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A new method for pharmaceutical 
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VEGF biologics for intravitreal use 
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Intravitreal injections of antibody-based biologics targeting vascular endothelial growth factor 
(VEGF) are highly effective and have markedly decreased the risk of visual impairment associated 
with prevalent retinal diseases, such as neovascular age-related macular degeneration and diabetes 
macular oedema. The diseases are chronic in their nature, and most patients need long-term therapy to 
suppress disease activity. We previously reported a compounding method for repackaging and storage 
of aflibercept (Eylea), a commonly used anti-VEGF biologic, in silicone oil-coated plastic syringes 
without compromising drug stability or activity. In addition to improving safety and time spent per 
patient, compounding of anti-VEGF biologics enables single-dose vials to be split into multiple syringes, 
thereby considerably reducing waste and drug expenses. However, symptomatic silicone oil droplets 
may deposit in the eye’s vitreous body after repetitive injections. To fully avoid this complication, we 
here report on a novel pharmaceutical compounding method using silicone oil-free syringes and a 33 G 
× 9 mm Low Dead Space Needle hub injection needle. We evaluate the method for three anti-VEGF 
biologics commonly used in ophthalmology: aflibercept, ranibizumab (Lucentis) and bevacizumab 
(Avastin). Our results show that compounding and storage for one week does not compromise the 
functional activity of the biologics and allows for safe and cost-effective compounding of anti-VEGF 
biologics for intravitreal injections in prefilled silicone oil-free syringes.

Biologics targeting vascular endothelial growth factor (anti-VEGF) have revolutionized the treatment of retinal 
diseases causing altered vascular permeability, such as diabetic macular oedema, retinal vein occlusion and the 
neovascular type of age-related macular degeneration (nAMD). These diseases are chronic in nature, and the 
aim of anti-VEGF treatment is not to cure the patients, but rather to suppress disease activity. The patients are 
usually in need of long-term monitoring and treatment, and the injections are typically given at monthly to tri-
monthly intervals1–4. Accordingly, intravitreal anti-VEGF treatment places a significant burden on the patients. 
Moreover, costly drugs and extensive follow-up can be prohibitive and puts a heavy strain on healthcare systems. 
The number of patients in need of treatment is expected to dramatically increase in the coming years due to new 
indications for anti-VEGF therapy and an aging population5. Although the intravitreal route of administration 
is considered to be safe, there is also an inevitable risk of surgical complications, the most devastating being 
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bacterial endophthalmitis6,7. All efforts should thus be made to handle the medication and perform the intra-
vitreal procedure as safe and effective as possible, without causing unnecessary waste of the expensive biologics.

An intravitreal injection procedure begins with the preparation of the drug for administration. For both 
anti-VEGF agents currently approved for intravitreal use, ranibizumab (Lucentis) and aflibercept (Eylea), the 
label recommendation includes measures to prevent contamination8,9. The top of the vial must be cleaned with an 
alcohol wipe and the vial content withdrawn into a sterile syringe through a filter needle, which is replaced with 
an injection needle. Since this preparation is intended to occur at the site of injection, typically an office, clean 
room, or operating theatre, the label approves of suboptimal aseptic conditions. Repetitive preparation of syringes 
is also a time-consuming practice for clinicians. Altogether, these disadvantages have encouraged the establish-
ment of pharmaceutical compounding of prefilled syringes for intravitreal use. Yet, studies on compounding of 
antibody-based biologics have resulted in varying, and sometimes contradictory, results in regard to both safety 
and drug integrity6,7,10–19. In a previous study we demonstrated that compounding of aflibercept in prefilled com-
monly used insulin syringes had no negative effects on drug properties, even after storing the syringes for weeks10. 
Such a compounding procedure may not only improve patient safety but also increase the focus on the patient 
rather than on drug preparation. Finally, compounding reduces waste of biologics and saves considerable costs 
for the healthcare system10,20.

Notably, most syringes used for intravitreal injections are coated with silicone oil which acts as a lubricant 
between the syringe barrel and plunger. Silicone oil may follow the drug intravitreally and lead to symptomatic 
deposition of silicone oil droplets (Fig. 1a), and there is an increasing concern about this particular adverse event. 
The use of syringes with low dead space21–26 and a practice of flicking the syringe before use22 have been shown 
to increase the risk. In pursuit of the safest possible intravitreal injection procedure, proper pharmaceutical com-
pounding of anti-VEGF agents in pre-filled silicone oil-free syringes is warranted. Yet, as components of the 
pre-filled syringes could interfere with the biopharmaceuticals’ protein structures, an important consideration is 
that absence of a protective silicone oil layer might compromise drug structure and effectiveness.

