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Convolutional neural networks have become the
state-of-the-art method for image classification in the
last 10 years. Despite the fact that they achieve
superhuman classification accuracy on many popular
datasets, they often perform much worse on more
abstract image classification tasks. We will show that
these difficult tasks are linked to relational concepts
from cognitive psychology and that despite progress
over the last few years, such relational reasoning tasks
still remain difficult for current neural network
architectures. We will review deep learning research
that is linked to relational concept learning, even if it
was not originally presented from this angle. Reviewing
the current literature, we will argue that some form of
attention will be an important component of future
systems to solve relational tasks. In addition, we will
point out the shortcomings of currently used datasets,
and we will recommend steps to make future datasets
more relevant for testing systems on relational
reasoning.

Introduction

Convolutional neural networks (CNNs) have
become the go-to method for image classification since
Krizhevsky, Sutskever, and Hinton (2012) were able to
win the ImageNet competition (Deng et al., 2009) by a
wide margin. Despite the success of CNNs in the field
of image classification, there remain some classification
problems that seem to be much more challenging for
CNNs and other currently available neural network
architectures. Examples for such challenging tasks
can be found in a subset of the Synthetic Visual
Reasoning Test (SVRT) dataset by Fleuret et al. (2011)
or in work inspired by Raven’s Progressive Matrices

(Raven et al., 1938). In this article, we will try to
convince the reader that tasks that can be categorized
as relational concepts are relevant for practical
applications and are still difficult to solve for currently
used deep learning architectures. In addition, we will
point out that all currently used datasets to test for
relational reasoning have one shortcoming or another.
Our hypotheses, which we will try to argue for in this
work, are as follows:

Hypothesis 1 (H1). Attentional mechanisms will be
an important component to successfully and efficiently
learn relational concepts.

Hypothesis 2 (H2). Relational concepts are more
difficult to learn for current neural network architectures
than other concepts.

Deep learning (LeCun, Bengio, & Hinton, 2015)
has become the workhorse of the machine learning
community in the last 10 years. In the form of CNNs,
first introduced by LeCun et al. (1989), it has been
especially successful in solving computer vision tasks.
Deep learning systems are built from networks of
artificial “neurons.” In the end, such a neuron is a
weighted sum of its inputs x with an added bias b. The
weights w of this sum are also said to be the weights
of the neuron. A nonlinear function f (called the
activation function) is then applied to the resulting sum:

y(x1, x2, ..., xn) = f

⎛
⎝

n∑
j=1

(
xjw j + b

)
⎞
⎠ (1)

These neurons are generally organized in layers and
the outputs of neurons of previous layers become
the inputs of neurons of later layers. The weights,
therefore, connect neurons of the previous layer
to the neurons of the next layer. Deep learning is
named after the circumstance that modern architectures
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are, in comparison to previously used artificial neural
networks, very deep (i.e., they are constructed of many,
sometimes up to multiple hundred, layers)

The output of a neuron, for a given input, can be
changed by modifying its weights w. The main idea of
deep learning systems is to change the weights of all
neurons so that a given input will produce an expected
output. Changing the weights by hand is not feasible,
so training data are utilized to automatically adapt the
weights. Data used for training the network consist of
input/output pairs (e.g., images and their correct class).
The network is fed with the inputs and a loss function
is used to compare the output of the network with
the known correct output. More specifically, the loss
function returns a numeric value that indicates how
close the output of the network is to the correct output.

This whole neural network is in essence a giant
formula that is differentiable. Single points of
nondifferentiability generally do not pose a problem in
practice and occur in many modern neural network
architectures.1 Therefore, we can also calculate the
gradient of this whole system with respect to the
weights. The gradient gives us information on how
to change the weights so that the output of the
loss function will get slightly lower for the currently
presented data. Doing this over and over for known
data moves the weights of the neural network to values
that will give us the correct output for a certain input.

If the training was done successfully and with
enough and representative training data, the resulting
network will now also generalize to unseen data and will
give us the correct output for previously unseen input
(e.g., the correct class for a new image that is not in our
training data). This, of course, only works within limits
(i.e., if the training data are statistically similar enough
to the unseen data so that the network can generalize).
Mårtensson et al. (2020) could, for example, show that
for MRI images, even different tissue contrast from
the training set leads to much poorer generalization
performance. The question of why deep neural networks
generalize as well as they do in many cases and at which
point generalization breaks down are questions that
are not yet answered sufficiently and are still a topic of
ongoing research (e.g., Zhang, Bengio, Hardt, Recht, &
Vinyals, 2017, and Novak, Bahri, Abolafia, Pennington,
& Sohl-Dickstein, 2018, among many others).

Concept learning

Concepts are the glue that holds our mental world
together (Murphy, 2004).

The decision of which group (or class) a stimulus
belongs to is usually called classification in the field of
machine learning. In cognitive psychology, the same
task is more widely known as categorization and is

thought to be facilitated by knowledge in the form of
concepts.

The idea of concepts emerged from the observation
that humans categorize and group objects and
experiences to be able to efficiently navigate the world
and transfer knowledge from one concrete physical
object to another. For example, although every object in
a grocery store is unique, we might categorize multiple
of them into the concept of “Tomatoes” and transfer
the knowledge we have obtained from past experiences
with other objects in the concept “Tomatoes,” and
even information we have read about the concept
“Tomatoes,” to infer a lot of information about other
concrete physical objects (i.e., other tomatoes) that
we have never seen before. Therefore, the concept
“Tomatoes” allows us to infer that we probably would
or would not like to eat these concrete tomatoes,
although we have never tasted them. Being able to
form vast networks and hierarchies of robust concepts
is what allows humans to successfully navigate even
completely foreign environments and situations. The
ability to learn such concepts from observation and
experience is called concept learning. From the point of
view of machine learning, concept learning is therefore
all about maximal utilization of and generalization
across training data. Three broad types of concepts can
be differentiated, namely, perceptual, associative, and
relational concepts2:

Perceptual concepts, also known as similarity-based
concepts, group stimuli by their physical similarity.
The perceptual concept “tree,” for example, can be
learned by the fact that most trees look similar (i.e., the
statistical distribution of features of one tree is similar
to the statistical distribution of features of another
tree).

Associative concepts emerge because multiple stimuli
are associated with the same event or outcome. Thus,
one member of an associative class can be represented
by another member of the same class. A human can, for
example, associate the written word “tree,” the picture
of a tree, and an actual physical tree, because all these
stimuli convey the same abstract meaning (i.e., in many
contexts, the word “tree,” the picture of a tree, and an
actual physical tree can stand in for each other). This is,
for example, what allows humans to transfer knowledge
gained by reading about trees to actual physical trees.

Relational concepts put multiple entities in a
relationship to each other. The same–different concept
is one of the most studied relational concepts. For a
human, it is very natural to attach the label “same”
to objects if they are similar in some property (e.g.,
height, color, movement direction). It is essential to
differentiate between perceptual and relational concepts:
A cup might be grouped into the perceptual concept
“cup” because it looks similar to other cups. Given a
scene with multiple cups, a subset of these cups might
be grouped if they are more similar to each other than
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they are to the other cups, and the relational concept
“similar cups” might be applied to this group of
cups. This information might, for example, be used to
determine that all of those “similar cups” probably are
able to hold the same amount of liquid, without having
to actually test each individual cup. Another kind of
relational concept includes transitive relations like
“stronger than,” which can be used to infer a strength
hierarchy without having to test one’s strength against
every member of a group. If A is stronger than I, and
B is stronger than A, it is very likely that B will also be
stronger than myself, so I can prevent possible injury by
not even competing against B. So a perceptual concept
can apply to a single entity, while a relational concept
can only be applied to at least two entities.

