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Three dimensional, self-assembled organoids that recapitulate key

developmental and organizational events during embryogenesis have

proven transformative for the study of human central nervous system

(CNS) development, evolution, and disease pathology. Brain organoids

have predominated the field, but human pluripotent stem cell (hPSC)-

derived models of the spinal cord are on the rise. This has required

piecing together the complex interactions between rostrocaudal

patterning, which specifies axial diversity, and dorsoventral patterning,

which establishes locomotor and somatosensory phenotypes. Here, we

review how recent insights into neurodevelopmental biology have driven

advancements in spinal organoid research, generating experimental models

that have the potential to deepen our understanding of neural circuit

development, central pattern generation (CPG), and neurodegenerative

disease along the body axis. In addition, we discuss the application of

bioengineering strategies to drive spinal tissue morphogenesis in vitro,

current limitations, and future perspectives on these emerging model

systems.
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Introduction

Since the first cerebral organoids were created in 2013 (Lancaster et al., 2013),

organoids representing diverse CNS substructures have been optimized by

manipulating signaling factors that mediate cell identity (Jacob et al., 2021).

Replicating the spinal cord has posed a particular challenge. Spanning more than

25% of the length of the body, the spinal cord is a tubular structure consisting of

30 segments along the rostrocaudal axis. Each segment is comprised of anatomically

OPEN ACCESS

EDITED BY

Michael A. Lane,
Drexel University, United States

REVIEWED BY

Olga Kopach,
University College London,
United Kingdom
Philip John Horner,
Houston Methodist Research Institute,
United States

*CORRESPONDENCE

Nisha R. Iyer,
nisha.iyer@tufts.edu

SPECIALTY SECTION

This article was submitted to Stem Cell
Research,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 12 May 2022
ACCEPTED 01 August 2022
PUBLISHED 26 August 2022

CITATION

Iyer NR and Ashton RS (2022),
Bioengineering the human spinal cord.
Front. Cell Dev. Biol. 10:942742.
doi: 10.3389/fcell.2022.942742

COPYRIGHT

©2022 Iyer and Ashton. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Abbreviations: BMP, bonemorphogenetic protein; CNS, central nervous system; CPG, central pattern
generator; ECM, extracellular matrix; FGF, fibroblast growth factor; GDF11, growth differentiation
factor 11; hepatocyte growth factor; hiPSCs, human induced pluripotent stem cell; hPSC, human
pluripotent stem cell; IG, insulin-like growth factor; MN, motor neuron; NMP, neuromesodermal
progenitor; PNS, peripheral nervous system; pMN, progenitor motor neuron; RA, retinoic acid; SHH,
sonic hedgehog; TGFß2, transforming growth factor beta 2.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Mini Review
PUBLISHED 26 August 2022
DOI 10.3389/fcell.2022.942742

https://www.frontiersin.org/articles/10.3389/fcell.2022.942742/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.942742/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.942742&domain=pdf&date_stamp=2022-08-26
mailto:nisha.iyer@tufts.edu
https://doi.org/10.3389/fcell.2022.942742
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.942742


distinct sensorimotor cell types defined along the dorsoventral

and medio-lateral axes, which in turn form specialized circuits

responsible for precise behavioral and sensory functions.

Producing faithful spinal organoids thus requires

integration of continuous, temporally defined orthogonal

gradients of signaling factors that impart both positional

A

B

C

FIGURE 1
Three Axes of Spinal Cord Development: Rostrocaudal, Dorsoventral, and Mediolateral (A) Positional identity in the posterior CNS is defined by
overlapping expression of HOX transcription factors: hindbrain (HOX1-4), cervical (HOX4-8), thoracic (HOX8-9), lumbar (HOX9-11) and sacral
(HOX12-13). (B). Dorsoventral patterning occurs in response to roof plate (RP) and ectoderm-derived TGFβ, BMP, and Wnt signaling and floor plate
(FP) and notochord-derived Sonic Hedgehog (Shh) and Noggin signaling. Schematic shows 11 discrete progenitor domains (plus a lateborn
dorsal progenitor domain) and corresponding post-mitotic cardinal neuron populations with characteristic transcription factor marker expression.
(C) Once outside the ependymal layer, progenitors differentiate into post-mitotic neurons and migrate to their final settling positions in the mantle
layer. The mechanisms that regulate birthdate are poorly understood but have significant influence on neuronal migration and projection patterns.
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and phenotypic information in three dimensions (Figure 1). In