The purpose of the present study was to establish a novel procedure for safe and cost-effective pharmaceu-
tical compounding of pre-filled silicone oil-free syringes containing ranibizumab, aflibercept, or bevacizumab 
for intravitreal use and to investigate the structural integrity of the three anti-VEGF biologics after one week of 
storage.

Results
Compounding in silicone oil-free syringes.  To establish a novel repackaging procedure for compound-
ing of the anti-VEGF biologics in syringes without silicone oil-coating, we used 1 mL syringes that are both 
silicone oil-free and have a low dead space22. Drug withdrawal took place at the hospital pharmacy, utilizing an 
isolator unit with a class A production chamber and a class B transfer chamber. The syringes were aseptically 
filled with 0.06 mL ranibizumab (0.6 mg), aflibercept (2.4 mg) or bevacizumab (1.5 mg). The syringes were then 
attached to a Low Dead Space Needle hub 33 G × 9 mm injection needle intended for ophthalmic use. Each 
syringe with needle was separately enclosed in a sterile, transparent plastic bag (Fig. 1b) and stored at 4 °C and in 
dark conditions for 0 days (D0) or 7 days (D7). The volume retrieved at D7, when manually adjusting the plunger 
to 0.05 mL before fully depressing it, was 0.0494 ± 0.0060 mL (n = 10), i.e. 98.8% of the intended volume.

Protein concentration and stability.  First, to compare the syringes’ D0 and D7 anti-VEGF concentra-
tions, measurements were performed using a DeNovix DS-11+ Spectrophotometer. For the three biologics, D0 
and D7 concentrations from both undiluted and diluted samples did not statistically differ (Fig. 2). Thus, the 
absence of silicone oil-coating did not affect adsorption of the biologics to the plastic of the syringes.

Secondly, to verify anti-VEGF integrity, equal amounts of each biologic were added to SDS-PAGE gels under 
reducing and non-reducing conditions. Inspection of the Coomassie-stained gels under non-reducing condi-
tions revealed that the three biologics migrated as major bands of 50 kDa for ranibizumab and approximately 

Figure 1.  Eye with symptomatic silicone oil droplets and an anti-VEGF biologic after compounding. (a) 
Biomicroscopic picture of small silicone oil (SO) droplets in the upper anterior part of the vitreous body; 
the droplets appear as small clear spheres. Margo of upper eye lid (M). (b) Labelled plastic bag containing a 
prefilled, silicone oil-free plastic syringe attached to a capped needle. The images have been cropped.
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150–170 kDa for aflibercept and bevacizumab. Bevacizumab migrated somewhat slower than aflibercept. The 
migration profiles are in line with their expected molecular weights (Fig. 3). Ranibizumab, a Fab fragment, 
consists of a light chain (VL-CL) covalently connected to two heavy chain domains (VH-CH1), whereas bev-
acizumab, a full-length IgG1 antibody, consists of two light chains paired with two complete heavy chains 
(VH-CH1-CH2-CH3)9 (Fig. 4a,b). Aflibercept, a recombinant decoy receptor, is an IgG1 Fc-fusion where the 
extracellular domain 2 of VEGF receptor (VEGFR) 1 is genetically fused to domain 3 of VEGFR2 and connected 

Figure 2.  Concentrations of the three anti-VEGF biologics before and after storage in silicone oil-free plastic 
syringes. Undiluted and diluted (1:10) samples collected at day 0 (D0) shown in black, and day 7 (D7) shown in 
blue for (a) ranibizumab, (b) aflibercept and (c) bevacizumab. Measurements are presented as mean ± SD. For 
each sample set n = 6. The unpaired Student’s t-test was used for statistical analysis.

Figure 3.  SDS-PAGE analysis. Non-reducing and reducing SDS-PAGE analysis of (a,b) ranibizumab D0 
(sample 1–6) and D7 (sample 7–12), (c,d) bevacizumab D0 (sample 1–6) and D7 (7–12), and (e,f) ranibizumab 
D0 (sample 1–6) and D7 (sample 7–12). The images have not been cropped.
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to the Fc-region of human IgG127 (Fig. 4c). Accordingly, under reducing conditions ranibizumab migrates as one 
major band of 25 kDa, whereas bevacizumab and aflibercept migrate as bands with a molecular weight of approx-
imately 70–80 kDa. Bevacizumab additionally displayed a minor band, corresponding to a light chain of 25 kDa. 
Importantly, the biologics exhibited no visible changes in integrity between D0 and D7 (Fig. 3).