The rest of this article is structured as follows:
In the next section, “Related work,” we will present
experimental evidence that many animals are also able
to learn the previously mentioned concept classes, give
an overview of often used neural network architectures,
and provide an overview of how existing research
in the area of deep learning relates to these concept
classes. The section “Current research on deep learning
for visual relational concepts” composes the main
part of this article. We will take a closer look at deep
learning research on relational concepts and showcase
that deep learning methods still struggle with such
tasks for the most part. In cases where deep learning
systems seemingly are able to solve relational concept
tasks, we will point out possible flaws in the datasets
indicating that it is difficult to conclude whether the
neural network learned the real underlying relational
concept with currently used datasets. The discussion
will try to coalesce all the findings into actionable steps
for further research.

Related work

The idea of concepts as well as the three classes of
perceptual, associative, and relational concepts emerged
from an anthropocentric perspective. Therefore, it is
not surprising that humans have no difficulty learning
all of them. However, there is also sufficient evidence
that at least some animals can learn these concepts to
some degree. This indicates that the ability to form
abstractions, separate from concrete physical objects,
is not something that only humans possess and, more
important, that not only humans can learn.

Regarding perceptual concepts, Herrnstein and
Loveland (1964) did already show that pigeons can
be trained to classify images (e.g., into the classes
“person” and “nonperson”) and also generalize to new,
unseen images, indicating that they can learn perceptual
concepts. Schrier and Brady (1987) showed the same for
macaque monkeys, Vogels (1999) for rhesus monkeys,

Figure 1. Visualization of a testing procedure employed by
Wasserman et al. (1992) to determine whether an animal can
learn associative concepts. The animal is trained to select the
same response for multiple stimuli (a big circle when shown a
vertical line or the color red and a small dot when shown a
horizontal line or the color green). The colors red and green are
later also associated with different responses (a blue light and a
white light, respectively). The animal is then tested for the
remaining two stimuli and the new responses. If the animal did
indeed learn associative groups, one would expect that the blue
light is selected for a vertical line and the white light is selected
for the horizontal line, even though these specific
stimuli/response pairs were never presented during training.

Vonk and MacDonald (2002) for gorillas, and Vonk
and MacDonald (2004) for orangutans. This might not
be too surprising, since a bird will readily eat a cherry
without having first tasted this specific cherry, but it
shows that these concepts do not have to be genetically
predetermined but can be learned from experience, even
in animals.

To test whether animals can form associative
concepts, they can be trained to select the same response
for multiple stimuli. An animal can, for example, be
trained to respond to the color red as well as the picture
of a vertical line by selecting a big circle. Similarly,
a green light and a horizontal line can be associated
with a small circle (see Figure 1). The hypothesis is
that the red light and vertical line, as well as the green
light and the horizontal line, would be grouped in two
associative classes because they are linked to the same
response. To test whether this hypothesis is correct, the
red and green light are later associated with another
pair of responses, namely, a blue and white light. If
associative classes are formed by the animal, testing the
vertical and horizontal line as a stimulus and the blue
and white light as possible responses should lead to a
higher probability of pairing the vertical line with the
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blue light and the horizontal line with the white light,
even though these stimuli/response pairs were never
seen by the animal before. Wasserman et al. (1992)
performed exactly this experiment and could show that
pigeons can learn associative concepts. This might be
a more surprising outcome, but it demonstrates that
even associating physically completely unrelated stimuli
to each other, and therefore being able to transfer
knowledge gained from one stimulus to the other, is
not something uniquely human. From an evolutionary
perspective, it makes sense for animals to possess the
ability to form associative concepts since it reduces the
amount of potentially fatal experiences an animal has
to have to learn. This ability is brought to perfection in
humans who can learn from the experiences of other
humans by communicating abstract concepts.

The same/different task, in which stimuli have to
be compared for identity or similarity in one form
or another, has been the most thoroughly studied
relational concept in animals. Zentall and Hogan (1976)
showed that pigeons could choose a shape that is
identical to a previously presented shape and that this
ability also transfers to shapes not seen during training.
These results for pigeons have been confirmed multiple
times by different researchers in the following years
(e.g., Blaisdell & Cook, 2005; Katz & Wright, 2006).
The ability to learn the same/different concept has also
been shown for bottlenose dolphins by Mercado et al.
(2000); for infant chimpanzees by Oden, Thompson,
and Premack (1990); for African gray parrots by
Pepperberg (1987); for rhesus and capuchin monkeys
by Wright and Katz (2006); for dogs by Byosiere, Feng,
Chouinard, Howell, and Bennett (2017); for rats by
Wasserman, Castro, and Freeman (2012); for ducklings
by Martinho and Kacelnik (2016); and for bees by
Giurfa, Zhang, Jenett, Menzel, and Srinivasan (2001).
This allows animals to transfer information about a
concrete object to similar objects and therefore make
learning more efficient. In addition, researchers were
able to determine that a wide array of animals are
able to use transitive relational concepts to efficiently
determine social order (e.g., Grosenick, Clement, &
Fernald, 2007, for fish; Hogue, Beaugrand, & Laguë,
1996, for hens; and Bond, Kamil, Balda, et al., 2004, for
pinyon jays).

The fact that many animals can learn concepts from
all three concept classes (including relational concepts)
suggests that this capability is valuable for agents
interacting with and learning from the real world.

Concepts and deep learning

The question of which of the three concept classes
can be learned with deep learning has not been
systematically studied until now. More generally, to the
best of our knowledge, the connection between concept

classes and deep learning has not yet been made to
the extent presented in this work. We think that this
novel viewpoint is useful since the concept classes
seem to align quite well with how difficult tasks are for
feed-forward networks. Specifically, tasks that can be
seen as learning relational concepts seem to be more
difficult to feed-forward neural networks than tasks
including other concepts.

Although it is rarely presented from this perspective,
CNNs were specifically developed to solve perceptual
concept learning. The architecture of CNNs is
specifically designed to classify images using statistical
correlations between image patterns of a more and
more abstract nature as the information flows to higher
layers (Cammarata et al., 2020). The tasks for which
CNNs are most widely used (i.e., classifying novel
images that were not seen during training) are almost
identical to the experiments used to show the ability of
perceptual concept learning in animals.

One widely used dataset for classification in deep
learning research is the one employed in the ImageNet
Large Scale Visual Recognition Challenge (Deng
et al., 2009), consisting of 1.2 million training images,
categorized into 1,000 classes. The top-5 error rate3
of humans on this dataset is 5.1%, according to
Russakovsky et al. (2015). It should be noted that this
number was obtained by only testing a single subject,
but it is the only officially published result for humans.
The tested subject describes his experience with the
task in Karpathy (2014). According to the author,
it is difficult to even get an overview of what 1,000
classes are available for selection, and fine-grained
classification (there are more than 120 different breeds
of dog as separate classes in the dataset) is quite difficult
for humans. The CNN architecture presented by He,
Zhang, Ren, and Sun (2015) first outperformed the
5.1% error rate of the tested human subject with a top-5
error rate of 4.94%, which has steadily fallen to around
1.2% by 2020 (Pham, Dai, Xie, Luong, & Le, 2020).
Considering that CNNs perform better than humans
on many tasks that are similar to the ones intended
to detect perceptual concept learning in animals, it is
not unreasonable to assume that perceptual concept
learning is the prime example of a task that CNNs are
exceptionally good at.

