

We now consider the network effects that lead to the increase in average firing rate seen at

the extreme right sides of the ISR curves of Figs 1 and 2. This occurs with increasing ge, and is

due to synchronization and recruitment of neurons into the spiking state. Panels A-C of Fig 5

show the voltage traces of several randomly-selected neurons from the networks correspond-

ing to the bottom panels of Fig 4. We choose the low channel noise case (A = 105 μm2) in order

to evaluate more precisely the effect of network connectivity. Fig 5A corresponds to the net-

work of isolated neurons, where ge = 0. We see that because the neurons are initiated with ran-

dom initial conditions, some neurons are in the resting state (red traces), and some are in the

spiking state (black traces). Among the spiking neurons, there is a significant spread in the

spike times.

In networks with increasing gap junction strength (Fig 5B and 5C), we see two effects. First,

as ge increases, more and more of the resting neurons get recruited into the spiking state via

the network-driven kickout effect. Accordingly, the first neurons to be recruited are those

with a high degree of connectivity, since they receive the strongest input from the network.

For ge = 0.03 (Fig 5C), all neurons are in the spiking state. Fig 5D shows the proportion of neu-

rons in the whole network that are in the spiking (black circles) and resting (red diamonds)

states versus the gap junction coupling strength, and the recruitment of resting neurons into

Inverse stochastic resonance in networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005646 July 10, 2017 10 / 23

https://doi.org/10.1371/journal.pcbi.1005646


the spiking state is clearly evident. Second, we observe that the degree of synchronization

among the spiking neurons increases with ge. Fig 5E shows that synchronization (blue dia-

monds; left vertical scale) increases monotonically with ge. In addition, as more and more neu-

rons enter the spiking state, we expect the mean firing rate of neurons across the network to

increase. Accordingly, Fig 5E also shows that indeed, the mean firing rate of neurons in the

network grows with ge (red circles; right vertical scale), eventually reaching a value equal to

that of an isolated spiking neuron.

ISR in scale-free networks with chemical synapses

We also explored the emergence of ISR in scale-free networks of neurons with chemical synap-

ses. We considered networks with only excitatory synapses, and networks with only inhibitory

synapses. In both cases, ISR appears for some range of synaptic conductances, and we found

that the phenomenon is more robust in networks with large inhibitory synaptic conductances

than excitatory networks.

Fig 5. Factors shaping the ISR curves at low channel noise. Top panels: Voltage traces of 50 randomly-selected neurons from the

networks corresponding to the bottom traces in Fig 4. (A) ge = 0, (B) ge = 0.005, (C) ge = 0.03. Bottom panels: (D) The relative abundance

of neurons in the resting (Nr/N; red diamonds) and spiking (Ns/N; black circles) states vs. ge. (E) The degree of synchronization in the

network (blue diamonds, left vertical scale) and the global mean firing rate (red, right vertical scale) vs. ge. For all panels, A = 105 μm2,

hki = 3, and γ = 3.

https://doi.org/10.1371/journal.pcbi.1005646.g005
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Networks with excitatory chemical synapses. Fig 6 shows the mean firing rate plotted

versus membrane area for a heterogeneous network with γ = 3 and hki = 3, 5, 7, and 20, illus-

trating the emergence of ISR. The various curves in each plot represent different values of the

maximal synaptic conductance gc. As in the case of electrical coupling, the ISR effect is most

evident for the smallest values of connection strengths, for which the neurons in the network

are essentially independent. ISR gradually goes away as the connectivity strength increases as

in the case of electrical synapses due to the increasing role of network noise.

Fig 6A and 6B are qualitatively similar to what we showed before for electrical synapses,

and the mechanisms at work are essentially the same. However, for larger values of the average

degree hki, new effects can be discerned. Note especially the differences between Fig 6A, for

hki = 3, and Fig 6D, for hki = 20. These effects are more clearly apparent in Fig 7, which shows

the data in Fig 6D as a sequence of graphs of the mean firing rate versus gc for various values of

the membrane area.

