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Abstract

Levodopa is the most effective therapy for the motor deficits of Parkinson's disease (PD), but 

long term treatment leads to the development of L-DOPA-induced dyskinesia (LID). Our previous 

studies indicate enhanced excitability of striatal cholinergic interneurons (ChIs) in mice expressing 

LID and reduction of LID when ChIs are selectively ablated. Recent gene expression analysis 

indicates that stimulatory H2 histamine receptors are prefentially expressed on ChIs at high levels 

in the striatum, and we tested whether a change in H2 receptor function might contribute to the 

elevated excitability in LID. Using two different mouse models of PD (6-hydroxydopamine lesion 

and Pitx3ak/ak mutation), we chronically treated the animals with either vehicle or L-DOPA to 

induce dyskinesia. Electrophysiological recordings indicate that histamine H2 receptor-mediated 

excitation of striatal ChIs is enhanced in mice expressing LID. Additionally, H2 receptor blockade 

by systemic administration of famotidine decreases behavioral LID expression in dyskinetic 

animals. These findings suggest that ChIs undergo a pathological change in LID with respect 

to histaminergic neurotransmission. The hypercholinergic striatum associated with LID may 

be dampened by inhibition of H2 histaminergic neurotransmission. This study also provides a 

proof of principle of utilizing selective gene expression data for cell-type-specific modulation of 

neuronal activity.
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Introduction

The majority of motor symptoms in Parkinson's disease (PD), including bradykinesia, 

rigidity, and tremor are most effectively remedied by 3,4-dihydroxy-L-phenylalanine (L-

DOPA), the biochemical precursor to dopamine. An unfortunate consequence of long term 

L-DOPA treatment is that within 4-6 years, more than half of patients develop L-DOPA-

induced dyskinesia (LID), which is characterized by potentially debilitating uncontrolled, 

hyperkinetic movements (Hauser et al., 2007; Jenner, 2008). At present, a non-competitive 

antagonist of N-methyl-d-aspartate (NMDA) glutamate receptors, amantadine, which also 

has anticholinergic effect, is the only drug shown to alleviate LID clinically (Fernandez, 

2012). However, pharmacotherapy with amantadine has limited efficacy and potential 

adverse side effects (Thomas et al., 2004; Wolf et al., 2010). Therefore, new approaches 

to LID therapy are needed to alleviate LID symptoms without interfering with the anti-

parkinsonian effect of L-DOPA.

Unilateral 6-OHDA lesioned rodents are the most widely used animal models for PD and 

LID (Lundblad et al., 2004; Lundblad et al., 2005; Pavon et al., 2006; Santini et al., 2009). 

While important aspects of these conditions are present in these animals, this approach 

requires intra-cranial infusion of the neurotoxin 6-OHDA, leading to variable degrees of 

striatal DA denervation. These animals require extensive post-operative care and the dose 

of L-DOPA used to induce behavioral responses varies widely (1 mg/kg up to 25 mg/kg), 

depending on the severity of striatal DA denervation. In contract, Pitx3ak/ak mice display the 

selective loss of nigral dopamine neurons from birth due to a naturally occurring mutation 

in the Pitx3 gene (Hwang, et al., 2003; Nunes et al., 2003). This is similar to mild PD 

with early onset of the disease. These animals display bilateral striatal DA denervation 

and L-DOPA treatment affects behavior on both sides of the body, while the unilateral 6-

OHDA lesion affects only the contralateral side. Thus, the bilateral vs. unilateral response to 

L-DOPA results in the significant phenotypic difference in LID when treated with repetitive 

L-DOPA. In Pitx3ak/ak , LID engages both sides of the body, inducing unique abnormal 

involuntary limb movements with the body in a vertical position, while in 6-OHDA lesioned 

rodents, only one side of the body displays LID (Ding et al, 2007; (Solis et al., 2014). The 

LID phenotype in Pitx3ak/ak is similar to that in adult wild type mice treated with MPTP and 

a high dose of L-DOPA in both biochemical and behavioral level (Nicholas, 2007) as well 

as other genetic models of bilateral dopamine depletion (Chartoff et al., 2001; Kim et al., 

2000). While these animal models have advantages and limitations, we have utilized both to 

optimally assess the potential relevance of our observations to human PD patients.

Abnormal striatal cholinergic tone contributes to LID (Ding et al., 2011). In the dorsal 

striatum, acetylcholine is synthesized and released by a class of interneurons that are 

believed to be analogs of the ‘tonically active neurons’ (TANs) described in primates, 
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which are involved in associative learning (Aosaki et al., 1995, 1994; Kimura et al., 

1984). In the mouse, these cholinergic interneurons (ChIs) comprise between 1-2% of 

all striatal cells, but through their extensive arborization, they affect the activity of both 

dopaminergic nerve terminals and the medium spiny neurons that encode striatal output 

(Bolam et al., 1984; Calabresi et al., 2000; Threlfell et al., 2012; Wilson et al., 1990). 

Dysfunction in striatal cholinergic tone has been observed in movement disorders including 

dystonia and Huntington's disease (Farrar et al., 2011; Sciamanna et al., 2012), and our 

previous research implicates a role for a change in ChI physiology in LID (Ding et al., 

2011; Won et al., 2014). In extracellular recordings of ChI firing rate, enhanced baseline 

excitability and hypersensitivity to dopamine are both associated with LID in mouse models 

of PD. Behavioral expression of LID is also associated with an increase in phosphorylated 

extracellular signal-regulated kinase levels in ChIs. Both the altered ChI physiology and 

behavioral expression of LID are dependent on the mitogen-activated protein kinase 

signaling transduction pathway (Ding et al., 2011). Furthermore, ablation of striatal ChIs 

reduces LID (Won et al., 2014). These data indicate that modulation of striatal cholinergic 

tone may be a potential target for LID therapy.