To the best of our knowledge, deep learning has never
been explicitly tested on associative concept learning in
the way animals are usually tested. Mondragón, Alonso,
and Kokkola (2017) proposed the use of deep learning
architectures to model associative concept learning but
did not perform any experiments.

Despite the lack of explicit experiments in this area,
some research does show that a form of associative
concepts emerges implicitly in certain circumstances
via so-called multimodal neurons. Kim, Hannan, and
Kenyon (2018a) were able to show that a biologically
inspired, hierarchical CNN, which utilizes sparse
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coding, produces neurons that strongly activate for
persons, even in costume, and the names of those
persons. The authors used the biologically inspired
“Locally Competitive Algorithm” by Rozell, Johnson,
Baraniuk, and Olshausen (2007) to train the network.
Other evidence for multimodal neurons comes from
research by Goh et al. (2021) on neurons in the
CLIP architecture by Radford et al. (2021), which is
simultaneously trained on images and image captions
using a variant of stochastic gradient descent (SGD).
The authors were able to find neurons in the CLIP
architecture that, for example, strongly activate for
images of spiders, spider webs, and Spiderman in
his costume but also images that contain the text
“Spider.” These multimodal neurons could therefore
be interpreted as implicitly learning something akin to
associative concepts.

This would indicate that at least some deep
learning architectures can implicitly learn associative
concepts in their intermediate representations. A direct
investigation instead of purely coincidental evidence
will be needed to get a better understanding of how
well different deep learning architectures can deal with
associative concepts.

Relational concepts are interesting since they are not
the kind of problems that deep learning was initially
conceived for but are nonetheless very important
from a practical point of view for a wide range of
computer vision applications. Imagine a robot that is
asked to pass the “large cup.” The visual reasoning
system of this robot has to be able first to detect cups
in its vicinity using perceptual concepts and then use
relational concepts to compare the size of the cups to
see which one might be considered the “large cup.”
Understanding relational concepts would also allow the
robot to transfer knowledge gained about one of the
cups to all similar cups, ensuring that training data are
utilized most efficiently. In addition, a robot should be
able to learn new relational concepts from interactions
with humans. Once natural language interfaces to
computer systems become commonplace, it will be
essential to understand relational concepts since a
sizable part of human communication utilizes relations.
Therefore, it is not surprising that a lot of the research
into relational concept learning (even under a different
name) comes from the field of visual question answering
(VQA) (Wu et al., 2017). For these tasks, a system
tries to learn how to answer questions about an image,
where the questions are asked in the form of natural
text. These tasks, unfortunately, mix pure learning
of relational concepts with problems from natural
language processing (i.e., to understand the question).
Therefore, we excluded VQA research from this article
since it mixes two separate problem fields, which makes
answering the question of whether a system could learn
relational concepts even harder than it already is when
concentrating on more abstract classification tasks.

Fortunately, over the last few years, researchers have
looked at learning relational concepts from images
using more abstract tasks to accurately measure the
performance of deep learning methods on relational
concept learning while minimizing the influence of
other confounding factors. In this article, we will
concentrate on such “pure” tasks.

Deep learning architectures

Since some specific neural network architectures
were used in multiple works that will be presented in
this article, we will briefly give an overview of how
they work and why they might be used in certain
circumstances:

CNNs: When applied to image data, the inputs of
a neuron can be organized so that the output of the
neuron is equivalent to the application of a filter (e.g.,
Gabor filters) to a specific image region. The kernel
of the filter directly corresponds to the weights of the
neuron. Since, in most cases, a filter for one region of an
image will be equally helpful for other regions, applying
the same “filter neuron” for all positions of an image is
common. This procedure is equivalent to a convolution
between the filter kernel and the image. Hence, layers
of such neurons are called convolutional layers and
neural networks making use of such layers are called
CNNs. In essence, a CNN is purposefully designed to
efficiently process and learn from two-dimensional data
and utilize spatial invariance, which is present in many
images to a certain degree.

Note that learning the weights means that the kernels
of the filters used in a CNN are also learned from the
data and are not predetermined. For CNNs, it has been
shown that this training procedure leads to the layers
extracting features, which are then combined into more
and more complex features as the information flows
toward higher layers. This hierarchical extraction of
features has been demonstrated exceptionally well in a
series of articles by Cammarata et al. (2020).

Residual networks (ResNets), introduced by He,
Zhang, Ren, and Sun (2016), are one of the standard
CNN architectures widely used in practice because
they overcome one shortcoming of plain CNN
architectures: The expressivity of a neural network
(i.e., the complexity of the computed function) grows
exponentially with the number of layers, but only
linearly with the number of trainable parameters.
This has been shown theoretically for fully connected
networks by Raghu, Poole, Kleinberg, Ganguli,
and Sohl-Dickstein (2017), and empirical evidence
shows that this likely also holds for CNNs. So deeper
networks would generally be preferred to shallower
ones. Unfortunately, just stacking more layers leads to
the so-called degradation problem, where the accuracy
a network achieves when being trained on a specific
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Figure 2. Schematic visualization of a residual block (the main
building block of residual networks).

dataset is getting worse the deeper the network gets.
This is somewhat counterintuitive since unneeded
layers could just be optimized to resemble an identity
function, resulting in an output identical to a shallower
network. However, this does not happen in practice,
indicating that deeper networks are generally harder to
optimize if their architecture is not adapted.

Residual networks mitigate this problem by not only
sending an input x through some of the network layers
themselves but also adding the input to the output of
the layers at a later point (see Figure 2). This forwarding
of the input to deeper layers is called a shortcut or skip
connection. If the layers themselves calculate F (x), this
whole block calculates F (x) + x and is called a residual
block. By optimizing the weights of the layers, we are
optimizing a residual term, hence the name residual
networks.

For the standard residual networks, the layers
themselves are convolutional layers, and the whole
network consists mainly of a sequence of such residual
blocks shown in Figure 2. Although such a residual
block should theoretically not be able to learn more
than the same network without the skip connection,
currently used optimization schemes seem to have a
much easier time optimizing this alternative residual
rephrasing of the original problem. One reason is that
instead of learning an identity function, the layers
in a residual block only have to be pushed to output
zero since the skip connection already implements the
identity function. Another advantage might be that

Figure 3. Schematic visualization of how an LSTM network is
being applied to a sequence of inputs. On the left side is the
general architecture, which is applied iteratively to the input
sequence. The right part demonstrates how this iterative
architecture can be unrolled to accept a whole sequence at
once.

there is always one path for the training signal (via the
gradient) to flow to higher layers without going through
all the layers themselves.

In Peer, Stabinger, and Rodríguez-Sánchez (2021),
we were able to present another reason why such skip
connections improve the training outcome. We were
able to detect layers in neural networks that we named
conflicting layers, where inputs with different labels
collapse to a single point in the activation vector space.
We showed theoretically and empirically that conflicting
layers degenerate the gradient during training so
that weights of the neural network are updated into
wrong directions, leading to worse training outcomes.
We could show that residual connections skip these
conflicting layers.

All these reasons might explain why skip connections
seem to perform well in practice and are among the
standard architectural components of most modern
deep neural networks. Because of this, residual networks
have become one of the most widely used architectures
for computer vision applications.