We begin by examining the left sides of all graphs in Fig 7, which correspond to low values

of gc. Here we see the effects of the three dynamical mechanisms discussed above. First

Fig 6. The emergence of ISR in scale-free networks of chemically-coupled neurons with excitatory connections. The

mean firing rate as a function of cell membrane area for different values of the maximal synaptic conductance gc, with

networks having degree distribution p(k) * k−γ and mean connectivity degree hki. Analysis has been performed in networks

with fixed γ = 3, and four different values of hki, (A) hki = 3, (B) hki = 5, (C) hki = 7, and (D) hki = 20.

https://doi.org/10.1371/journal.pcbi.1005646.g006
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consider panel (F), which shows the case with the least channel noise (i.e, the largest mem-

brane area). At gc = 0, the mean firing rate is high due to the initial condition effect. As gc
increases, the mean firing rate initially decreases due to the trapping effect, eventually reaching

a minimum value. As gc continues to increase, the mean firing rate then increases due to the

kickout effect driven by the increasing network synaptic noise. The subsequent collapse of the

mean firing rate will be discussed below.

Now consider the left sides of the curves in reverse order (i.e., panels F, E, D, C, B, A), so

that we see the consequences of increasing channel noise. The first effect is that the mean firing

rate for low values of gc decreases, indicating that the initial condition effect is being lost. The

increasing channel noise is sufficient to cause trapping to occur in the absence of any signifi-

cant network synaptic noise (i.e., for very low values of gc). Interestingly, however, the local

minimum seen in panels F, E, D, and C remains at essentially the same value of gc. This sug-

gests that the kickout effect that causes the mean firing rate to subsequently increase for

increasing gc is dominated by network synaptic noise. However, we see in panels B and A that

when the channel noise is sufficiently large, it too can drive the kickout effect and cause the

mean firing rate to increase. Thus, the left sides of the curves in Fig 7 can be understood in

terms of the initial condition, trapping, and kickout effects.

In contrast, the behavior of the right sides of the curves for low channel noise (i.e., panels

D, E, F of Fig 7) is caused by an additional dynamical mechanism. In this case, for large values

of gc, strong network connectivity leads to spike synchronization among the neurons, and we

observe that spiking in the network abruptly stops. This “synchronization-induced termina-

tion” has been previously reported in various contexts. Essentially, when the network is

Fig 7. Determination of dynamical mechanism in a densely connected excitatory network. The mean firing rate versus coupling strength for

chemically-coupled neurons with excitatory connections, with hki = 20 and γ = 3, for different values of the membrane area as indicated in the

panels. This is the same data as in Fig 6D, displayed differently.

https://doi.org/10.1371/journal.pcbi.1005646.g007
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synchronized, coordinated synaptic inputs arrive at each neuron during the repolarization and

refractory phase of the action potential. With sufficient synchronization, these inputs integrate

into a large post-synaptic current that pushes the trajectory of each neuron into the basin of

the resting equilibrium, and activity stops. Further analysis of similar behavior can be found in

[43–45].

To illustrate this, the three panels of Fig 8 show representative traces from ten randomly-

selected neurons with parameters as in Fig 7F, for gc = 0.015, 0.020, and 0.025. We see that the

mean firing rate decreases dramatically as gc increases. In Fig 8A, with gc = 0.015, neuronal fir-

ing is consistent but with a bit of randomness. In Fig 8B, with gc = 0.020, we see a few episodes

in which many of the neurons temporarily stop firing. A close examination of the timing of the

spikes before the onset of quiescent periods reveals that the last spikes are highly synchronized.

After the final such event, all but one neuron has stopped firing. This neuron receives little or

no synaptic input from the rest of the network, almost all of which is quiescent, and thus spikes

at a rate close to the rate of spiking of an isolated neuron. Finally, in Fig 8C, with gc = 0.025, a

highly synchronous spiking event occurs right at the beginning of the traces, after which the

neurons stop firing.