the past few years, facets of this task have been achieved in

numerous studies, each reflecting different components of

spinal cord biology. In this review, we focus on the two

major axes of development—rostrocaudal and

dorsoventral—as a framework to contextualize and evaluate

these methodologies. We provide recent updates to our

understanding of spinal cord neurodevelopmental biology,

and how these findings influence emergent bioengineering

strategies for generating human spinal organoids.

Axial patterning in development and
in vitro

Unlike the forebrain and midbrain which develop from the

anterior epiblast, the hindbrain and spinal cord form as the

embryo elongates from the caudal lateral epiblast. There, a

bipotent population of axial stem cells called

neuromesodermal progenitors (NMPs) differentiates into both

the posterior neuroectoderm, which forms neural tube and

neural crest derivatives, and the somites, which go on to form

dermis, skeletal muscle, connective tissue, and vertebrae

(Henrique et al., 2015). A balance between retinoic acid (RA),

WNT and fibroblast growth factor (FGF) signaling contributes to

the maintenance and proliferation of NMPs, driving axial

extension and the acquisition of increasingly caudal Hox

genes that confer positional identity (Figure 1A). Later, tail-

bud secreted growth differentiation factor 11 (GDF11) serves to

stimulate thoracolumbar and sacral Hox domains and repress

rostral Hox genes (Liu, 2006). Neural plate specification is

triggered by attenuation of WNT and increased RA signaling,

prompting the differentiation from NMPs to region-specific

neuroepithelial progeny (Gouti et al., 2014, 2017; Lippmann

et al., 2015). Notochord-secreted NOGGIN, an antagonist of

bone morphogenetic proteins (BMPs) and inhibitor of SMAD

signaling further promotes neural induction and

neurulation—the process by which the flat neural plate folds

into the neural tube (Stottmann et al., 2006).

Commitment to an axial identity before neural induction

is required for caudal spinal cord differentiation (Metzis et al.,

2018). Thus, directed differentiation protocols for human

pluripotent stem cells (hPSCs) that do not explicitly go

through an NMP intermediate and instead apply

neuralizing SMAD inhibitors before or in conjunction with

caudalizing factors overwhelmingly result in hindbrain or

rostral cervical identities (Amoroso et al., 2013; Du et al.,

2015; Maury et al., 2015; Gupta et al., 2018; Bradley et al., 2019;

Butts et al., 2019; Ho et al., 2021). Spinal cord organoids

initiated with SMAD inhibitors are also rostrally oriented

(Ogura et al., 2018; Andersen et al., 2020; Valiulahi et al.,

2021; Lee et al., 2022). However, rostral HOX profiles in 2D

and 3D can be shifted caudally by removing early SMAD

inhibition and/or extending culture exposure to FGF and

WNT signaling (Maury et al., 2015; Ogura et al., 2018;

Duval et al., 2019; Andersen et al., 2020).

By decoupling the caudalization process from spinal cord

patterning specifically, protocols for hPSC-derived NMPs

constitute a replicable foundation for deriving diverse and

discrete region-specific spinal tissues along the body axis.