Long short-term memory networks (LSTM-networks)
are a type of neural network architecture developed
by Hochreiter and Schmidhuber (1997) for processing
sequences of inputs and are an example of so-called
recurrent neural networks (RNNs) in comparison
to feed-forward neural networks like CNNs. Given
a sequence (x0, x1, · · · , xn), each vector xt of this
sequence is iteratively fed to the LSTM as an input,
which produces a hidden state ht as well as a cell state ct.
ht is used as the output of the LSTM for step t, but the
contents of ht and ct are also used, together with xt+1,
as the input to the LSTM for step t + 1. The network
can therefore forward information to itself in the future
(i.e., it can “remember” information). Figure 3 shows
how such an LSTM-network is applied to a sequence
of inputs.

In practice, the LSTM is not iteratively applied to
the sequence, but the iterations are unrolled. During
unrolling, for a sequence of length n, the same LSTM
is replicated for each of the n iterations, transforming
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recurrent connections to feed-forward connections, and
the resulting bigger system is treated as a single neural
network, which can consume the whole sequence at
once (see the right side of Figure 3).

What information is encoded in ct and ht is not
predefined but is learned from the training data by
the LSTM via multiple internal neural networks. The
unrolled network is trained like any other neural
network using a loss function and gradient descent.
That is, an expected output sequence (y0, y1, · · · , yn)
is compared to the actual output of the LSTM
(h0, h1, · · · , hn) via an appropriate loss function,
a gradient with respect to the network weights is
calculated, and gradient descent is used to change
the weights of the LSTM in the right direction. Note
that all copies of the LSTM that were “produced”
during unrolling are still the same network and have
to stay identical also during/after training. Therefore,
the weight updates of all instances of the LSTM are
aggregated and applied to all instances of the LSTM.
Since after unrolling, the gradient propagates through
all the duplicates of the LSTM for all the elements of
the sequence, the LSTM can “learn” to remember some
information because it will be helpful later.

Often, the output needed from an LSTM is not
a sequence of vectors but a single vector (e.g., for
classifying a sequence), in which case only the output
hn for the last element in the sequence is compared to
an expected output, and all the other hidden states
(h0, h1, · · · , hn−1) are ignored for the loss.

LSTMs and RNNs, in general, have three advantages
over feed-forward networks: (1) They can operate over
sequences of arbitrary length because the unrolling
can be done dynamically. Imagine we want to classify
sentences: We can interpret the sentence as a sequence
of symbols that we can feed to an LSTM and use the
final output of the LSTM to classify some property
of the sentence (e.g., its sentiment). Since we can
unroll the LSTM to any length we want, we are
not restricted by the length of the sentence. At least
not in theory; in practice, using an LSTM for much
shorter/longer sequences than it was trained on might
lead to diminished performance. (2) The fact that
the same neural networks process each element of
the sequence in the LSTM means that the network
can generalize across positions in the sequence (like
a CNN can generalize across positions on the two
dimensions of an image). For example, if we have to
put different panels from a Raven’s Progressive Matrix
(RPM) test (see Figure 6) into relation to each other,
it is intuitive that features extracted for the upper left
panel are probably also going to be helpful for the
lower right panel and so on. (3) Through the structure
of a sequence, we implicitly model that all elements
of the sequence are closely related to each other (e.g.,
all symbols of a sentence, or all panels from an RPM
in our case) and most of the relevant information can

Figure 4. Schematic visualization of a relation network. Features
of object pairs are sent through the same neural network gθ ,
which extracts features encoding the relationship between the
objects in each pair. These relation features are added to
accumulate the relational information between all object pairs,
and the resulting vector is interpreted by a neural network fφ
to solve a specific task like classification.

be inferred by putting them in relation to each other
(e.g., the individual symbols in a sentence only really
become informative once they are seen as words etc.),
which is helpful if we want to learn relational concepts.
One problem with LSTMs when modeling relational
concepts is that the entities to be put into relation with
each other already have to be separated to feed them
into the LSTM as a sequence. This splitting does work
for many synthetic datasets, but for real images, the
entities first have to be separated, which needs some
form of attention, supporting Hypothesis 1.

Relation networks (RNs; see Figure 4), introduced
by Santoro et al. (2017), are based on the principle of
applying a neural network gθ to all possible “object”
pairings to detect relationships between them. The
big advantage of this is that the application of gθ on
the object pairs can be done iteratively. Therefore, the
network size does not increase with the number of
objects to be compared, similar to how the size of an
LSTM does not increase with the length of the sequence
to be processed. Objects, in this case, are simply
features for which a relationship should be detected.
The output of gθ for all pairs is added to integrate
the information of possible relationships between all
object pairs, and the result is sent through an additional
neural network fφ to produce a final classification. This
network architecture was able to achieve superhuman
performance on the Compositional Language and
Elementary Visual Reasoning (CLEVR) dataset by
Johnson et al. (2017), which consists of rendered
scenes containing different simple objects of varying
sizes, colors, and materials (see Figure 5). The dataset
also includes written questions that, in part, require
relational reasoning to be solved (e.g., “Are there any
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Figure 5. Example image from the CLEVR dataset by Johnson
et al. (2017). A possible question for this image could be: “What
size does the cylinder with the same color as one of the spheres
have? with the correct answer being “small.”

rubber things that have the same size as the blue metallic
sphere?”).

In our opinion, the RN architecture has two main
bottlenecks: First, given n objects to be compared,
gθ has to be evaluated

(n
2

)
times, so the number of

evaluations of gθ grows following O(n2). If relationships
between more than two objects should be handled,
the number of needed evaluations proliferates. For
relationships between r objects, the network gθ has to
be evaluated

(n
r

)
times, so the number of evaluations

grows with O(nr). Therefore, this approach is only
practical if the number of “objects” can be kept
relatively small. Without an attention mechanism,
Santoro et al. (2017) were not able to directly extract
features of objects because there was no information
about what part of an image is an object. This is the
same problem we already mentioned for LSTMs and
supports Hypothesis 1, which states that some form
of attention is an essential component of a system
to learn relational concepts. The authors decided to
extract features from all positions on a grid over the
whole image and handle each position as an object.
This method, lacking attention, means that the number
of “objects” to be compared grows quadratically with
the image’s resolution. Also, this increase in object pairs
results in more and more relation features that have to
be integrated, increasing the likelihood that irrelevant
relationships between other object pairs wash out
helpful information. Second, given two object features,
the network gθ has to recognize the relationship from
the information contained in those features alone.
If the relationship to be detected is “similarity,” the
representations have to contain all the information
to reconstruct the object from it. With more complex
objects, these features will become very complex, and a
large amount of information must be passed along to
fφ. This bottleneck could be circumvented by iterative
processing since the comparison could be made in
multiple iterations, and in each iteration, only a tiny
part of the whole information from both entities has to
be compared.

Although the results of RNs on the CLEVR dataset
seem pretty promising, the actual variance encoded
in a scene is surprisingly small. There are only 96
different combinations of shape, size, material, and
color. In essence, this means an object in the CLEVR
dataset only contains fewer than 7 bits of relevant
information. Some form of positional information,
putting the objects in spatial relation to each other, is
also needed to solve some of the questions (e.g., “left
of,” “behind”) contained in the dataset. Still, this will
likely not increase the amount of information needed
to encode a complete scene by a considerable amount.

Therefore, it is not clear how well the results of
RNs on the CLEVR dataset transfer to real-world
tasks. Results with different datasets, which will be
presented over the rest of this article, indicate that
the performance of RNs decreases for more complex
datasets.