Returning now to Fig 7, we see the synchronization-termination effect on the right sides of

the curves for low values of channel noise (i.e., large membrane areas; panels D, E, F). For the

lowest channel noise (panel F), this effect is strongest, and we see zero firing rates persist for

large gc values as the channel noise increases (panels F, E, D). As the channel noise increases

further, however, this noise gradually destroys synchronization. Lack of synchronization takes

away the termination effect, and the large-amplitude noise ensures that many neurons spike

persistently. Thus we see the right sides of the curves (i.e., high gc) go up (C, B, A) as the chan-

nel noise increases (i.e., membrane area decreases).

Networks with inhibitory chemical synapses. We also considered scale-free networks

with inhibitory synapses. In this case, the ISR phenomenon also arises, but with some

Fig 8. Enhanced synchronization leads to the termination of spiking activity in excitatory networks. Spike trains from ten randomly-

selected neurons in a network with parameters as in Fig 7F, i.e., hki = 20 and γ = 3, for A = 105 and (A) gc = 0.015, (B) gc = 0.020, and (C)

gc = 0.025, depicting the emergence of the synchronization-induced termination effect as gc increases.

https://doi.org/10.1371/journal.pcbi.1005646.g008
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differences. Fig 9 illustrates plots similar to those shown above demonstrating the ISR effect

for γ = 3, hki = 3, 5, 7, and 20, and several values of gc. The most obvious new feature is that for

hki = 3, 5, and 7, the curves essentially lie on top of each other for A≲ 104. This indicates that

for this parameter range, channel noise is dominant, and perhaps surprisingly, that synaptic

noise is largely irrelevant except when the channel noise is very small (panels A, B, and C; A≳
104). However, synaptic noise becomes important when the network is highly connected. This

can be seen in panel D for hki = 20, where the effect of gc is evident for A≳ 102.

A careful examination of the right sides (i.e., low channel noise) in panels Fig 9A–9C reveals

another difference between the inhibitory and excitatory cases for hki = 3, 5, and 7. For net-

works with inhibitory synapses, increasing gc results in a decrease in the mean firing rate,

whereas in the analogous case with excitatory synapses, the opposite occurs. We previously

observed that for excitatory synapses, increasing the network connection strength leads to a

recruitment of neurons into the spiking state. Here we observe that for inhibitory synapses,

increasing gc leads to a recruitment of neurons into the resting state. This difference can be

understood not only in terms of the opposite roles of excitatory and inhibitory synapses in the

Fig 9. The emergence of ISR in scale-free networks of chemically-coupled neurons with inhibitory connections. The

mean firing rate as a function of cell membrane area for different values of the maximal synaptic conductance gc, with

inhibitory connected networks having degree distribution p(k) * k−γ and mean connectivity degree hki. Analysis has been

performed in networks with fixed γ = 3 and 4 different values of hki, (A) hki = 3, (B) hki = 5, (C) hki = 7, and (D) hki = 20.

https://doi.org/10.1371/journal.pcbi.1005646.g009
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generation of action potentials, but also in terms of the bifurcation structure of the neurons

and the mean values of the total synaptic current received by each neuron. For excitatory syn-

apses, the mean synaptic current is positive. This causes the basin of the spiking state to

increase in size as the unstable limit cycle decreases in amplitude. Thus, trapping becomes

more difficult and the spiking state becomes more robust to synaptic current fluctuations. In

the case of inhibitory synapses, the mean synaptic current is negative, and the effect is the

opposite: the basin of the spiking state becomes smaller as the unstable limit cycle increases in

amplitude, approaching the bifurcation that creates these limit cycles (saddle-node of periodic

orbits). Trapping becomes more likely, and neurons fall into the resting state. Since an increase

in gc strengthens these effects in both cases, this explains the corresponding increase and

decrease of the mean firing rates in the excitatory and inhibitory cases, respectively.