Inhibition of muscarinic receptors with the M1-selective antagonist, dicyclomine (Giachetti, 

et al., 1986) can reduce the severity of LID (Ding et al., 2011). As a therapy, blocking 

M1 receptors is prone to side effects as these receptors are widely expressed in the 

brain and affect a number of networks and physiological processes (Smythies, 2005). The 

histaminergic system may be an alternative target in LID therapy, as changes in histamine 

signaling have been implicated in the pathophysiology of PD and LID. In postmortem 

brain samples from patients with PD or rodent PD models, extracellular histamine levels 

and the density of histaminergic fibers are increased in several brain regions, including 

the basal ganglia and substantia nigra pars compacta (Anichtchik et al., 2000; Nowak et 

al., 2009; Rinne et al., 2002). The highly selective H2 receptor antagonist famotidine, 

when co-administered with L-DOPA in MPTP-lesioned macaque monkeys, can reduce the 

severity of peak-dose L-DOPA-induced chorea and can prolong the anti-parkinsonian action 

of L-DOPA (Johnston et al., 2010). However, the mechanism for this effect and potential 

therapeutic limits are unknown, as H3 agonists that decrease choreic LID can also increase 

dystonic forms of LID (Gomez-Ramirez et al., 2006).

In light of our previous studies implicating striatal ChI pathology in LID, and considering 

reports of changes in histamine signaling associated with PD and LID, we data-mined the 

gene expression profile of striatal ChIs from the results of a study using translating ribosome 

affinity purification in BAC transgenic mice (Doyle et al., 2008) and found a relatively high 

and selective expression of H2 receptors. This result provided a strong rationale for targeting 

H2 receptors as a means to modulate ChI activity and reduce LID in patients with PD. 

To test this model, we used the selective H2 receptor antagonist, famotidine, to evaluate 

the contribution of these receptors to ChI excitability, and to examine the effects of H2 

antagonism on behavioral measures of LID in two mouse models of PD.
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Materials and Methods

Animals

All procedures were approved by the Institutional Animal Care and Use Committee of the 

University of Chicago. Animals were housed in a pathogen-free environment on a 12-hour 

light / dark cycle with unlimited access to food and tap water.

Two animal models of PD were used for these experiments. One was C57BL/6 mice 

unilaterally lesioned with 6-hydroxydopamine (6-OHDA), as described previously (Won et 

al., 2014). And the second was homozygous Pitx3ak/ak mice that lack nigrostriatal dopamine 

projections from birth, which we and others have also used previously (Ding et al., 2011, 

2007; (Solis et al., 2014). The main differences between these models are the timing of the 

dopamine loss (from birth vs after lesion) and the pattern of denervation, with the Pitx3ak/ak 

mice showing bilateral DA denervation predominantly in the dorsal striatum, while 6-OHDA 

lesioned mice generally show unilateral striatal DA denervation across the entire striatum. 

LID induction required chronic treatment with L-DOPA by daily injections, as outlined 

below. The L-DOPA dosing for each model was determined empirically as that necessary to 

induce dyskinetic behavior. Differences in dosing between these animal models were due to 

differential denervation patterns and possible developmental adaptations.

Electrophysiology

Parasagittal brain slices (250 μm) were taken from adult mice pretreated with saline or 

L-DOPA as outlined in the behavioral testing sections below. Mice were anesthetized with 

isoflurane (Baxter) and then rapidly decapitated. Brains were removed and transferred into 

ice-cold low-sodium, sucrose-artificial cerebrospinal fluid (ACSF) containing (mM): 200 

Sucrose, 25 NaHCO3, 20 glucose, 10 ascorbic acid, 2.5 KCl, 2.5 CaCl2 • 2H2O, 1 MgCl2 

• 6H2O, 1 NaH2PO4, saturated with 95% CO2 / 5% O2, pH 7.3. Separate parasaggital 

slices containing dorsolateral striatum were taken from each hemisphere using a vibrating 

microtome (VT1000S, Leica Biosystems) and transferred into a 32° C circulating bath with 

ACSF (125 NaCl, 25 NaHCO3, 20 glucose, 2.5 KCl, 2.5 CaCl2 • 2H2O, 1 MgCl2 • 6H2O, 

1 NaH2PO4,1 ascorbic acid, bubbled continuously with 95% CO2 / 5% O2, pH 7.3). During 

recording, slices were superfused with ACSF without ascorbate at a rate of 1.8 - 4 mL/min 

at room temperature. All recordings were performed between 40 min and 6 hrs following 

slicing.

Slices were transferred to a recording chamber with a volume of ∼1 mL and then visualized 

using an upright microscope (Axioskop, Carl Zeiss) with a water immersion 40× objective 

(Carl Zeiss) and a monochrome CCD camera (Hamamatsu). Recordings were performed 

using borosilicate glass pipettes (Warner Instruments) pulled on a P-97 Flaming/Brown 

micropipette puller (Sutter Instrument Company) with pipette resistance of 2 – 5 MΩ, 

and filled with filtered ACSF. Cell-attached current clamp recordings were performed on 

ChIs that were identified based on large cell diameter (>15 μm) and spontaneous action 

potential firing (0.1 – 7 Hz). Action potentials were measured using a Multiclamp 700A 

amplifier with a 10 kHz low-pass Bessel filter and a DigiData 1332A 16-bit data acquisition 

software sampling at 5 kHz and recorded using Clampex 9.2 software (Axon Instruments). 
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Action potential data were analyzed off-line using MiniAnalysis (Synaptosoft). Spike 

amplitude thresholds were set to 20× baseline RMS noise levels, as determined by the 

analysis software. Integrated spike area and rise-time criteria were used eliminate random 

fluctuations that were independent of cell firing. Frequency of firing rate was determined in 

10 second bins. Data were expressed as mean ± SEM.

Histamine (1 μM; Sigma-Aldrich) was bath applied for 5 min. In antagonist experiments, 

famotidine (1 μM; Envoy Therapeutics) dissolved in either DMSO or acidified deionized 

water was pre-applied for 5 min before histamine and antagonist co-application. The effect 

of histamine on firing rate was measured as the peak firing rate in a 1 min time window 

during time 1.5 – 8.5 min following onset of histamine bath application. Flow rate of drug 

administration was matched to the ACSF flow rate (1.8 - 4 mL/min).