These protocols leverage FGF, WNT, and GDF11 signaling,

which work synergistically to promote concentration and

time-dependent activation of HOX genes in vitro (Gouti et al.,

2014; Lippmann et al., 2015). Addition of RA and dual SMAD

inhibition terminates HOX propagation, resulting in neural

progeny expressing discrete HOX profiles (Gouti et al., 2014;

Lippmann et al., 2015; Chasman and Roy, 2017; Verrier et al.,

2018; Iyer et al., 2021; Mouilleau et al., 2021). Because NMPs are

multi-lineage progenitors, organoids initiated from a discrete

NMP pool can be patterned with hepatocyte growth factor

(HGF) and insulin-like growth factor (IGF) to form spinal,

mesodermal, and neural crest tissues together (Faustino

Martins et al., 2020; Olmsted and Paluh, 2021, 2022). This is

in contrast to cortico-motor “assembloids,” where region-

specific organoids are fused after patterning (Andersen

et al., 2020). Thus, though limited to a single axial location,

NMP-derived trunk organoids enable modeling of human

CNS–peripheral nervous system (PNS) co-development

with their end-targets, including the primitive gut tube,

skeletal muscle, and heart (Faustino Martins et al., 2020;

Olmsted and Paluh, 2021, 2022). Despite a significant

degree of variability between multi-lineage organoids

derived using these methods, a major advantage is the

ability to conduct long-term functional assessments in

spinal and/or target tissue. Notably, Faustino Martins et al.

and Andersen et al. measure calcium activity, muscle

contractility, and network field potentials demonstrative of

rudimentary CPG-like activity over 7–8 weeks in their

neuromuscular organoids and cortico-motor assembloids,

respectively. (Andersen et al., 2020; Faustino Martins et al.,

2020).

“Gastruloids” that model the earliest stages of axial

specification in post-implantation embryos are the best

representatives of continuous rostrocaudal patterning in 3D

(van den Brink and van Oudenaarden, 2021; Libby et al.,

2021; Moris et al., 2020). Following a WNT-stimulated break

in axial symmetry and the formation of NMPs adjacent to a

tailbud-like signaling center, hPSC-derived gastruloids that begin

as spherical aggregates elongate into tubular structures.

Increasingly caudal, overlapping domains of HOX genes

emerge with elongation, which become fixed as cells separate

into distinct germ layers, including the neural tube, in response to

endogenous signaling (Moris et al., 2020). While the

comprehensive nature of gastruloids is impressive, their

structural consistencies are variable and primitive. Particularly

promising is the recent development of human “somitoids” that
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recapitulate robust somitogenesis in accordance with the

segmentation clock (Sanaki-Matsumiya et al., 2022). By

exposing NMPs to WNT signaling and low concentrations of

Matrigel, Sanaki-Matsumiya et al. demonstrate reproducible

elongation of somitoids with polarized structures containing

only cell fates associated with the spinal column. Importantly,

the level of WNT signaling instructed the ratio of somitic

mesoderm (high Wnt) to neural tube (low Wnt) tissue

(Sanaki-Matsumiya et al., 2022). Induction of a robust

signaling center is key to the success of both gastruloids

and somitoids, since localized protein patterning otherwise

requires complex bioengineering strategies. As these methods

evolve, inducing dorsoventral patterning, increasing neuronal

differentiation efficiency and accelerating electrophysiological

maturation are areas for significant improvement.

Phenotype specification in
development and in vitro

Locomotor and somatosensory spinal phenotypes are

programmed along the dorsoventral axis of the neural tube.

Ventral patterning begins in conjunction with neurulation, as

Sonic Hedgehog (SHH) is secreted with NOGGIN by the

notochord. These two factors also serve to suppress neural crest

induction and dorsal patterning at early stages. As the neural tube

closes, BMPs expressed from the roof plate promote dorsal

patterning of the neural tube and proliferation and migration of

neural crest cells from the neural fold. Dorsoventral patterning in

the spinal cord is a classicmodel of morphogenetic activity, whereby

molecular signals induce cellular responses dependent on the

concentration of exposure; 11 discrete progenitor domains

(5 ventral and 6 dorsal) emerge from the cross-repressive

transcriptional interactions caused by the opposing SHH and

BMP gradients (Figure 1B). Ventral progenitors (p0-p3 and

progenitor motor neuron (pMN) domains) broadly give rise

to neuronal populations responsible for locomotor

coordination. The dorsal progenitors are split between

BMP-dependent (dp1-dp3 domains) and BMP-independent

(dp4-dp6) populations that correspond to proprioceptive and

sensory neurons respectively. As progenitors divide laterally

from the polarized apical surface of the neural tube, Notch-

mediated suppression of neurogenesis fades, resulting in

neurons with distinct birth dates (Götz and Huttner, 2005)