As the mean connectivity degree hki increases, different behavior emerges. For hki = 7 and

A = 105 in the excitatory case (see Fig 6C), non-monotonic behavior appears as the synaptic

strength is increased, but not in the inhibitory case (Fig 9C). For hki = 20, the differences are

significant. As before, we plot in Fig 10 the data of Fig 9D as graphs of mean firing rate versus

gc in order to tease apart the different mechanisms at play.

On the left sides of these curves, we observe the same scenario as before: For low network

coupling and low channel noise, as in panel F, we see the initial condition effect, as well as the

network-driven trapping effect that causes the mean firing rate to decrease as gc increases.

Trapping driven by channel noise is also observed for low gc as membrane area increases (pan-

els F, E, D, and C) until the channel noise induced kickout effect begins (panels B and A).

However, the right sides of these curves behave very differently from those in the case

of excitatory networks. Recall that in the excitatory case, for high network connection

strengths (gc) and relatively low channel noise, the mean firing rates fell to near zero due to the

synchronization-induced termination effect described above. Here, in the inhibitory case, the

mean firing rate approaches a high value as the network connection strength gc increases. This

Fig 10. Determination of dynamical mechanism in a densely connected inhibitory network. Mean firing rate versus

coupling strength for chemically-coupled neurons with inhibitory connections, with hki = 20 and γ = 3, for different values of the

membrane area as indicated in the panels. This is the same data as in Fig 9D, displayed differently.

https://doi.org/10.1371/journal.pcbi.1005646.g010
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is seen in all the panels, i.e., for all values of channel noise. An examination of the individual

neurons in the networks at the highest value of gc that we examined (gc = 0.1) reveals that the

neurons are highly desynchronized. In this state, spikes are mainly determined by synaptic

current fluctuations causing random kickouts.

Finally, we note that in panel C, the mean firing rate is close to zero for gc≲ 0.06 due to the

channel-noise driven trapping effect. The mean firing rate then rises for gc ≳ 0.06 due to the

network-noise driven kickout effect. This transition begins at approximately the same value of

gc in panels C-F, indicating that it is due essentially exclusively to network synaptic noise. In

panels A and B, however, the channel noise is sufficiently high that this transition is lost.

Influence of network size on ISR

Finally, we investigated the effect of network size on the features of the ISR curve in the various

configurations we considered above. Fig 11 shows ISR curves for heterogeneous scale-free net-

works with hki = 5 and values of γ and the coupling strengths (ge or gc) as indicated in the cap-

tion. The curves are for various values of N, the number of nodes in the network. We see no

significant qualitative differences between these curves. Where there are differences, it is clear

that as N increases, the curves asymptotically approach a shape that is in essence captured by

the N = 200 case. So although there may be small quantitative differences in the results for net-

works of different sizes, we expect the same basic ISR profile with the same dynamical mecha-

nisms at play to occur in the thermodynamic limit (N!1).

Discussion

ISR is a recently-discovered phenomenon that has been investigated both theoretically and

experimentally at the level of a single neuron [12–15, 18–20, 46]. In those studies, the average

spiking rate of the neuron was calculated over many trials with the same neuron. In this work,

we extended the concept of ISR to networks of many connected neurons by calculating the

average spiking rate over the neuronal population instead. We found that indeed, ISR can

emerge when formulated in this way. We showed that the important features of network-

based ISR depend on the potentially complex interplay between the local ion channel noise of

Fig 11. The influence of network size on the emergence of ISR in electrically and chemically coupled populations. Mean firing rate versus cell

membrane area for different values of network size N, with hki = 5. (A) Electrically coupled network with γ = 2.5 and ge = 0.02. (B) Excitatory coupled

network with γ = 3 and gc = 0.015. (C) Inhibitory coupled network with γ = 3 and gc = 0.01. The curves are almost identical for N = 200, 400, 800, and 1600

for all cases indicating that our results can be generalized for populations with larger sizes.

https://doi.org/10.1371/journal.pcbi.1005646.g011
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individual neurons and the effectively noisy post-synaptic inputs they receive from the rest of

the network.