Behavior test on unilateral 6-OHDA lesioned mice

Wild type male, 7 month old C57BL/6 mice were unilaterally lesioned with 6-

hydroxydopamine (6-OHDA) as described previously (Won et al., 2014). Briefly, mice were 

anesthetized and put into a stereotaxic device. Desipramine (25 mg/kg i.p., Sigma-Aldrich) 

was injected to protect norepinephrine neurons. Thirty min later, 2 μL of 2 mg/ml 6-OHDA 

(dissolved in 0.01% ascorbate in 0.9% saline, Sigma-Aldrich) was injected into left medial 

forebrain bundle (coordinates: anteroposterior, −1.3 mm; lateral, 1.3 mm; dorsoventral, −4.9 

to −5.2 mm from the skull surface) via a 28-gauge stainless-steel cannula. Animals were 

allowed to recover for 4 weeks in their home cages before L-DOPA treatment.

Mice were then randomly divided into two groups, designated to receive either chronic L-

DOPA or chronic vehicle treatment. The chronic L-DOPA group (n = 32) received L-DOPA 

methyl ester/benserazide injections (2/12.5 mg/kg dissolved in 0.9% saline, i.p.) either once 

a day or divided into two doses a day through the course the experiment. The chronic 

vehicle group (n = 15) received benserazide (12.5 mg/kg) only. Daily L-DOPA or vehicle 

injections continued for a total of 5 – 9 months. To confirm the induction of dyskinesia, 

chronic L-DOPA treated mice underwent behavioral testing following a test dose of 2 mg/kg 

L-DOPA on days 1, 8, 22 and 36 after the initial L-DOPA treatment. As in our previous 

studies, dyskinetic motor behavior was stronger at later time points (Ding et al., 2007). On 

behavioral testing days, animals received only the test dose of L-DOPA, but no maintenance 

injection. After day 36, the test dose was increased to 3 mg/kg L-DOPA and mouse behavior 

was videotaped for a span of 3 min every 20 min during a 2 hour period. L-DOPA-induced 

limb and axial dyskinesia was evaluated for 2 min at each 20 min interval by an observer 

blinded to experimental conditions using a previously described rating scale (Ding et al., 

2011). Limb dyskinesia consists of abnormal, purposeless hyperkinetic movement of the 

contralateral forelimb while axial dyskinesia is characterized by a twisting of the neck and 

upper torso towards the side contralateral to the lesion. For experiments evaluating the 

effects of famotidine or dicyclomine on dyskinesia, the chronic L-DOPA treated group was 

divided into three groups which were balanced with respect to severity of dyskinesia. Group 

A received famotidine (Envoy Therapeutics, dissolved in sterile water acidified with 1 mM 

HCl and then adjusted to pH 6.5 with 1 mM NaOH, i.p.) at doses of 1, 3, and 10 mg/kg 

(increasing dosage every 2 days). Group B received dicyclomine (Sigma-Aldrich, dissolved 
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in 0.9% saline, i.p.) at 45 mg/kg. Famotidine was administered 45 min, while dicyclomine 

was administered 30 min prior to L-DOPA test dose (See Figs 5A, 6A). Group C was given 

saline to serve as a vehicle control for famotidine or dicyclomine.

The stepping test was videotaped and scored to assess forelimb akinesia in chronic L-DOPA 

and chronic vehicle treated mice as described previously (Ding et al., 2011). The front paws 

of the mice were put on a treadmill as the belt moved forward for one full cycle while 

the torso and hindpaws were held up by the experimenter. Each mouse was tested in five 

nonconsecutive cycles. Stepping was scored by an observer blinded to treatment conditions. 

The number of left and right paw steps were counted for each of the 5 cycles and then 

averaged. In chronic L-DOPA treated mice, the stepping test was performed before and 1 hr 

following injection of 3 mg/kg L-DOPA. Famotidine (1, 3, or 10 mg/kg) or saline (vehicle) 

was administered 45 min prior to the test dose of 3 mg/kg L-DOPA.

To test the in vivo brain concentration and pharmacokinetic time course of famotidine 

in mice, we used MetaQuant microdialysis to measure striatal levels following systemic 

administration. We found a significant increase in the levels of famotidine in the striatum 

of non-lesioned mice after administration of 250 mg/kg i.p. The concentration of famotidine 

in the dialysate from the striatum peaked at 225 nM at 60-90 min. Given that the Kd 

of famotidine at the H2 receptor is 17 nM (Hill, 1990), we used a range of doses 

between 1 and 50 mg/kg to achieve maximal free striatal concentrations in the low nM 

range, where famotidine is highly selective for H2. Injections were timed such that the 

peak famotidine concentrations corresponded with the peak L-DOPA-induced dyskinetic 

behavior. As illustrated in Figs 5A and 6A, the L-DOPA injections occurred 45 min after 

famotidine administration. The doses used in the experiments did not produce sedation.

Behavior Test on Homozygous Pitx3ak/ak Mice

Homozygous Pitx3ak/ak mice were obtained as described before (Ding et al., 2011, 2007). 

Homozygous Pitx3ak/ak mice have a mutation for retinal degradation (Pde6brd1), causing 

severely abnormal lens development resulting in blindness (van den Munckhof et al., 2003; 

Varnum and Stevens, 1968). They were identified by their small, closed eyes, even late in 

development.

Pitx3ak/ak mice (2-4 months of age) were randomly divided into two groups and matched 

with respect to age and gender. Group A received daily injections of L-DOPA/benserazide 

(25/12.5 mg/kg dissolved in 0.9% saline, i.p.) b.i.d. (n = 21). Group B received vehicle 

(benserazide 12.5 mg/kg, i.p.) only (n = 20). Exposure to L-DOPA lasted 5 – 9 months. To 

assess dyskinetic behavior, Pitx3 ak/ak mice were placed in a clear upright Plexiglas cylinder. 