Thirdly, to address whether compounding and storage caused non-covalent aggregation, size-exclusion chro-
matography (SEC) was performed using an ÄKTA avant 25. To avoid bias due to storage in the sample compart-
ment, the D0 and D7 samples were run alternately. All three anti-VEGF biologics were eluted as one major peak 
for both D0 and D7 samples (Fig. 5a–c). Aflibercept and bevacizumab displayed an additional peak slightly before 

Figure 4.  Schematic overview of three commercially available anti-VEGF biologics. Ranibizumab (a) is 
composed of the affinity maturated Fab of bevacizumab, (b) bevacizumab is a full-length IgG1 antibody and 
(c) aflibercept is composed of domains from VEGFR1 and 2 fused to an IgG1 Fc-region. The figure was created 
with BioRender software.

Figure 5.  SEC analysis. SEC elution profiles of (a) ranibizumab, (b) aflibercept, and (c) bevacizumab at 
D0 (black) and D7 (blue). Comparison of AUC (%) of peak A and B for samples of (d) aflibercept and (e) 
bevacizumab from D0 and D7. Ranibizumab (a) only displayed one peak. The data are presented as mean ± SD. 
For each sample set n = 6. The unpaired Student’s t-test was used for statistical analysis.
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elution of the main fraction which was present in both D0 and D7 samples (Fig. 5d,e). There were no statistically 
significant differences between the two timepoints.

Finally, nano-differential scanning fluorimetry (nano-DSF) determining the melting temperatures of the com-
pounded biologics was performed using a Prometheus NT.48. The results did not demonstrate significant differ-
ences between D0 and D7 for any of the biologics (Fig. 6).

VEGF binding properties.  The therapeutic effect of anti-VEGF biologics depends on their ability to neu-
tralize soluble VEGF. To investigate how the compounded biologics bound VEGF, ELISA was performed. Plates 
were coated with a constant amount of recombinant human VEGF before adding titrated quantities of aflibercept, 
bevacizumab or ranibizumab. Bound biologics were visualized by adding a polyclonal anti-human IgG Fc anti-
body for aflibercept and bevacizumab and a polyclonal anti-human kappa light chain for ranibizumab. The anal-
yses showed that the three biologics bound VEGF equally well at D0 and D7 (Fig. 7), as measurements retrieved 
from the exponential phases did not display significant differences (p = 0.7299 for ranibizumab, p = 0.3910 for 

Figure 6.  Thermal stability. Tm values for D0 (black) and D7 (blue) for (a) ranibizumab, (b) aflibercept and  
(c) bevacizumab. The melting process for (a) ranibizumab and (c) bevacizumab occurred in one event, whereas 
for (b) aflibercept, it occurred in three different temperature ranges. This was expected as aflibercept consists 
of three structurally different domains. The data are presented as mean ± SD. For each sample set n = 6, as 
measured in triplicates. The unpaired Student’s t-test was used for statistical analysis.

Figure 7.  Binding properties to VEGF. Binding to VEGF in ELISA for titrated amounts (1000–0.5 ng/mL) of (a) 
ranibizumab, (b) aflibercept, and (c) bevacizumab at D0 (black) and D7 (blue). Comparison of binding to VEGF 
at D0 and D7 for the following concentrations: ranibizumab 74 ng/mL (d) and 12.34 ng/mL for aflibercept (e) 
and bevacizumab (f). For each sample set n = 6. The unpaired Student’s t-test was used for statistical analysis.
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aflibercept and p = 0.3413 for bevacizumab). These results were substantiated by SPR analysis where VEGF was 
immobilized and equal amounts of the three anti-VEGF biologics were injected. The resulting sensorgrams did 
not display differences in protein binding kinetics (Fig. 8), thereby confirming that compounding and storage 
does not affect the VEGF binding capacity of neither of the biologics.