Current research on deep learning
for visual relational concepts

Since most of the research on deep learning is
concerned with perceptual concept learning and the
systems perform very well on these tasks by design,
we will not analyze this group of tasks in more detail.
Furthermore, to the best of our knowledge, there is no
explicit research on deep associative concept learning,
and we will therefore not analyze these tasks in more
detail either. In our opinion, the most interesting tasks
can be found within the area of relational concept
learning since these tasks seem to be right at the border
between solvable and unsolvable tasks for deep learning
methods and are also relevant for many practical
applications. As mentioned, we will concentrate on
“pure” tasks from this domain.

Work on Raven’s Progressive Matrices

Raven’s Progressive Matrices (RPMs), first presented
by Raven et al. (1938), are a widely used set of problems
to evaluate abstract reasoning and fluid intelligence
in humans. Raven’s Progressive Matrices consist of a
matrix of abstract images related to each other along
the columns or rows following specific rules. One of the
images is left blank and has to be selected from a set of
candidates to relate to the other images following the
established rules. Following Occam’s razor (Schaffer,
2015), the most straightforward rules that can explain
the relationships between the images are the correct
ones. Figure 6 shows an example of such an RPM.

Learning rules on how a system changes over time
and using those rules to predict the future state is, of
course, a fundamental property an agent interacting
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Figure 6. Example of a Raven’s Progressive Matrix. The defining
property of this RPM is that the number of shapes increases by
one from image to image along the columns while preserving
the properties of the shapes. The correct solution therefore is
the second image of the first column. Adapted from Barrett
et al. (2018).

with the world has to master. To learn the rules that
drive the change of a system, one has to determine how
already observed states relate to each other, and RPMs,
in essence, test this capability. This is indicative of how
important it is to be able to learn relational concepts.

Collections of RPMs used to test humans are not
well suited for machine learning since the number of
available examples is usually insufficient. Thus, it would
not be possible to distinguish the inherent shortcomings
of a method from a simple lack of sufficient training
data. Wang and Su (2015) were the first to use an
algorithm to generate an arbitrary number of RPMs.
This dataset would have been suited for experiments
with machine learning systems, but no such experiments
have been performed to our knowledge. Fortunately,
multiple datasets have been created by now that follow
the basic concept of Raven’s Progressive Matrices and
are specifically designed for machine learning research.

Deep learning and Raven’s Progressive Matrices
As far as we can tell, the earliest such work is

by Hoshen and Werman (2017), who looked at the
performance of neural networks when tasked with
choosing or generating the correct continuation of a
sequence of changing images, reminiscent of Raven’s
Progressive Matrices. The networks had to either
choose from a predefined set of images (multiple-choice
task) or had to generate the next image in the sequence
directly (open question task). Different transformations
(e.g., rotation, size, reflection, color) were used to
generate the image sequences.

For the multiple-choice part, a sequence of images
is presented to the neural network, together with a

Figure 7. An example for the kind of problems used in the
multiple-choice task by Hoshen and Werman (2017). The first
two images are given, showing a triangle that is rotated by a
constant angle between the first and second image. Four
possible continuations of this sequence are given, with
Option 1 being the correct one in this case.

set of possible candidates for the next image in the
sequence. The network’s task is to select the image that
continues the underlying pattern. Figure 7 shows one
example of the multiple-choice task. It was solved by
the authors using a network architecture similar to
AlexNet (a conventional CNN architecture without
skip connections) by Krizhevsky et al. (2012), which
was used without pretraining on another dataset first.
The image sequence and possible solution images were
presented to the network as a stack of separate images.
Thus, the system did not have to detect and separate
the entities and possible solutions independently. The
system was able to solve this task with an average
accuracy of 97%.

For the open question part, the network did not select
an image from a set of possible solutions but generated
the next image directly. The network architecture for
these problems was based on the DC-GAN architecture
by Radford, Metz, and Chintala (2015), which was
also used without pretraining. The performance was
measured using the mean squared distance between the
ground truth image and the generated image, and the
results were also checked qualitatively. The network
achieved an average mean squared error of 3.96 · 10−4,
and the resulting images looked qualitatively close to
the correct solution.

The results show that even simple CNN architectures
are surprisingly good at solving these supposedly
complex relational reasoning tasks. Unfortunately,
since the networks were trained using 100,000 images
and it is hard to judge the actual variability of the
dataset, the achieved accuracy could also be the result
of memorization by the network.

As previously mentioned, the images were fed to
the network as already separated entities, which is
equivalent to an external attention mechanism. Following
Hypothesis 1, this already removes one of the main
difficulties of such a task. Kim, Ricci, and Serre (2018b)
also pointed this out in a different context. In our
opinion, the dataset is therefore not suited for judging
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Model Accuracy

Blind ResNet 22%
CNN 33%
LSTM 36%
ResNet-50 42%
Wild-ResNet 48%
WReN 63%

Table 1. Average accuracy of different
architectures tested by Barrett et al. (2018) on
the Procedurally Generated Matrices dataset.
Adapted from the original article.

a system under real-world circumstances, where such a
preattention mechanism usually is not present.

Procedurally generated matrices
Barrett et al. (2018) extended on the ideas by Hoshen

and Werman (2017) and replicated RPMs more closely.
The authors call this dataset the Procedurally Generated
Matrices (PGM) dataset, which is freely available.
Figure 6 shows a visualization of an example from this
dataset. Different architectures were trained and tested
on the PGM dataset. The data were again provided to
the network as an image stack of 16 separate images
(the eight context panels and the eight answer panels).
The networks had to select the right panel from the
provided answer panels. The rules used for generating
the RPMs are pretty elaborate, and we would like
to refer the reader to the original article for more
information.

Five different network architectures were tested: (1)
a simple CNN; (2) a more modern CNN architecture
utilizing skip connections in the form of a ResNet-50
by He et al. (2016); (3) an LSTM based on a variant by
Zaremba, Sutskever, and Vinyals (2014) together with a
small CNN for feature extraction; (4) a novel adaptation
of a relation network (Santoro et al., 2017), which
the authors named a Wild relation network (WReN)
for which multiple relation networks work in parallel;
and (5) an adaptation of ResNet, which the authors
namedWild-ResNet for which a ResNet-50 is separately
evaluated for each answer panel. A second version
of the ResNet architecture, which the authors named
context-blind ResNet, was used to detect unwanted
statistical regularities in the dataset. The context-blind
ResNet was only given access to the answer panels and
therefore had to rely purely on statistical properties of
the answer set to solve the tasks. In essence, the result
from the context-blind ResNet is the baseline accuracy
of a system that does not know the question to be
answered. All networks were used without pretraining.

The average performance for the whole dataset can
be seen in Table 1. The results on the PGM dataset are
pretty surprising, considering that the same, simple

Figure 8. Example from the V-PROM dataset by Teney et al.
(2019). In this example, the images in the Context Panels are
related to each other along the rows by their shape. One image
is left blank, and the correct image, the heart shape, has to be
selected from the Answer Panels. Adapted from the original
article.