The number of rearing events and duration of abnormal paw movements were analyzed 

within a 2 min period 15 min following L-DOPA test dose (25 mg/kg). Abnormal paw 

movements that were scored consisted of front paw dyskinesia, three paw dyskinesia, and 

total dyskinesia, and each was analyzed separately. Behavioral testing was performed and 

videotaped on days 1, 8, 22, 36, and 40 to confirm the onset of paw dyskinesia as described 

before (Ding et al., 2011, 2007).
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Group A Pitx3ak/ak mice were divided into three groups. The first group received saline 

(vehicle) 30 or 45 min prior to L-DOPA (25 mg/kg) test dose (n = 7). The second group 

received famotidine (2, 10, or 50 mg/kg, increasing in dosage every 2 days, i.p.) 45 min prior 

to L-DOPA (25 mg/kg) test dose. The third group received dicyclomine (15 or 45 mg/kg, 

increasing in dosage every 2 days, i.p.) 30 min prior to L-DOPA (25 mg/kg) test dose.

Data Analysis

Data for behavioral and electrophysiological assessments are expressed as mean ± SEM. All 

firing rate data were normalized to the average firing rate across the six 10s bins prior to any 

exposure to drug. Electrophysiological analyses were performed using MiniAnalysis 6.0.3 

(Synaptosoft). Statistical analyses were performed using SigmaStat, v.2.03 and graphed 

using SigmaPlot v.12.0. An unpaired t-test was performed to determine statistical differences 

between percent inhibition in electrophysiological measures, while one or two way ANOVA 

was used for behavioral measures.

Results

Striatal cholinergic interneurons express histamine receptors

Drawing upon our previous results showing enhanced excitability of striatal ChIs during 

LID along with the therapeutic effects of famotidine in relieving LID symptoms, we mined 

the database from a study using translating ribosome affinity purification (TRAP) (Doyle et 

al., 2008), where the translated mRNA of genetically defined populations of neuronal and 

glial cells, including striatal ChIs, were characterized by microarray analysis. We compared 

the hybridization signals across the 24 different cell types from the probes that detect 

mRNAs encoding excitatory post-synaptic H1 and H2 histamine receptors. Both H1 and H2 

receptor mRNAs were recovered with ribosomes purified from striatal ChIs (Doyle et al., 

2008), indicating that these receptors are expressed on ChIs. These data are in agreement 

with previous observation that histamine-induced depolarization of ChIs could be blocked 

largely by H1 antagonists, but only minimally by an H2-selective antagonist (Bell et al., 

2000). The mRNA expression data support the observation that H1 is highly expressed 

in ChIs. In contrast, the lower-abundance H2 mRNA shows the highest expression levels 

in ChIs compared to other cell types, suggesting a more selective target compared to the 

widely expressed H1 receptor (Fig 1). Therefore, H2 antagonists may selectively reduce the 

sensitivity of ChIs to histamine while minimizing undesirable effects on other histamine 

dependent functions, such as sleep regulation or feeding behavior (Nuutinen and Panula, 

2010).

Histamine increases excitability of dorsolateral striatal cholinergic interneurons

We assessed the effects of histamine on the excitability of rostral dorsolateral striatal ChIs in 

parasagittal slices taken from two different mouse models of PD: unilateral 6-OHDA lesion 

and Pitx3ak/ak mutation. All mice were subjected to daily injections of either L-DOPA or 

vehicle for 5-9 months. Cell-attached current clamp recordings were performed on ChIs that 

were identified based on cell morphology (cell diameter > 15 μm) and electrophysiological 

characteristics (spontaneous action potential firing rate between 0.1 and 7 Hz)(Kawaguchi, 

1993). All ChIs were located in the rostral half of the dorsolateral striatum (Fig 2A). 
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Our control recordings were conducted in the unlesioned hemisphere of 6-OHDA lesioned 

animals following chronic vehicle treatment. Bath application of histamine (1 μM) increased 

spontaneous action potential firing in these neurons (411% ± 142% of baseline, n = 6). This 

increase in excitation was reversed upon washout with ACSF (Fig. 2B, C). These data are 

consistent with previous reports demonstrating that bath application of histamine induces 

excitatory currents in whole cell voltage clamp recordings, and depolarization accompanied 

by action potential firing in current clamp recordings from previously silent rat striatal ChIs 

(Bell et al., 2000).

Chronic L-DOPA treatment enhances histamine H2 effect on cholinergic interneuron 
excitability in 6-OHDA lesioned mice

Following unilateral 6-OHDA lesion, chronic L-DOPA treatment induces LID-like 

behaviors, and only animals that demonstrated LID behaviors were used for 

electrophysiology experiments (Ding et al., 2007). In the chronic vehicle treated group, only 

mice exhibiting a significant unilateral stepping deficit (indicative of dopamine deficiency) 

(Chang et al., 1999) were used for electrophysiology. We found a similar effect of histamine 

(1 μM) on the excitability of ChIs in brain slices from the lesioned hemisphere of either 

chronic vehicle treated mice (633% ± 167% of baseline, n = 6) or dyskinetic chronic 

L-DOPA treated animals (415% ± 147% of baseline, n = 8; Fig 3A. Data were analyzed 

using Student's t-test. t(12) = 0.95, p > 0.05).

To evaluate the contribution of H2 receptors to the excitatory effects of histamine, slices 

were pretreated with famotidine (1 μM) for 5 min before histamine (1 μM) and famotidine 

co-application. Famotidine alone did not produce a significant difference in the firing rate 

compared to baseline. In slices from animals that were chronically treated with L-DOPA 

the co-application of famotidine and histamine resulted in less histamine mediated excitation 

than histamine alone, but not in slices from the chronic vehicle treated group (Fig 3B; t(24) 

= 2.24, p < 0.05). In vehicle treated animals, famotidine showed a relatively weak inhibitory 

effect (75.3% ± 10.7% of histamine response), while ChIs in slices from dyskinetic animals 

displayed significant famotidine inhibition (44.3% ± 7.1% of histamine response; Fig 3C; 

t(23) = 2.16, p < 0.05). Together, these data indicate that H2 receptors contribute more 

strongly to ChI neuron excitation in mice expressing LID compared to chronic vehicle 

treated animals.