FcRn binding properties.  An antibody recognizes a specific antigen epitope and may interact with effector 
molecules through its Fc domain. One such effector molecule, the neonatal Fc receptor (FcRn), is a key regulator 
of the long half-life of IgG in serum. FcRn additionally mediates bidirectional transport across cellular barriers, 
such as mucosal surfaces and the placenta28–31. Interestingly, the receptor is also expressed in ocular tissues and is 
involved in cellular uptake of IgG Fc-containing molecules and shuttling of intravitreally administered IgG across 
the blood-retinal barrier32–36. As such, we investigated the functional integrity of the Fc-containing anti-VEGF 
biologics, aflibercept and bevacizumab, by testing binding to human FcRn in ELISA. As the FcRn-IgG interaction 
is strictly pH dependent, strong binding at acidic pH 6.5-5.5 and no binding or release at neutral pH 7.429, the 
assay was performed under both pH conditions. Titrated amounts of aflibercept or bevacizumab were added to 
plates coated with human VEGF, followed by a constant amount of GST-tagged human FcRn that was detected by 
an anti-GST antibody. The results showed that both aflibercept and bevacizumab bound equally well and in a pH 
dependent manner (Fig. 9a,b). Moreover, there were no statistically significant differences between D0 and D7 
(Fig. 9c,d). Thus, pH dependent binding of human FcRn was not affected by storage in silicone oil-free syringes 
for 7 days.

Discussion
Pharmaceutical compounding of anti-VEGF biologics for intravitreal injections can improve patient safety, save 
clinicians time, and reduce drug cost10,20. Prefilled syringes are commercially available for ranibizumab. Likewise, 
the U.S Food and Drug Administration (FDA) recently approved prefilled aflibercept syringes, which are antic-
ipated in late 201937. While the drug stability in these syringes presumably equals the findings in this study, 
one important difference remains: the present compounding procedure allows for in-house splitting of ranibi-
zumab, aflibercept and bevacizumab vials under optimal hygienic conditions without compromising patient 
safety. Although prefilled syringes are available for two of the anti-VEGF biologics, the cost for one syringe is the 
same as for one vial. By comparison, the present procedure permits each vial to be divided into several syringes. 
Accordingly, the cost is reduced to almost one third for aflibercept, one half for ranibizumab and one fortieth for 
bevacizumab. Moreover, one compounding procedure can be standardized and safely implemented for all three 
intravitreally administered anti-VEGF biologics, ultimately avoiding splitting of the vials at the site of injection 
and thereby reducing risk for infections.

There is an increasing concern about symptomatic deposition of silicone oil droplets after repeated intravitreal 
injections23–26. We previously demonstrated that compounding and storage of aflibercept in silicone oil-coated 
insulin syringes had no negative effects on its biopharmaceutical properties10. The present study describes an 
important improvement of pharmaceutical compounding of the three most commonly used anti-VEGF biologics 
by utilizing silicone oil-free plastic syringes and thereby diminish the risk of symptomatic deposition of silicone 
oil droplets. As a silicone layer may prevent adsorption of the protein-based biologics to the plastic syringe’s 
internal surface, it is particularly important to address the possibility of drug-surface interactions for silicone 
oil-free syringes11,16,17,38. For that reason, we verified that the structural and functional properties were not altered 
before implementing the novel procedure into clinical practice. Seven days was chosen because it represents the 
maximum allowed storage time for aseptic magistral production according to Norwegian regulations. A thorough 
investigation of the biologics’ functional integrity did not reveal statistically significant differences between D0 
and D7. The fact that neither VEGF nor FcRn binding properties were affected strongly supports the notion that 
drug efficacy is maintained throughout 7 days of storage.

Based on the results, pharmaceutical compounding of both aflibercept, bevacizumab, and ranibizumab in 
silicone oil-free prefilled plastic syringes is implemented as the standard of care for all intravitreal anti-VEGF 
injections performed in our hospital. The practice is also adopted in an increasing number of ophthalmic clinics, 
both in Norway and abroad.

Figure 8.  VEGF binding properties as measured by SPR. Sensorgrams showing the binding profiles to 
immobilized VEGF (~300 RU) for (a) ranibizumab (800 nM), (b) aflibercept (100 nM), and (c) bevacizumab 
(100 nM) at D0 (black dotted line) and D7 (blue). For each injection n = 6. The binding profiles (RU) have been 
normalized to baseline and the blank values subtracted.
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One limitation of the study is that we have not investigated whether the biologics were affected by the with-
drawal from the vial itself and into the syringe. Instead, newly drawn syringes were chosen as reference. Still, 
the chosen method is comparable to the clinical setting; drugs must be withdrawn from the vial in order to be 
injected into the eye, irrespective of whether the label recommendations or pharmaceutical compounding is uti-
lized. A limitation of the current method itself is that the plunger resistance is altered38,39. For the 1.0 mL Injekt-F 
syringe used in the present study, there were only minimal dose variations. Yet, previous studies have shown 
highly variable accuracy and reproducibility when utilizing syringes that are commonly used for intravitreal 
injections39–42. Thus, a silicone oil-free syringe with a lower volume specifically manufactured for intravitreal use 
could further improve the current method.