CNN architecture achieved 97% accuracy for the
dataset used by Hoshen and Werman (2017). The CNN
only performs slightly better than the blind ResNet,
which can be seen as the random baseline accuracy,
showing that the dataset by Hoshen and Werman
might lack in some way. Either the variability is not
large enough in relation to the number of training
samples used, which might lead to rote memorization
by the network, or the dataset contains statistical
correlations that can be used for classification. The
WReN architecture performs much better with an
accuracy of 63% but is still far from perfect. The
research by Barrett et al. (2018) would indicate that
CNNs, as well as recurrent neural networks, seem to
have difficulty with tasks that require more complex
relational reasoning, even if the entities are preattended.
Similar to the previous dataset, the fact that the entities
between which the relations should be detected are
already separated makes it difficult to judge how
the results on the PGM dataset would transfer to a
real-world scenario. Especially, the best-performing
architecture, utilizing relation networks, heavily relies
on this preattention, supporting our Hypothesis 1 that
attention is vital to solve relation reasoning tasks.

Visual Progressive Matrices
Teney et al. (2019) released a conceptually similar

dataset named Visual Progressive Matrices (V-PROM)
using natural instead of synthetically generated images.
See Figure 8 for an example. The authors also include a
wide variety of carefully crafted training/testing splits
of the dataset to evaluate the generalizability of systems
for specific concepts. There are, among others, sets
to test how well a system generalizes the concept of
counting to unseen numbers and to test if the system
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ResNet ResNet + aux.loss B.-up B.-up + aux.loss

Human accuracy 78% 78% 78% 78%
RN, shuffled input (base accuracy) 13% 13% 13% 13%

MLP 41% 45% 50% 56%
GRU 43% 48% 46% 53%
Top-VQA 37% 40% 38% 41%
Relation Network (RN) 51% 56% 55% 61%

Table 2. Accuracy over the whole V-PROM Dataset from Teney et al. (2019). Adapted from the original article.

generalizes to unseen object categories. The dataset was
tested on different network architectures. First, features
were extracted from the images using one of two
pretrained CNNs (either a ResNet101 by He et al. [2016]
or a Bottom-Up Attention Network by Anderson et al.
[2018]). These extracted features were then interpreted
by either a simple multilayer perceptron, a recurrent
neural network using gated recurrent units by Cho et al.
(2014) (a simplified version of an LSTM), the current
top-performing method for visual question answering
(Teney, Anderson, He, & Hengel, 2018), and a relation
network by Santoro et al. (2017). All systems were
trained to either select the correct image or explicitly
classify the relationships underlying the images as an
auxiliary loss. This auxiliary loss was only used during
training to guide the networks to learn good internal
representations and proved very useful. In some sense,
this loss can be seen as giving additional information to
the system about what task it is currently learning. The
authors showed that even the best-tested system (again
a relation network) was not able to approach human
performance (see Table 2).

Similar to the datasets by Hoshen and Werman
(2017) and Barrett et al. (2018), the images of the
V-PROM dataset were provided to the tested system
in an already preattended, separated way. This again
makes it difficult to judge how well the experimental
results would transfer to the real world. Considering
that relation networks, again the best-performing
architecture, profit highly from this preattended form
of data strengthens Hypothesis 1, that an attentional
mechanism will be an essential component in a system
that can solve relational reasoning tasks.

The SVRT dataset

The SVRT dataset (Fleuret et al., 2011) was created
to test the abstract reasoning capability of computer
vision systems and compare it to human performance.
The dataset consists of 23 problems that are trained for
and tested independently. The goal for all the problems
is to categorize images (showing abstract shapes) into
one of two classes that are separated by some abstract
property. For example, in Problem 1 (see Figure 9 for

Figure 9. Example images for Problem 1 of the SVRT dataset by
Fleuret et al. (2011).

example images), two shapes are present. For Class
1, the shapes are different, and for Class 2, they are
identical. Being able to detect similarity is an essential
task for any intelligent system to perform searches and
identify out of place/novel objects. The SVRT dataset
relies heavily on the ability to detect similarity for many
of the problems.

When the SVRT dataset was created, deep learning
was not yet mainstream, so the authors did not test
the dataset on those methods. The best-performing
method tested by Fleuret et al. was Adaboost by
Freund and Schapire (1997), using the Feature Group
3, which includes the “number of black pixels in a
rectangular subregion of the image for a large number
of such regions[,]... information about the distribution
of edges[,]... spectral properties of the image (Fourier
and wavelet coefficients)” (Fleuret et al., 2011). Using
a Fourier transform was also recently used to solve the
SVRT dataset by Bohn, Hu, and Ling (2019).

Before delving deeper into research done on the
SVRT dataset, we would like to mention one potential
flaw this dataset might have, in our opinion. A random
process is used to generate the shapes for the images. If
identical shapes are required, one randomly generated
shape is copied pixel by pixel and recaled and rotated
if necessary. If different shapes are needed, the random
shape generation process is used multiple times. This
way of producing images means that shapes that should
be considered identical are identical (up to scaling and
rotation for some of the problems), and shapes that
should be considered different are most likely not even
roughly resembling each other (see Figure 9). Thus, in
most cases, two shapes that approximately resemble
each other will be identical. Therefore, it might be
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Figure 10. Examples of incorrectly classified images of the
“different-class” from Problem 1 of the SVRT dataset. A
ResNet-50 network was trained on 28,000 images and the
presented images were misclassified.

enough for a system to detect a few rough local features
to be reasonably sure that two shapes are identical
without really comparing them. Looking at images
misclassified by a well-performing neural network,
it is easy to imagine that a network that uses local
features to detect similarity might think the presented
shapes are identical. See Figure 10 for images that are
misclassified by a ResNet-50 architecture with above
90% accuracy on Problem 1, where the goal is to detect
whether two shapes in an image are identical or not.
For example, the first image shows two shapes with
three sharp corners, the second two sharp corners and
one bigger “arch,” and so on. In addition, the relations
to be learned in the SVRT dataset are relatively simple
and mainly consist of recognizing similarity and the
spatial orientation shapes. The performance on the
SVRT dataset might therefore overestimate a system’s
ability to learn relational concepts truly.

We started to evaluate deep learning methods on the
SVRT dataset in Stabinger, Rodríguez-Sánchez, and
Piater (2016b) and greatly extended those experiments
in Stabinger, Rodríguez-Sánchez, and Piater (2016a) by
testing how well an old (LeNet by LeCun et al., 1989)
and a new (GoogLeNet by Szegedy et al., 2015) CNN
architecture performed on the SVRT dataset. We
trained LeNet and GoogLeNet for each problem,
except for Problems 3, 11, and 13, for which we
could not generate images with the required size. The
models were trained separately for each problem with
40,000 images and tested using 20,000 images. The
LeNet architecture was trained from scratch, and the
GoogLeNet architecture was pretrained on ImageNet.
Even though the presented images look very different
from natural images, we found that using a pretrained
network on natural images converges faster during
training.

One other goal was to compare the performance of
CNNs to that of humans who were tested by Fleuret
et al. (2011). Unfortunately, this is not directly possible
since individual subjects in practice either achieve
100% accuracy on a problem if they can figure out
the underlying rule separating the classes or achieve
accuracy close to chance if they are not able to figure
out the rule. Therefore, we report the percentage

of human subjects that were able to solve the given
problem.

Table 3 shows the results for both tested network
architectures, in addition to all other results on this
dataset by research presented in this article at a later
point.

A few surprising facts emerge: First, the best
method by Fleuret et al. (2011) outperforms many of
the more modern architectures on average. Second,
the more modern GoogLeNet architecture performs
slightly worse than the much older and simpler LeNet
architecture. Third, and most interestingly, there seems
to be a prominent grouping of problems around the
concept of shape comparison. The other results will be
discussed later in this article.