The histamine mediated excitation observed in the presence of famotidine can be attributed 

to activation of H1 receptors. This is supported by recordings where co-application 

of famotidine with the H1R antagonist triprolidine completely inhibited histamine 

induced excitation (Fig 3D). The famotidine alone effects suggest that H1 receptors are 

predominantly responsible for the excitatory effects of histamine on ChIs from vehicle 

treated animals (Fig 1). It is notable that H1 receptors are also activated at lower histamine 

concentrations (Munakata and Akaike, 1994). In tissue slices from chronic L-DOPA-treated 

animals, both H1 and H2 receptors contribute to histamine-induced excitation, but the 

relative contribution of H2 receptors to this phenomenon is significantly enhanced relative 

to ChIs from vehicle treated animals. Co-application of famotidine with the H1R antagonist 

triprolidine significantly blocks histamine induced excitation (145% ± 40% of baseline; Fig 
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3D, n = 3). As a result, we conclude that histamine increases cell firing by activation of both 

H1 and H2 receptors.

To assess the possible contribution of glutamatergic and/or GABA-ergic transmission to 

histamine excitation of ChIs, recordings were conducted in the presence of DNQX (10 μM) 

and APV (50 μM) to block AMPA and NMDA glutamate receptors, respectively, as well 

as bicuculline (20 μM) to block GABAA receptors. Under these conditions, we observed 

an enhanced H2 mediated component of histamine excitation in the dyskinetic chronic 

L-DOPA treated animals (Fig 3E; t(10) = 1.328, p < 0.05), indicating that the LID-related 

H2 excitation of these neurons is mediated by direct activation of ChIs rather than by 

indirect presynaptic effects. The magnitude of the histamine excitation is lower than that 

seen without blockers of glutamate and GABA transmission. This could be due to loss of 

tonic glutamate excitation reported previously (Feng et al., 2014), or a decrease in the impact 

of excitatory inputs from other ChIs, as the glutamate co-released at those inputs would not 

contribute to increased firing rates (Gras et al., 2008; Nelson et al., 2014).

Chronic L-DOPA treatment enhances histamine H2 effect on cholinergic interneuron 
excitability in Pitx3ak/ak mice

To further examine the role of H2 receptors in LID, we repeated the electrophysiological 

tests using Pitx3ak/ak (aphakia) mice. As with the 6-OHDA lesioned mice, the Pitx3ak/ak 

mice were chronically treated with vehicle or L-DOPA (see Methods). In dorsolateral ChIs 

from both striatal hemispheres of Pitx3ak/ak mice, histamine alone induced an increase in 

tonic firing in both chronic vehicle treated (376% ± 101% of baseline, n = 8) and dyskinetic 

chronic L-DOPA treated animals (356% ± 108% of baseline, n = 9; Fig 4A; t(15) = -0.16, p 

> 0.05).

Famotidine application alone did not significantly alter the firing rate compared to baseline. 

As seen in 6-OHDA lesioned animals, co-application of famotidine with histamine revealed 

a differential degree of histamine mediated excitation depending on treatment group (Fig 

4B; t(16) = 2.3, p < 0.05). The inhibition of the histamine response by famotidine was 

stronger in tissue from Pitx3ak/ak mice expressing LID (54.3% ± 9.8%) compared to slices 

from chronic vehicle treated animals (111.5% ± 18.4%; Fig 4C; t(16) = 2.54, p < 0.05). 

Together, the data from both PD model animals indicate that the H2 receptor contribution 

to histamine mediated excitation of ChIs is stronger in chronic L-DOPA-treated relative to 

vehicle-treated mice.

Famotidine or dicyclomine decreases behavioral expression of LID in 6-OHDA lesioned 
mice

We then tested whether famotidine could reduce the LID behaviors associated with chronic 

L-DOPA treatment (see Methods). Mice received an i.p. injection of famotidine 45 min prior 

to L-DOPA test dose. The peak in striatal famotidine level occurs 60-90 min after injection. 

The injection time course was designed such that the peak famotidine level correlates 

with the peak L-DOPA-induced dyskinetic behavior (Fig 5A). Famotidine injections at 

the highest dose tested (10 mg/kg) did not alter the L-DOPA-induced improvement of 

locomotion, or relief of akinesia in the 6-OHDA lesioned mice, as measured in a forelimb 
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stepping test (Fig 5B; n = 10 in each group. Data were analyzed using a one-way ANOVA 

on ranks. F(2, 38) = 71.012, p < 0.05).

A test dose dose of 3 mg/kg L-DOPA was given to all mice prior to LID testing. Assessment 

of ‘total dyskinesia’ included measurement of both axial dyskinesia (twisting of the neck 

and upper body toward the side contralateral to the lesion) and limb dyskinesia (purposeless 

hyperkinetic movement of the contralateral forelimb). The effects of famotidine on LID 

were compared with that of dicyclomine, a muscarinic antagonist that is known to attenuate 

LID associated behaviors (Ding et al., 2011).

Mice receiving famotidine exhibited significantly less severe L-DOPA-induced total 

dyskinesia. The higher doses (3 and 10 mg/kg) showed a decrease at 20, 40, 60 and 80 

min following L-DOPA injection, while 1 mg/kg showed a decrease only at the 60 min time 

point (Fig 5C; Saline: n = 32, famotidine 1 mg/kg: n = 9, 3 mg/kg: n = 9, 10 mg/kg: n 

= 16; dicyclomine 45 mg/kg: n = 16. Data were analyzed using a two-way ANOVA. F(3, 

24) = 5.428, p < 0.05). These reductions were similar to those seen following dicyclomine 

treatment (45 mg/kg) (Fig 5C). Summing dyskinesia scores over the entire time frame of 

LID testing from 0 to 120 min revealed that the higher doses of famotidine (3 and 10 mg/kg) 

or dicyclomine (45 mg/kg) significantly reduced total dyskinetic behavior (Fig 5F).

A significant decrease in axial dyskinesia was observed following pretreatment. The high 

dose famotidine (10 mg/kg) showed a decrease at 40, 60, and 80 min, while 1 and 3 mg/kg 

showed a decrease at 60 min and 80 min (Fig 5D; F(3, 24) = 4.755, p < 0.05). Sum of 

axial dyskinesia over the entire time course was decreased following pretreatment with 

famotidine (3 and 10 mg/kg, Fig 5F). Dicyclomine (45 mg/kg) significantly decreased the 

L-DOPA-induced axial dyskinesia at 20, 40, and 60 min, as well as the sum of axial scores 

across the time course of LID testing (Fig 5D, F).