In conclusion, we have established a novel method for pharmaceutical compounding of both bevacizumab, 
ranibizumab, and aflibercept for intravitreal administration, showing that silicone oil-free plastic syringes can 
be used without affecting the anti-VEGF biologics’ stability, molecular integrity or functional properties after 1 
week of storage.

Methods
Repackaging process.  Bevacizumab 25 mg/mL (Avastin; Roche), ranibizumab 10 mg/mL (Lucentis; 
Novartis) and aflibercept 40 mg/mL (Eylea; Bayer) were commercially acquired. Prefilled injection syringes 
intended for intravitreal injection were produced under standard aseptic conditions at the hospital pharmacy10. 
The syringes were filled according to the ISO 13544 guidelines and EU GMP43,44. The contents of the original vials 
were first withdrawn through a filter cannula (BD Blunt Fill Needle) into a 1 mL silicone free syringe (Injekt-F, 
1 mL, B. Braun). The filter cannula was exchanged for a Low Dead Space Needle hub 33 G × 9 mm injection 
needle (TSK Laboratory) for aflibercept and ranibizumab, and 33 G × 13 mm needle for bevacizumab before 
approximately 0.06 mL was transferred to each of the ready-to-use syringe (Injekt-F, 1 mL). Each syringe was 
capped with a Low Dead Space Needle hub 33 G × 9 mm injection needle. The combined needle and syringe 
were separately enclosed in sterile, transparent plastic bags (Intervoid Sterile 250 mL; Coveris) and finally visually 

Figure 9.  pH-dependent FcRn binding properties. Binding to a constant amount of GST-tagged human FcRn 
(1 µg/mL) at pH 5.5 and pH 7.2 for titrated amounts (1000–0.5 ng/mL) of (a) aflibercept and (b) bevacizumab at 
D0 (black and dark green) and D7 (blue and light green). Comparison of binding to human FcRn at D0 (black) 
and D7 (blue) at a given concentration of 111 ng/mL aflibercept (c) and bevacizumab (d). For each sample set 
n = 6. The unpaired Student’s t-test was used for statistical analysis.
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inspected and labelled outside the isolator. The syringes were stored in dark conditions at 4 °C for 7 days (D7). 
For dose accuracy testing at D7, a retina physician adjusted the volume of bevacizumab to 0.05 mL before fully 
depressing the plunger with the injection needle remaining attached. A second observer measured the weight of 
the syringes (n = 10) before and after the depression of the plunger. The volume was calculated based on a drug 
density (bevacizumab) of 1.0422 g/mL.

Concentration measurements.  The samples were transferred from prefilled syringes to sterile Eppendorf 
Protein LoBind-tubes (Eppendorf) that were kept on ice and protected from light during the experiments. All 
samples were diluted 1:10 in sterile phosphate buffered saline (PBS) (Sigma-Aldrich). Protein concentrations 
were measured using a DeNovix DS-11+ Spectrophotometer (DeNovix). Two measurements per sample were 
performed and the average values were calculated.

SDS-page analyses.  The protein samples were prepared by diluting 2 µg protein in distilled water and Bolt 
LDS loading buffer (Thermo Fisher Scientific), both with and without DL-dithiothreitol solution (Sigma-Aldrich). 
Samples containing DL-dithiothreitol solution were heated for 5 minutes at 95 °C. Next, the samples were applied 
to 12% Bolt Bis-Tris Plus gels (Invitrogen) before running for 22 minutes at 200 V. Spectra Multicolor Broad 
Range Protein Ladder (Fermentas) was used for size comparison, and the proteins were visualized by Bio-Safe 
Coomassie G-250 staining (Bio-Rad Laboratories).

Size exclusion chromatography (SEC).  Aliquots were collected from the prefilled syringes and diluted 
in sterile PBS to the following concentrations: 5.6 mg/mL (aflibercept), 1.2 mg/mL (ranibizumab) and 3.5 mg/
mL (bevacizumab). The experiments were performed using an ÄKTA avant 25 (GE Healthcare). Aflibercept and 
bevacizumab were run on a Superdex 200 Increase 10/300 GL column (GE Healthcare), whereas ranibizumab was 
run on a Superdex 75 Increase 10/300 GL column (GE Healthcare). For all samples, 77 μl was injected by means 
of an auto-sampler (Spark Holland B.V.).