Problems for which the shapes of the entities
are related to each other (same–different problems)
are complex for CNNs and problems where the
positions of the entities stand in specific relation to
each other (spatial–relation problems) are easy for
CNNs. This is especially evident when looking at a
graphical visualization of the achieved accuracies (see
Figure 11). For the spatial–relation problems, LeNet
and GoogLeNet perform better than the best method
used by Fleuret et al. (2011). In addition, the newer
GoogLeNet performs significantly better than the
old LeNet architecture, almost reaching an average
accuracy of 100%. For the same–different problems,
the performance of the CNN architectures is much
worse. Both architectures do not achieve an accuracy
that is significantly above chance in almost all of the
cases.

Three problems seem to go against the general trend
(namely, Problems 6, 16, and 17). A system should
theoretically need to perform shape comparison to
solve these problems, but we could show that additional
information in the dataset enabled the CNNs to
correctly classify the images without the need to
compare shapes (see Stabinger et al., 2016a, for a more
in-depth explanation). This demonstrates that one has
to take great care when creating a dataset to test the
performance of machine learning systems since they
readily exploit properties of the dataset one did not
intend to be used for classification.

Ricci et al. (2018b) independently performed very
similar experiments to us on the SVRT dataset. The
authors also tested convolutional neural network
architectures on this dataset but used a whole set of
CNNs to check whether the performance difference of
same–different tasks from spatial–relation tasks was
influenced by the architecture. We refer the reader to
the original article for a detailed description of the used
architectures and training procedures.

Ricci et al. (2018b) confirmed the finding by us that
CNNs seem to be particularly challenged by tasks
that require the comparison of “objects.” The authors
could also show that the size of the network was less
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Problem LeNeta GoogLeNeta Small CNNsb CorNet-Sc ResNet-50d Fouriere Adaboostf

Parameters 60,850 7 Mio Few 10k (varied) 106 Mio 23 Mio 138 Mio Unknown
# Images 20k 20k 1 Mio 400k 100/1k/28k 20 10k Humang

Pretrained No ImageNet No ImageNet ImageNet ImageNet No Average 6.3 Rule

1 57% 50% 62% 100% 59%/88%/100% 100% 98% 98% Compare
5 54% 50% 67% 97% 56%/69%/99% 96% 87% 90% Compare & grouping
6 76% 86% 86% 58%/71%/99% 51% 76% 70% Compare & grouping
7 53% 50% 57% 56%/61%/100% 61% 76% 90% Compare & grouping
15 52% 50% 68% 86%/100%/100% 100% 100% 95% Compare
16 98% 50% 76% 84%/100%/100% 99% 100% 78% Compare
17 75% 95% 88% 69%/83%/97% 53% 67% 78% Compare & position
19 51% 50% 60% 54%/76%/99% 57% 61% 98% Compare
20 55% 50% 56% 95% 52%/56%/93% 56% 70% 98% Compare
21 51% 51% 59% 96% 51%/70%/99% 51% 50% 83% Compare
22 59% 50% 63% 70%/97%/100% 98% 97% 100% Compare
2 100% 100% 100% 100%/100%/100% 78% 98% 100% Position
3 100% 95%/100%/100% 58% 95% 100% Position
4 98% 100% 100% 100%/100%/100% 67% 93% 100% Position
8 94% 91% 95% 92%/99%/100% 83% 90% 100% Position
9 93% 100% 89% 81%/96%/96% 51% 68% 93% Size & position
10 99% 100% 100% 97%/100%/100% 84% 94% 98% Position
11 100% 100%/100%/100% 64% 96% 100% Position
12 97% 100% 100% 94%/100%/100% 57% 84% 95% Size & position
13 91% 63%/97%/100% 70% 67% 93% Position
14 90% 100% 97% 73%/99%/100% 68% 73% 98% Alignment
18 99% 99% 100% 92%/99%/100% 54% 99% 93% Grouping
23 87% 100% 94% 95%/100%/100% 55% 75% 100% Position
Average 77% 76% 83% 97% 77%/90%/99% 70% 83% 93%

Table 3. Aggregation of results for the SVRT dataset by Fleuret et al. (2011). The two groups indicate problems that entail
same–different relations or not.
aStabinger et al. (2016a).
bResults of the best-performing CNNs per problem by Ricci et al. (2018b) (reconstructed from the published graph).
cMessina et al. (2019).
dResults with 100/1,000/28,000 training images by Funke et al. (2019) (reconstructed from the published graph).
eBest results per problem by Bohn et al. (2019).
fBoosting with Feature Group 3 by Fleuret et al. (2011).
gHuman accuracies as estimated in Stabinger et al. (2016a) using experimental data by Fleuret et al. (2011).

critical for the spatial–relation problems of SVRT (i.e.,
problems where the positioning of shapes is essential)
in comparison to the same–different problems (i.e.,
problems that rely on the comparison of shapes). The
overall performance reported by Ricci et al. (2018b) (see
Figure 12 and Table 3) is higher than what we were able
to achieve in Stabinger et al. (2016a). This difference
in performance is likely a result of using more images
for training. Ricci et al. (2018b) also put some of the
problems in the opposing group, but these differences
do not change the overall conclusion.

The main conclusion from these experiments is that
convolutional neural networks have greater difficulty
detecting same–different relations than they do to detect
spatial relations. This dichotomy could be explained by
spatial relations more closely resembling a perceptual
concept since the global arrangement of objects can
often be solved by simple pattern matching, whereas
same–different problems are a classic example of a

relational concept. This strengthens our Hypothesis 2,
that current neural network architectures have more
significant problems with learning relational concepts
than learning other concepts.

It is also noteworthy that neither the method
presented by Fleuret et al. (2011) nor the human
experiments show a clear difference between the two
groups of problems, so the learning of same–different
relations does not seem to be more difficult in general
but is especially challenging for convolutional neural
networks.

Solving the SVRT dataset
In 2019, Messina et al. (2019) were able to solve

Problems 1, 5, 20, and 21 of the SVRT dataset.
The authors were able to achieve an accuracy of
above 95% for all four problems using different
ResNet architectures by He et al. (2016) as well as the
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Figure 11. Graphical visualization of the accuracy of GoogLeNet and of humans as reported in Stabinger et al. (2016a) on the problems
of the SVRT dataset by Fleuret et al. (2011). Same–different problems have a red number and spatial–relation problems a blue one.

Figure 12. Accuracy achieved by Ricci et al. (2018b) and by humans in Stabinger et al. (2016a) for the problems of the SVRT dataset by
Fleuret et al. (2011). Same–different problems have a red number and spatial–relation problems a blue one. Compare with Figure 11.

biologically inspired CorNet-S architecture by Kubilius
et al. (2018) (see Table 3 for the CorNet-S results),
but the authors had to use 400,000 training images
to achieve these results, which might be problematic,
considering the discussed potential problems of the
SVRT dataset. Both networks were pretrained on the
ImageNet dataset before being fine-tuned for the actual
task.

Bohn et al. (2019) were also able to solve many of the
same–different tasks of the SVRT dataset using deep
learning while only utilizing 20 training images (see

Table 3). They were able to achieve this by extracting
the amplitude spectrum of the Fourier transform of
the images. As the authors note, it is well known that
peaks in the amplitude spectrum correspond to periodic
patterns in the image. The peaks, therefore, encode
similarity information in a much easier to use form for
machine learning methods. Since the difficult part of
the task (finding similarities) was more or less solved in
a preprocessing step and not by the neural networks,
these results do not change our general conclusions
about the performance of neural networks for relational
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concept learning. Nevertheless, it might be a good
idea to add this preprocessing step to systems that
have to deal with same–different relations in real-world
settings. It should be noted that Fleuret et al. (2011)
already recognized the importance of spectral data
since Fourier and wavelet coefficients were already part
of the features used in the original SVRT study and
might explain the strong performance of the original
method.