Limb dyskinesia is decreased in mice receiving famotidine (3 mg/kg, 10 mg/kg) at 20, 

40, and 60 min (Fig 5E; F(3, 24) = 6.373, p < 0.05) compared to mice receiving saline. 

Sum of the limb dyskinesia across the time course was also decreased following famotidine 

treatment (Fig 5F). The antidyskinetic effect of high dose famotidine (10 mg/kg) was 

comparable to the dicyclomine (45 mg/kg) mediated decrease in dyskinesia.

Together these data show that famotidine treatment reduced peak LID expression and its 

duration, with the strongest effects seen at the higher doses. The greatest fractional effects of 

the highest famotidine doses were seen in limb dyskinesia, with greater than 50% reduction 

in the sum L-DOPA effect. Axial dyskinesia behaviors were more pronounced, and were less 

sensitive to the famotidine treatment - however, the famotidine induced improvement of LID 

was similar to that seen with dicyclomine treatment.

Famotidine or dicyclomine decreases behavioral expression of LID in Pitx3ak/ak mice

Behavioral testing was also carried out on chronic L-DOPA treated Pitx3ak/ak mice that 

expressed dyskinesia. Animals were pretreated with famotidine, dicyclomine or saline prior 

to L-DOPA test dose (25 mg/kg) and behavioral testing (Fig 6A; n = 7 in each group). 

Two types of abnormal paw movements were analyzed: three-paw dyskinesia and front paw 

Lim et al. Page 10

Neurobiol Dis. Author manuscript; available in PMC 2022 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dyskinesia. Since three-paw dyskinesia is observed after higher doses of L-DOPA and with 

longer exposure to L-DOPA, we believe it represents a more severe form of dyskinesia 

(Ding et al., 2007). Famotidine (50 mg/kg) significantly reduced three-paw dyskinesia, an 

effect mimicked by dicyclomine (Fig 6B; Data were analyzed using a one-way ANOVA. 

Famotidine, F(3, 12) = 3.478, p < 0.05. Dicyclomine, F(3, 12) = 17.633, p < 0.05). As the 

three-paw form of dyskinesia diminished, the animals displayed a trend towards an increase 

in front paw dyskinesia, which was also seen with dicyclomine (Fig. 6C; Famotidine, F(3, 

12) = 2.061. Dicyclomine, F(3, 12) = 10.797. p < 0.05). Taken together, the pattern of 

dyskinesia in chronic L-DOPA treated Pitx3ak/ak mice shifts from three-paw to front paw in 

response to treatment with famotidine or dicyclomine, indicating that both drugs decrease 

the severity of dyskinesia.

Discussion

Our results support the idea that H2 antagonists can selectively modulate the hyperactive 

ChI and may decrease the expression of dyskinetic behavior following chronic L-DOPA 

treatment. These studies were motivated by results of mining BAC-TRAP gene expression 

data, which suggested that ChIs express histamine H2 receptor mRNA at higher levels 

than other cell types. Using two PD mouse models, 6-OHDA lesion and Pitx3ak/ak, we 

found that histamine induced a strong increase in firing of ChIs in the dorsolateral striatum. 

After chronic L-DOPA treatment to induce LID, we found that H2 receptors contributed 

much more profoundly to histamine-induced excitation relative to vehicle-treated controls. 

Consistent with these data, we found that systemic administration of the H2 antagonist 

famotidine decreased the behavioral expression of dyskinesia following a test dose dose of 

L-DOPA.

These data suggest that changes in H2 receptor signaling in dorsolateral striatal ChIs 

contribute to LID. We previously demonstrated that these neurons display a stronger 

excitatory response to dopamine in LID (Ding et al., 2011). Here, we extend those findings 

to show that H2 histamine receptor effects on ChIs are enhanced in animals that display 

LID after chronic L-DOPA treatment. We utilized two different complementary models of 

mouse dyskinesia to demonstrate the effects of H2 antagonist. The H2 antagonist famotidine 

decreased LID dramatically in a 6-OHDA unilateral lesion model of PD. In Pitx3ak/ak mice, 

a high dose of famotidine was found to shift the behavior from three-paw dyskinesia to the 

less severe front paw dyskinesia. Since front paw dyskinesia develops early in L-DOPA 

treatment and at lower doses compared to three-paw dyskinesia, these data show that 

famotidine decreases the severity of LID in Pitx3ak/ak mice. Additionally, the Pitx3ak/ak 

mouse model exhibits less striatal dopamine depletion compared to the 6-OHDA lesion 

(Conti et al., 2014; Hwang et al., 2003). Pitx3ak/ak mice require a higher dose of L-DOPA 

to induce behavioral response (Espadas et al., 2012; Hwang et al., 2005), and it follows that 

the L-DOPA induced changes in H2 responses are not the same as those induced in lesioned 

animals. As a result, a higher dose of famotidine was necessary to decrease LID in Pitx3ak/ak 

mice. The data from both models support the idea that H2 antagonists may be a therapeutic 

adjunct in alleviating the symptoms of LID.
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Acetylcholine activates both nicotinic and muscarinic receptors, and blocking either of these 

receptor classes reduces LID. Dyskinetic 6-OHDA lesioned rats chronically treated with 

the non-selective neuronal nicotinic receptor antagonist mecamylamine display a dramatic 

reduction in abnormal involuntary movements (Bordia et al., 2010). Chronic nicotine 

administration also decreases abnormal involuntary movements, which is likely due to 

receptor desensitization (Bordia et al., 2008). It is unclear where the nicotinic receptors 

that contribute to dyskinesia are located within the motor pathway. Additionally, the anti-

muscarinic compound, dicyclomine, alleviates severity of dyskinesia in chronic L-DOPA 

treated Pitx3ak/ak mice and in 6-OHDA lesioned mice (Ding et al., 2011). In a small 

cohort of humans, co-administration of L-DOPA with the anticholinergic etybenzatropine 

decreased the severity of end-of-dose dyskinesia, and also increased the duration of action 

of L-DOPA (Pourcher et al., 1989) although older studies have noted worsening of LID by 

anticholinergics (Birket-Smith, 1974). Collectively, these results lend support to the notion 

that a hypercholinergic striatum may contribute to the expression of LID.