Essential to the occurrence of ISR is that this interplay between intrinsic and extrinsic

sources of noise take place on a basic dynamical structure that underlies and governs the

behavior of the neuron. Specifically, each neuron must exhibit a stable equilibrium that coex-

ists with a limit cycle in such a way that the boundary between the basins of these attractors

(which is mediated by an unstable periodic orbit) is very much closer to the limit cycle than it

is to the equilibrium [19]. This dynamical picture is the basis for all types of ISR, and it leads to

the curious behaviors we observed in this study.

In the classic Hodgkin-Huxley model neuron, this structure exists, in physical terms, for

only a very small range of input currents. Thus one might be led to conclude that ISR would be

difficult if not impossible to observe in real biological neurons. However, one must be careful

when extrapolating from the point “space-clamped” HH neuron to real neurons with spatial

extent and potentially complicated dendritic and axonal arborizations. And indeed, ISR behav-

ior has recently been experimentally observed in individual Purkinje cells in slice preparations

of rat brain [46]. This indicates that the necessary dynamical structure may not be hard to find

after all.

When the intrinsic and extrinsic noise interacts with the attractor structure described

above, various dynamical mechanisms can occur. We identified several such mechanisms that

explain the shape of the ISR curves we calculated. With very low noise, we observed the initial

condition effect, whereby a neuron approaches either the resting or the spiking state (depend-

ing on its initial conditions) and stays there. It does so because the noise is too small to perturb

the neuron enough to change its state. With moderate noise, there is a higher likelihood that a

neuron in the spiking state would be pushed into the resting state than the reverse. This is

because of the close proximity of the basin boundary to the limit cycle, and the relatively large

distance from that boundary to the resting equilibrium. Thus we observed the trapping effect,

since neurons tend to get trapped in the resting state under these circumstances. Finally, with

larger noise, neurons in the resting state can be kicked into the spiking state (and vice versa, of

course). This is the kickout effect.

Based on these observations, we explain the main features of the ISR curve that occur as

noise increases as follows. Beginning with no noise, a relatively high average spiking rate is

observed due to the initial condition effect. This is followed under moderate noise by a drop in

the average spiking rate due to the trapping effect. Finally, with large noise, a rise in the average

spiking rate occurs due to the kickout effect.

We constructed our networks using scale-free topology, since this type of network includes

two important ingredients observed in actual neural systems: scale invariance and small world

characteristics [34, 47, 48]. However, this choice does not imply a loss of generality of our find-

ings, since we observed that ISR is quite robust to moderate changes in network structure, e.g.,

varying the network heterogeneity and connection density. Thus, it is likely that ISR would

appear in networks with other connection topologies as well. We also found that for networks

larger than a minimum of approximately 200 neurons, the basic qualitative features of ISR

behavior do not depend on the network size. Thus, one may expect ISR to appear in very large

populations of neurons as in actual neuronal systems.

Our main result is that the interplay of channel noise (in individual neurons) and network

noise (through network connections) affects the ISR phenomenon differently in the various

scenarios we considered.

For networks of electrically coupled neurons, i.e. gap junctions, we found that it is possible

to observe ISR as a function of channel noise when the network coupling is weak. In this case,

channel noise is the dominant driver of the initial condition, trapping, and kickout effects in
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each neuron. However, as the network coupling between neurons increases, ISR gradually dis-

appears as the dip in the average firing rate becomes less and less pronounced. The reason is

that the increased noise amplitude due to the combination of the channel and network noises

shifts the neurons into the regime of the kickout effect. This results in an increased average fir-

ing rate (see Fig 4). Of course the network noise input to each neuron depends on the network

structure, and thus on the node degree distribution exponent γ and the mean connectivity hki.
We found that ISR effects are less pronounced in more homogenous and more densely con-

nected neuronal populations. This also happens with strong electrical connections.