(Figure 1C). Recent work has defined a shared transcription

factor code for temporal emergence in the CNS, with gene

expression analyses suggesting involvement of transforming

growth factor beta 2 (TGFß2) signaling (Osseward et al., 2021;

Sagner et al., 2021). Both HOX genes and neuronal birth date

contribute to region-specific neuronal diversification and

impact critical facets of spinal circuit organization

including cell migratory patterns, projections, and synaptic

targets (Dasen et al., 2005; Philippidou and Dasen, 2013;

Marklund et al., 2014; Osseward et al., 2021; Rayon et al.,

2021; Sagner et al., 2021). Thus, spinal phenotype is ultimately

determined by “where” (rostrocaudal), “what” (dorsoventral),

and “when” (mediolateral; temporal) cells emerge in

development.

Numerous protocols in 2D and 3D have been developed for

specific spinal populations by optimizing the concentration and

duration of SHH and BMP signaling exposure. Most prevalent

are high-efficiency protocols for MNs (Amoroso et al., 2013; Du

et al., 2015; Maury et al., 2015; Ho et al., 2021), but there are

increasingly methods available for ventral (Butts et al., 2019) and

dorsal interneurons (Gupta et al., 2018) and glia (Bradley et al.,

2019). Directed differentiation strategies that combine

rostrocaudal and dorsoventral patterning are also on the

rise (Lippmann et al., 2015; Iyer et al., 2021; Mouilleau

et al., 2021). Because efficiency and speed of differentiation

are prioritized in these protocols, spinal progenitors are often

rapidly differentiated by adding DAPT, a Notch inhibitor,

which precludes opportunities to generate and detect late-

born neurons.

At the expense of differentiation efficiency, spinal cord

organoids that exhibit dorsoventral organization have the

advantage of the phenotypic diversity and laminar architecture

present in the endogenous spinal cord. Patterning can be

stimulated by exogenous signals in the media (Duval et al., 2019)

or rely on the induction of roof plate or floor plate signaling centers

(Ogura et al., 2018). In the case of the former, a concentration

gradient of BMP4 or SHH is formed from the outside of the

organoid inward, enabling stratified progenitor domains to

develop (Duval et al., 2019; Andersen et al., 2020). Addition of

DAPT rapidly converts these into to organized neuronal layers

(Duval et al., 2019; Andersen et al., 2020). Alternatively, signaling

centers can be induced in neural cyst-like organoids (Ogura et al.,

2018). These exhibit an inverted polarized structure, whereby the

apical layer containing progenitors is externally oriented, and

neurons differentiate into the cell mass. With time, roof plate

organizers stochastically form along the organoid edges and

provide the signaling necessary for local dorsal domain

development. Floor plate can be induced by adding sufficient

SHH to the media, and the addition of exogenous BMP4 or

SHH to the media can further dorsalize or ventralize the tissues

(Ogura et al., 2018). Because the goal of these organoid models

prioritize cell type derivation and organization, neuronal

maturation and functional assessments are limited (Ogura et al.,

2018; Duval et al., 2019).

While neither exogenous or endogenous signaling alone allows

for co-development of the full spectrum of dorsal and ventral cell

types, a combination seems sufficient. Andersen et al. demonstrate

with scRNA-seq that spinal organoids patterned with exogenous

SHH are capable of generating neurons from all spinal domains.