Histaminergic neurons in the tuberomamillary nucleus (TMN) are tonically active cells 

that send projections to the striatum (Haas et al., 2008; Köhler et al., 1985). Dopamine 

directly excites TMN neurons via both the dopamine D1 and D2 receptors (Yanovsky et 

al., 2011), which likely increases histamine release in the striatum. Histamine then activates 

excitatory H1 and H2 receptors on ChIs to increase cell excitability, and consequently, 

acetylcholine release in the striatum. H1 receptors couple to the G-protein Gq/11 to activate 

PLC, whereas H2 receptors stimulate cAMP production by Gs activation of adenylyl cyclase 

(Haas et al., 2008). Ultimately, activation of either H1 or H2 receptors increase striatal ChI 

excitability by closure of K+ channels (Munakata and Akaike, 1994). This explains how 

L-DOPA, following enzymatic conversion into dopamine, increases striatal cholinergic tone 

via histaminergic signaling.

Compared to the H2 receptor, the H1 receptor is expressed at much higher levels (Fig 1), and 

also exhibits a higher affinity for histamine. Therefore, we expect that in the naïve animal, 

histamine induced excitation of ChIs will occur predominantly via activation of H1 receptors 

with minimal contribution from H2. In line with this prediction, Bell and coworkers observe 

only slight depolarization in naive rats following H2 activation, but robust action potential 

firing with H1 activation (Bell et al., 2000). However, dyskinesia from chronic L-DOPA 

treatment may induce a shift in the signaling pathway away from H1 and towards H2. 

This accounts for the robust H1-mediated excitation in vehicle-treated mice, but a strong 

contribution of H2 in dyskinetic mice (Figs 3 and 4). This is a functional effect that may not 

necessarily accompany changes in H2 receptor numbers (Martinez-Mir et al., 1993).

Histamine modulates excitability of striatal medium spiny neurons, primarily through H3 

receptor-mediated suppression of presynaptic glutamate and GABA inputs (Prast et al., 

1999)(Ellender et al., 2011). In contrast, histamine excitation of striatal ChIs appears to 

be predominantly through activation of somatic H1 and H2 receptors, as shown by the 

blockade of histamine excitation with H1 and H2 inhibitors (Fig 3D). In addition, the 

presynaptic H3 receptors are generally inhibitory and suppress neurotransmitter release. In 

the slice preparation, inhibitors of either GABAA or glutamate receptors have no effect on 

the firing rate of ChIs (Bennett and Wilson, 1999). In our recordings, ChI firing rate was 
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unaffected by bath application of bicuculline (10 μM; data not shown). Thus, we conclude 

that histamine excitation of ChIs occurs through direct activation of these neurons, and that 

the LID-associated increases in the H2 response occurs specifically on these neurons.

Our study is a powerful example of the utility of data mining gene expression studies 

to identify neuron-specific expression patterns for therapeutic discovery. Our results 

suggest that H2 antagonists may provide a novel tool to modulate the hyperactivity of 

striatal cholinergic neurons. A better understanding of the contribution of cholinergic and 

histaminergic signaling to striatal physiology, particularly in the context of LID and more 

selective and potent H2 antagonists may lead to new, more effective pharmacotherapies for 

basal ganglia disorders involving hyperactive ChIs.

Conclusions

Although L-DOPA is the most effective therapy to alleviate PD, chronic treatment often 

leads to the development of debilitating dyskinesia. This dyskinesia is associated with 

excessive cholinergic signaling within the striatum. Here, we report an increase in the 

H2 receptor component of histamine mediated excitation of ChIs associated with LID. 

The behavioral expression of dyskinesia is decreased in the presence of an H2 receptor 

antagonist. These results were observed in two different mouse models of LID. Collectively, 

these findings indicate that H2 antagonists may be a useful therapeutic tool to modulate ChI 

activity, which may have implications for conditions such as LID in PD and dystonia.
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Abbreviations

6-OHDA 6-hydroxydopamine

ChI cholinergic interneuron

LID L-DOPA-induced dyskinesia
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PD Parkinson's disease

TMN tuberomamillary nucleus

TRAP translating ribosome affinity purification
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Highlights

• BAC-TRAP data indicate relatively selective expression of H2R on ChIs.

• Histamine H2R responses are elevated in ChIs in mice expressing LID.

• Histamine H2R antagonists decrease electrophisological activity of ChI and 

behavioral expression of LID.

• H2R effects were observed in two different mouse models of LID.

• We report a novel approach based on gene expression data to modulate 

specific cell type in the CNS, which is applicable for basal ganglia disorders 

such as PD and dystonia.

Lim et al. Page 18

Neurobiol Dis. Author manuscript; available in PMC 2022 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Expression of excitatory post-synaptic histamine receptors in striatal ChIs
Striatal ChIs express both histamine H1 and histamine H2 receptors. Published BAC-TRAP 

microarray data (Doyle et al., 2008) was searched to determine which histamine receptor 

mRNAs are co-immunoprecipitated with eGFP-tagged ribosomes expressed under the 

control of the choline acetyltransferase promoter exclusively in ChIs within the striatum. 

The mean fluorescent intensities of Affymetrix probesets corresponding to H1 [Hrh1 

(1438494_at)] and H2 [Hrh2 (1423639_at)] in ChIs were 359.5 and 85.0, indicating both 

mRNAs were co-purified with the ribosomes. Histamine H1 and H2 receptor mRNA levels 

were compared across multiple cell types. Histamine H1 (Hrh1) mRNA was recovered with 

tagged ribosomes in several cell types at levels the same or higher than in striatal ChIs. 

Histamine H2 (Hrh2) mRNA had the highest hybridization signal in striatal ChIs.
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Figure 2. Histamine induced excitation in control dorsolateral striatal cholinergic interneurons
(A) All cells analyzed for the following experiments were located in the dorsal, lateral, and 

rostral halves of the striatum, indicated by the striped area outlined above. Lateral half was 

defined by the coordinates 2.75 and 1.75 mm from midline. This diagram also represents the 

parasagittal slice orientation and approximate amount of brain tissue collected at the time 

of recording. (B) Representative cell-attached current clamp traces from ChIs located in the 

unlesioned hemisphere of 6-OHDA lesioned animals showing spontaneous action potential 

firing at baseline. Firing rate increases upon exposure to bath application of 1 μM histamine. 