For networks with purely excitatory chemical (i.e., synaptic) connections, we found the

same effect: channel-noise driven ISR can be observed with low gc, and it tends to disappear as

network noise increases with increasing gc. However, too much connectivity causes synchroni-

zation, and a new effect appears: synchronization-induced termination (SIT). The interesting

mechanisms that we identified (i.e., the initial condition, trapping, and kickout effects) become

irrelevant as the network activity is simply shut off. ISR then disappears, since SIT prevents the

rising phase of the ISR curve. We found that sufficient synchronization to induce SIT occurs

only with excitatory synapses and significant network connectivity, i.e., for large gc and large

values of hki.
For networks with purely inhibitory chemical (i.e., synaptic) connections, we found that

channel-noise driven ISR is quite robust in the sense that the ISR curves are essentially inde-

pendent of network effects (i.e., gc) when the connectivity (hki) is moderate. Network effects

tend to appear only when the channel noise is very small and/or the network connectivity is

very large. When sufficiently large, these network effects tend to eliminate ISR because spiking

events occur increasingly due to network noise -driven kickout events. Correspondingly, the

network becomes highly unsynchronized.

The functional implications of ISR are not yet clear, nor have they been sufficiently

explored in experiments since these observations are relatively recent. As mentioned above,

ISR has been observed in a single real neuron via whole-cell patch clamp techniques. Our

results suggest that ISR may be observable at the network level via measurement techniques

that sample the activity of many neurons at once, such as local field potential measurements

and possibly even EEG recordings. Since we found that ISR is most robust in networks domi-

nated by inhibitory synaptic connections, perhaps the most promising approach to experimen-

tally observing network ISR would be in well-controlled cell culture or brain slice experiments

in which excitation is blocked, e.g., with tetrodotoxin.

It is widely assumed that information is processed with spikes. However, the silent periods

characterizing ISR for certain conditions may play more than just an adverse role in neural sys-

tems. For instance, ISR may play a role in shortening the periods of anomalous working mem-

ory [49]. ISR may also play an important role in computational mechanisms that require on-

off bursts of rhythmic spiking [50], and may provide a way for the behavior of a neuron (or a

population thereof) that receives noisy input to be modulated without, or perhaps in conjunc-

tion with, more familiar chemical neuromodulators. It has also been proposed that Purkinje

cells involved in cerebellar computation could use the ISR mechanism to switch among differ-

ent operating regimes depending on input current fluctuations [46]. Furthermore, the low

average firing rate of postsynaptic neurons in the ISR well may allow the filtering of irrelevant

information, so that neurons can more selectively process information arriving through a dif-

ferent input channel. Thus, a better understanding of network ISR may be useful for under-

standing the complicated and interesting emergent dynamical behaviors that arise in real

functioning neuronal systems.

In this work, we restricted consideration to networks with only one type of connectivity at a

time. A natural extension would be to investigate network ISR in more realistic networks that
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feature several types of connectivity within the same population. For example, it is well-known

that many real biological networks have mechanisms that maintain a balance of both excit-

atory and inhibitory synaptic activity, such as in the cortex of mammals [51, 52]. And of

course, real networks of neurons coupled with both electrical and chemical synapses have also

been extensively studied [53, 54]. This is important, as the dynamics of these types of popula-

tions have been shown to exhibit different characteristics in terms of synchronization and

noise-driven behavior [55–58]. Furthermore, recent findings indicate that autaptic self-inner-

vation in individual neurons, in addition to their presynaptic contacts from the network, play

important functional roles in modulating population dynamics [59–61]. Thus, much work

remains to be done to achieve a full understanding of how network structure shapes ISR

behavior.
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