Moreover, these spinal neurons form neural circuits receptive of

cortical input and that synapse onto muscle to generate motor

output (Andersen et al., 2020). As a result of relative size, the core of
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the organoids is likely shielded from SHH exposure and SMAD

inhibition, enabling the spontaneous formation of roof-plate

organizers. The resultant SHH-BMP4 cross gradients would thus

allow simultaneous dorsal and ventral patterning (Andersen et al.,

2020). In contrast, in the absence of either exogenous signaling or

signaling center induction, spinal organoids default to intermediate

phenotypes with sensory neuron-like electrophysiological

characteristics (Lee et al., 2022). Whether any spinal organoids

appropriately replicate temporal patterns of neuraonl emergence,

akin to cortical layer stratification in brain organoids, has not been

discovered. New marker availability in this regard should enable

such determinations in the near future (Osseward et al., 2021;

Sagner et al., 2021).

There remain multiple areas for phenotypic optimization.

In addition to lacking organizational similarities to the native

spinal cord, most spinal organoids comprise only of neural

fates and attempt to model just the earliest stages of

neurodevelopment. Extending culture duration,

diversifying cell types and enhancing electrophysiology will

be critical to further develop these platforms. Advancements

in cortical organoid development serve as an example, where

extended time in bioreactors and the addition of pertinent

growth factors to promote astroglia (Trujillo et al., 2019;

Velasco et al., 2019; Fair et al., 2020), microglia (Ormel et al.,

2018; Bodnar et al., 2021), and oligodendrocyte fates

(Madhavan et al., 2018; Marton et al., 2019) have been

shown to improve functional maturation. Generating these

tissues at scale for translation will also require

standardization of methods across different hiPSC lines,

adherence to good manufacturing practice (GMP) grade

protocols and reagents, and thoughtful quality control

methods and metrics.

Bioengineering strategies to drive
organization within spinal organoids

Current tissue engineering strategies for spinal cord

organoids have comparable goals to those for other organ

systems (Garreta et al., 2021; Hofer and Lutolf, 2021). These

include reproducibility, development and maintenance of

stereotypical 3D cytoarchitecture, and mimetic cellular

composition and organization (Fu et al., 2021). As these

initial objectives are met using single or combinatorial

bioengineering approaches, the challenge will be to

enhance the physiological maturation and lineage

complexity within these tissues. Integration of descending

brain stimuli, innervation of target tissues, and afferent

sensory signals into multi-tissue spinal cord organoid

platforms will eventually be necessary for holistic models

that recapitulate the precise wiring and function of the

human spinal cord in vitro (Giandomenico et al., 2019;

Andersen et al., 2020).

Spatial confinement using biomaterials

2D micropatterning has emerged as a robust method to

generate reproducible tissues with polarized cytoarchitecture

(Figure 2A). In contrast to standard cell culture conditions,

micropatterned surfaces enable control over tissue size and

geometry, which significantly affect cell-cell signaling and the

spatiotemporal emergence of different cell types. This

confinement is sufficient to produce radial, self-organized germ

layers mimicking the early embryonic events of gastrulation

(Warmflash et al., 2014; Etoc et al., 2016; Chhabra et al., 2019;

Minn et al., 2020). Directing micropatterned hPSCs to neural fates

results in self-organized neuroectoderm specifically (Knight et al.,

2015). Depending on culture conditions, layers representing

neural plate, neural crest, placode, and surface ectoderm

emerge (Knight et al., 2018; Xue et al., 2018; Britton et al.,

FIGURE 2
Bioengineering Strategies for Spinal Cord Organoids (A)
Spatial confinement using biomaterials, including micropatterned
substrates, enables control over tissue size and structure. Culture
conditions can be used to refine whether organoids are
wholly neural (including brain vs. spinal) or multi-lineage
gastruloids representing multiple germ layers. (B). Microfluidics in
2D or 3D can be used to generate orthogonal gradients capable of
patterning the wide spectrum of cell types formed along the
rostrocaudal and dorsoventral axes during spinal development (C)
Addition of genetically engineered cells to organoids can enable
vasculature, morphogen patterning, or optogenetic stimulation
for improved cell type patterning and maturation.
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2019; Haremaki et al., 2019; Sahni et al., 2021). However, most of

these models represent anterior, not posterior neuroectoderm.