Return to ACSF superfusion causes firing rate to return to baseline levels. Vertical scale bar: 

1 mV. Horizontal scale bar: 1 s. (C) 1 μM histamine induces a reversible 4.11 ± 1.42 fold 

increase in action potential firing rate. Histamine induced increase is represented as fold 

change difference compared to the average firing rate in the min prior to bath application. (n 

= 6. Error bars represent ± SEM).
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Figure 3. H2 antagonism is more effective at blocking the histamine induced increase in ChI 
firing in dyskinetic 6-OHDA lesioned mice
(A) 1 μM histamine increases action potential firing rate among ChIs located in the 

lesioned hemisphere of 6-OHDA lesioned mice, both chronically treated with vehicle and 

with L-DOPA. A1 shows sample traces (Scale: 1 mV, 1 s for A1 and B1). A2 shows a 

histogram of average firing rates. (Vehicle: n = 6; L-DOPA: n = 8). (B) In chronic vehicle-

treated animals, pre-application of 1μM famotidine had no effect on the histamine induced 

increase in firing rate. In dyskinetic L-DOPA treated animals however, 1μM famotidine 

inhibited the histamine induced increase in ChI firing. (Vehicle: n = 16; L-DOPA: n = 

10. Data were analyzed using Student's t-test. * p < 0.05). (C) Summary data illustrating 

that pre-application of 1 μM famotidine inhibits the histamine induced increase in action 

potential firing in chronic L-DOPA treated animals but not vehicle-treated animals. Dotted 

line indicates peak histamine induced increase in firing rate, normalized for each treatment 

group. Bars represent percent change of the histamine response while in the presence 

of famotidine (* p < 0.05 between treatment groups. Error bars represent ± SEM). (D) 

Pre-application of both H1 and H2 receptor antagonists completely occlude the excitatory 

effects of histamine. (n = 3) (E) Famotidine blocked the histamine induced excitation 

in dyskinetic mice in the presence of synaptic excitatory (DNQX, APV) and inhibitory 

(GABA) antagonists (Vehicle: n = 7; L-DOPA: n = 5. * p < 0.05 between treatment groups).

Lim et al. Page 21

Neurobiol Dis. Author manuscript; available in PMC 2022 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. H2 antagonism is more effective at blocking the histamine induced increase in ChI 
firing in dyskinetic Pitx3ak/ak mice
(A) 1 μM histamine increases action potential firing rate among ChIs located in both 

hemispheres of Pitx3ak/ak mice, both chronically treated with vehicle and with L-DOPA. 

(Vehicle: n = 8; L-DOPA: n = 9). (B) In nondyskinetic, chronic vehicle-treated animals, pre-

application of 1μM famotidine had no effect on the histamine induced increase in firing rate. 

In dyskinetic L-DOPA treated animals however, 1μM famotidine inhibited the histamine 

induced increase in ChI firing. (Vehicle: n = 10; L-DOPA: n = 8. Data were analyzed using a 

two-tailed Student's t-test. * p < 0.05). (C) Summary data illustrating that pre-application of 

1 μM famotidine inhibits the histamine induced increase in action potential firing in chronic 
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L-DOPA treated dyskinetic animals but not vehicle-treated animals. Dotted line indicates 

peak histamine induced increase in firing rate, normalized for each treatment group. Bars 

represent percent change of the histamine response while in the presence of famotidine. (* p 

< 0.05 between two treatment groups. Error bars represent ± SEM).
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Figure 5. Famotidine decreases L-DOPA-induced dyskinesia in 6-OHDA lesioned mice
(A) Timeline for the drug treatment and behavioral tests on 6-OHDA lesioned mice. 

Chronic L-DOPA treated 6-OHDA lesioned mice were pretreated with famotidine 45 

min or dicyclomine 30 min prior to L-DOPA. Control groups were injected with saline 

with the same interval as famotidine or dicyclomine prior to L-DOPA. Behavioral tests 

were performed 60 min after L-DOPA injection for stepping test, and every 20 min for 

a total of 120 min for assessment of dyskinesia. (B) Stepping test for 6-OHDA mice 

pretreated with vehicle or famotidine (10 mg/kg) 45 min prior to L-DOPA (3 mg/kg). 

L-DOPA improved unilateral akinesia regardless of pretreatment. (n = 10 animals in each 

group. Data were analyzed with a one-way ANOVA on ranks. * p < 0.05). Famotidine 

or dicyclomine decreased the L-DOPA-induced total dyskinesia (C), axial dyskinesia (D), 

and limb dyskinesia (E) in 6-OHDA lesioned mice chronically treated with L-DOPA. (F) 

Summary of the effect of famotidine or dicyclomine on L-DOPA-induced dyskinesia in the 

6-OHDA lesioned mice. (DC – dicyclomine. DC: n = 16, Saline: n = 32, Fam 1mg/kg: n = 9, 

3 mg/kg: n = 9, 10 mg/kg: n = 16. Data were analyzed with a two-way ANOVA. Data from 

panel F was analyzed with Kruskal-Wallis ANOVA on Ranks. * p < 0.05 compared with 

saline treated group. Error bars represent ± SEM).
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Figure 6. Famotidine decreases L-DOPA-induced dyskinesia in Pitx3ak/ak mice
(A) Timeline for the drug treatment and behavioral tests on Pitx3ak/ak mice. Chronic 

L-DOPA (25 mg/kg) treated Pitx3ak/ak mice were pretreated with famotidine 45 min or 

dicyclomine 30 min prior to L-DOPA. Control groups were injected with saline with 

the same interval as famotidine or dicyclomine prior to L-DOPA. Behavioral tests were 

performed 15 min after L-DOPA injection to quantify duration of three-paw dyskinesia (B) 

and front paw dyskinesia (C) (DC- dicyclomine. n = 7 animals in each group. Data were 

analyzed with a one-way ANOVA. * p < 0.05 compared with saline treated group. Error bars 

represent ± SEM).
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