VEGF binding enzyme-linked immunosorbent assay (ELISA).  96-well EIA/RIA 3590 plates 
(Corning Costar) were coated with 100 μl 0.5 µg/mL human VEGF165 (Sino Biological) and incubated over 
night at 4 °C. The plates were blocked for 2 hours with 250 μl 4% skimmed milk powder (S) (Sigma-Aldrich) 
dissolved in PBS (Sigma-Aldrich) (S/PBS), followed by washing four times with PBS containing 0.05% Tween20 
(T) (Sigma-Aldrich). Next, 100 μl titrated amounts (1000–0.5 ng for ranibizumab and 2000–0.9 ng for aflibercept 
and bevacizumab) of the anti-VEGF biologics diluted in S/PBS/T were added to the plates and incubated at room 
temperature (RT) for one hour on a shaker. After washing as previously described, 100 μl alkaline phosphatase 
(ALP)-conjugated goat anti-hFc Ab (Sigma-Aldrich) or ALP-conjugated anti-hKLC diluted to 1 μg/mL in S/
PBS/T was added and incubated for 1 hour on a shaker. Following washing, the bound proteins were visualized 
by adding 100 μl ALP substrate (1 mg/mL) dissolved in diethanolamine buffer. The absorbance was measured at 
405 nm using a Sunrise spectrophotometer (Tecan Group Ltd.).

FcRn binding ELISA.  96-well EIA/RIA 3590 plates (Corning Costar) were coated with human VEGF165 
(Sino Biological) followed by blocking, before titrated amounts of the anti-VEGF biologics were added to the 
plates as previously described. Next, 100 μl of recombinant hFcRn-GST was added at a final concentration of 
1 μg/mL diluted in S/PBS/T pH 5.5 (100 mM phosphate buffer, 0.15 M NaCl, 4% skimmed milk, 0.05% Tween 20) 
or S/PBS/T pH 7.4 and incubated for one hour at RT on a shaker45. After washing with either pH 5.5 or pH 7.4 
PBS/T, horse radish peroxidase-conjugated anti-GST (Rockland Immunochemicals Inc) diluted 1:8000 in either 
pH 5.5 or pH 7.4 PBS/T was added and incubated for one hour at RT on a shaker. After washing as above, the 
bound receptor was visualized by adding 100 μl tetramethylbenzidine substrate (Calbiochem) followed by adding 
100 μl 1 M HCl to stop the reaction. The absorbance was measured at 450 nm using a Sunrise spectrophotometer 
(Tecan Group Ltd.).

Surface plasmon resonance (SPR).  A Biacore T200 (GE Healthcare) was used for measurements 
by immobilizing human VEGF165 (Sino Biological) (~300 resonance units (RU)) to CM5 sensor chips using 
amine-coupling as described by the manufacturer. The coupling was performed by injecting 5 µg/mL human 
VEGF165 dissolved in 10 mM sodium acetate pH 4.5 and using the amine coupling kit (GE Healthcare). HBS-P+ 
(0.01 M HEPES, 0.15 M NaCl, 0.005% surfactant P20, pH 7.4) was used as both running and dilution buffer. The 
measurements were performed by injecting 800 mM ranibizumab or 100 mM aflibercept and bevacizumab over 
the immobilized VEGF165 at a flow rate of 30 µl/min. Glycine at pH 1.5 (GE Healthcare) was used for regenera-
tion of the CM5 chip between consecutive sample measurements. The sensorgrams were zero-adjusted and the 
individual injections normalized using the BIAevaluation software version 4.1 (GE Healthcare).

Nano-differential scanning fluorimetry (DSF).  To determine the thermal stability of the anti-VEGF 
biologics, nano-DSF analysis was performed on a Prometheus NT.48 (NanoTemper Technologies GmbH). 
Undiluted samples were drawn into capillaries and run in triplicates. The instrument was set to gradually increase 
the temperature from 20 °C to 95 °C. As the temperature increased, the ratio between 330 nm and 350 nm wave-
lengths was plotted against temperature. The melting temperature (Tm) for which half of the proteins were 
unfolded was determined by deducing the first derivative in the PR.ThermControl software (NanoTemper 
Technologies GmbH).
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Statistical analyses.  Figures were generated and the statistical analyses were performed using GraphPad 
Prism 7 (GraphPad Software). All antibodies were run in duplicates and tested at two separate occasions; error 
bars represent the SD from one representative experiment.

Data availability
The study’s datasets are available upon reasonable request to the corresponding author.
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