Micropatterned substrates seeded with NMPs instead of hPSCs

show optimal single-lumen polarization at smaller length scales,

demonstrative of intrinsic biomechanical differences between

anterior and posterior CNS tissues (Knight et al., 2018).

Micropatterned arrays in 2D can also be used as a template

for 3D organoids. After attempting to caudalize hPSCs on

micropatterned arrays, Seo et al. show that tissues detach to

produce elongating spinal organoids that are organized along

the dorsoventral axis (Seo et al., 2021). Mesodermal cells form

a radial layer on the outer edge of the micropatterned colony,

such that when detachment occurs, they remain localized to a

single side of the organoid and act as a source for BMP

signaling. Staining, single cell RNA-seq, and spatial RNA-

seq data confirm that the resultant BMP4 gradient generates

discrete dorsal through ventral progenitor domains except for

the pMN and p3 domains, which likely require greater SHH

than the organoids are able to produce endogenously (Seo

et al., 2021). Kazbrun et al. demonstrate that stem cells

reproducibly fold into an organized 3D structure with a

single lumen when a layer of matrigel is added to their

micropatterned substrates (Karzbrun et al., 2021). These

tissues can subsequently be patterned with morphogens to

create different structures including the amnion, neural tube,

dorsal forebrain, and ventral floorplate (Karzbrun et al., 2021).

The initial size of the micropatterned array determines neural

tube shape, and as in 2D (Knight et al., 2018), folding and

polarization can be interrupted by manipulating pathways

associated with neural tube defects (Karzbrun et al., 2021).

Though traditional suspension culture organoids are also

capable of recapitulating neural tube morphogenesis (Lee

et al., 2022), the reproducibility, ease of tissue processing,

and clarity of imaging afforded by micropatterned substrates

pave the way for translational high throughput neurotoxin

and drug screening.

Geometric confinement in 3D using biomaterials is also

gaining traction, as evidence in other organ systems point to

the innate capacity of cells to self-organize and even undergo

symmetry breaking when provided appropriate spatial and

mechanical cues (Nelson et al., 2006; Zinner et al., 2020;

Gjorevski et al., 2022). Sacrificial templates restricting

differentiating neuroepithelial cells in a 3D mold have been

explored as a means to generate cylindrical neural tube

structures (McNulty et al., 2019). The 3D

microenvironment can also influence dorsoventral

patterning. Mechanoregulation of human forebrain

organoids by stretch and interactions with matrix stiffness

can enhance floor plate patterning (Abdel Fattah et al., 2021)

and alterations in extracellular matrix parameters impact

mouse stem cell-derived neuroepithelial cyst patterning

(Meinhardt et al., 2014; Ranga et al., 2016). These are

critical considerations as bioengineers design

alternatives to Matrigel as an organoid culture substrate

(Kozlowski et al., 2021).

Microfluidics gradients

Complex morphogenetic gradients can be generated using

microfluidics in vitro, enabling spatiotemporal control over

rostrocaudal and dorsoventral organization in neural tissues

(Figure 2B). By patterning WNT agonist on a microfluidic

gradient generator in 2D, Rifes et al. generate human neural

monolayers with continuous transitions between forebrain,

midbrain, and hindbrain and establish a direct relationship

between rostrocaudal organization and the steepness of the

WNT activation gradient (Rifes et al., 2020). Similarly, to

generate more caudal spinal cell types, Lim et al. use RA and

GDF11 in a microhexagon gradient array to produce MNs from

cervical through lumbar spinal cord (Lim et al., 2019). Demers et al.

create four distinct gradients of RA, SHH, BMP, and FGF by

designing microfluidic channels adjacent to the four sides of a

cell-laden gel, modelling simultaneous rostrocaudal and

dorsoventral patterning (Demers et al., 2016). Pairing

microfluidics with 3D hydrogels can produce other morphogen

gradients as well, including those for neural and non-neural

interfaces (Cosson and Lutolf, 2014; Zheng et al., 2019; Li et al.,

2021). Though throughput, length scales, and accessibility remain

concerns, combining these types of gradient-generating platforms

with geometric confinement methods in 2D and 3D offer ways to

control both spatial and phenotypic organization (Marti-Figueroa

and Ashton, 2017; Manfrin et al., 2019).

Genetically engineered cells

In addition to their uses in lineage reporting and gene

knockouts (Nie and Hashino, 2017), engineered cells have many

potential applications for controlling organoid morphogenesis and

maturation (Figure 2C). It is important to note that these strategies

have been used primarily in brain organoids but may serve as a

roadmap for future spinal cord work. hPSCs modified to express

doxycycline-inducible SHH can be cultured as discrete signaling

centers within larger spheroids (Cederquist et al., 2019). New

CRISPR-Cas9 based technology enables photoactivation of

transcription factors in 2D and 3D, allowing for optogenetic

patterning of neural organoids with SHH (Nihongaki et al.,

2017; Legnini et al., 2021). Compared to signaling centers

induced spontaneously by exogenous organoid culture

conditions, these represent intrinsic and spatially localized

methods for morphogenetic patterning. Appropriate myelination,

vascularization and electrophysiological maturation are also limited

in the absence of relevant non-neural lineages. Mixing hPSCs

engineered to ectopically express ETV2, Cakir et al. produce

organoids with vascular-like networks that successfully integrate
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and are perfused by blood vessels in vivo (Cakir et al., 2019). Similar

methods could be applied for astrocytes, oligodendrocytes, and

microglia, given the prominent role they have in transcriptional

and synaptic maturation (Porciúncula et al., 2021). Finally,

optogenetics have been widely used to interrogate neural

circuitry, but could stimulate in vitro electrophysiological

maturation and the development of synchronous network

activity (Shiri et al., 2019; Trujillo et al., 2019). By applying

optogenetic stimulation to the human cortical organoid

component of their cortico-motor assembloids, Andersen et al.

induce both contractions and calcium spikes within the skeletal

muscle component of the assembloid, demonstrating functional

neural circuit formation (Andersen et al., 2020). The potential for

engineered cells for interrogation or application of specific cell types

is only limited by the availability of appropriate gene markers and

biosensors.

Applications and challenges for
human health

The significant genetic and neuroanatomical differences

between humans and animal models have hampered translational

efforts for a variety of spinal cord conditions, including spina bifida

(Juriloff, 2000), chronic pain (Burma et al., 2017), amyotrophic

lateral sclerosis (Bonifacino et al., 2021), multiple sclerosis

(Procaccini et al., 2015), and spinal cord injury (Nardone et al.,

2017). However, most of the mechanisms underlying human spinal

cord development and diversification remain unknown. Given that

successful CNS regeneration in non-mammals relies on reactivation

of key developmental signaling pathways (Cardozo et al., 2017),

filling this knowledge gap is critical. Moreover, while the foundation

of the neural tube is fully established within weeks of gestation, the

spinal cord continues to mature past birth as corticospinal, motor,

and sensory pathways develop and are dynamically refined. Spinal

cord organoids represent an opportunity to study human-specific

spinal cord circuits through both space and time as genome-editing,

multi-omics, and live-imaging are applied to increasingly

sophisticated models. Findings contribute not only to a basic

understanding of human biology, but also strategies for

pharmacological interventions, gene therapies, and cell

transplantation. With patient-derived induced human

pluripotent stem cells (hiPSCs), these organoids can reflect

diverse genetic backgrounds and be used to investigate the

molecular basis for patient-specific neurodegenerative

phenotypes, advancing personalized medicine approaches.

Finally, high-throughput microphysiological systems

designed to screen for chemical/drug-induced neurotoxicity

and novel pharmacological candidates have the potential to

more effectively identify clinically relevant compounds while

reducing the use of animals and high costs associated with pre-

clinical and clinical trials. Though nascent, spinal cord

organoids have shown remarkable progress in just a few

short years and are expected to demonstrate even greater

usefulness as tools for both basic science and translational

research as these technologies continue to mature.
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