Funke et al. (2019) were finally able to achieve
accuracies above 90% for all problems of the SVRT
dataset (see Table 3) without using special preprocessing
steps and with a more reasonable amount of 28,000
training images, using a ResNet-50 architecture that
was pretrained on ImageNet. Our Hypothesis 1, that
relational concept learning is more difficult for current
neural network architectures than other concepts, is
still valid, since the results when training on 100 and
1,000 images still exhibit a big difference between
same–different problems (which is a relational concept)
and spatial–relation problems (which are closer to
perceptual concepts). In addition, our experiments
in Stabinger, Peer, and Rodríguez-Sánchez (2021)
on a much more tightly controlled same–different
task (inspired by the PSVRT dataset, presented in a
later section) showed that ResNet does not perform
well on same–different tasks in general. This might
indicate that the good results by Funke et al. (2019)
are more indicative of the previously discussed
shortcomings of the SVRT dataset than the suitability
of ResNet architectures for solving relational concept
learning.

The Bongard problems

The SVRT dataset is somewhat reminiscent of the
problems presented by Bongard (1970) as examples
of problems a neural network would never be able to
solve. It has to be noted that the tasks by Bongard
were more difficult than those of the SVRT dataset
because the goal was not to classify images but to
give a textual description of what separates the two
classes. Hofstadter popularized similar problems with
his book Gödel, Escher, Bach: An Eternal Golden Braid
(Hofstadter, 1979). Figure 13 shows an example for
such a “Bongard problem.” The goal is to describe
what abstract property separates the images on the left
from those on the right. In the case of Figure 13, the
images on the left show convex shapes while the images
on the right show concave shapes. To our knowledge,
Depeweg, Rothkopf, and Jäkel (2018) are the only
researchers in recent years who tried to solve Bongard
problems as they were originally intended (i.e., trying
to generate an explanation of how two sets of abstract
images differ), but they did not use deep learning to do
so. Nie et al. (2020) created a dataset, called Bongard

Figure 13. Example of a “Bongard problem.” The differentiating
property in this case is that the images in Class 1 show convex
shapes while the images in Class 2 show concave objects.

LOGO, which is inspired by the Bongard problems.
Unfortunately, the dataset does not contain relational
tasks, so we will not cover them in this article. Yun
et al. (2020) worked on actual Bongard problems using
deep learning as part of their system but only tested
few-shot classification and also not the original task of
generating descriptions. Considering the recent success
in image caption generation by, for example, Xu et al.
(2015) Donahue et al. (2015), Fang et al. (2015), and
many more, the Bongard problems, in their original
form, might be an interesting topic for future deep
learning research.

The chess dataset

As discussed, the SVRT dataset has its flaws. In
Stabinger and Rodríguez-Sánchez (2017), we tried
to create a more robust dataset, which also more
closely resembles natural images, by rendering them
in a seminaturalistic way using a three-dimensional
rendering software (Blender Online Community, 2017).
Each image shows one or two chessboards with red
pawns randomly placed on the field.

The dataset consists of two distinct tasks: The goal
of the identity task, showing two chessboards in each
image, is to detect whether the pawn positions are
identical on both boards. The goal for the symmetry
task, showing one chessboard in the images, is to detect
whether the pawn placement is symmetric. The difficulty
of both tasks was controlled by allowing translation
of the chessboards and the camera, movement of the
camera on a virtual half-sphere around the chessboards,
and a varying amount of pawns that break the
identity/symmetry property. Example images can be
seen in Figures 14 and 15.
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Figure 14. Variations of the identity task in the chess dataset.

Figure 15. Variations of the symmetry task in the chess dataset.

We trained AlexNet by Krizhevsky et al. (2012),
VGG16 by Simonyan and Zisserman (2015), and
GoogLeNet by Szegedy et al. (2015) on all variations
of the two tasks with 1, 5, and 10 out-of-place pawns.
All networks were pretrained on the ImageNet dataset
by Deng et al. (2009), after which the last layer was
replaced by a new, randomly initialized layer, to
conform to the smaller number of classes of the chess
dataset (from 1,000 classes down to 2), and the whole
network was trained on the chess dataset, without fixing
any of the pretrained layers.

In addition, we had to employ a training scheme
that is related to curriculum learning, first proposed
by Bengio, Louradour, Collobert, and Weston (2009).
To learn the more complicated variants of a task, we
started from networks already successfully trained on
easier variations of the same task. Without employing
this training scheme, we could not train networks
to solve the tasks with only one pawn that breaks
symmetry/identity.

The results showed that the symmetry task is
considerably more manageable than the identity task,
but both tasks cannot be learned in all cases. For
example, GoogLeNet was not able to achieve accuracies
significantly above chance for the most challenging task
(i.e., camera rotation with only one out-of-place pawn),
and for the identity task, the network was not able to
perform better than chance on any of the tasks with
camera rotation, which supports Hypothesis 2.

Still, the results on the identity task were surprisingly
good, considering that GoogLeNet is not able to solve

the simple task of comparing two shapes from the
SVRT dataset and the chess dataset, with random
placement of the checkerboards seeming much
more complicated but can be solved quite well by
GoogLeNet.

One explanation might be that our curriculum
learning approach might be very helpful for such
abstract tasks. Unfortunately, it is not immediately
clear how to transfer curriculum learning to the
SVRT or other datasets, or even more real-world
scenarios, because the difficulty of the produced
samples cannot easily be controlled. In addition, the
very regular, never-changing, and easy to detect grid of
the checkerboard might help the network extract the
needed pawn positions, despite the high variability of
the images.

The parametric SVRT dataset

Similar to our reasoning for the chess dataset Ricci
et al. (2018b) recognized that the generation procedures
for the SVRT dataset are too unpredictable to lead to
reliable conclusions. The authors specifically mention
that it is sometimes unclear whether a problem cannot
be solved because of the relations the network has to
learn or because the variability of the images (i.e., the
size and number of shapes) has increased. To further
investigate the findings from the SVRT dataset that
CNNs are better at learning spatial relations than they
are at learning same–different relations, the authors
did a second experiment where they created their own,
simple dataset. They call this the parametric SVRT
(PSVRT) dataset. In the PSVRT dataset, each image
contains two patches, composed of black and white
boxes, on a neutral background. Examples for this
dataset can be seen in Figure 16. The two patches
have two properties that can be used for classification.
The first is the same–different relation depending on
whether the two patches show the same black and white
pattern. The second property is the spatial positioning
of the patches, depending on whether the two patches
are oriented horizontally or vertically to each other.
Three parameters control the amount of variability
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Figure 16. Examples for all four class combinations of the PSVRT
dataset presented by Ricci et al. (2018b). An image can be same
or different, depending on whether the two patches show the
same pattern, and horizontal or vertical, depending on the
orientation of the two patches. Adapted from the original
article.

in the images: the size of the patches, the number of
patches, and the image size. Setting up the dataset in
this way allows a system to learn the same–different
as well as the spatial–relation problem with identical
images and ensures that the image complexity and
variability are constant between the two problem sets.
We refer the reader to the original study for further
implementation details.

Using PSVRT, the authors were able to show a
sharp dichotomy between solving spatial–relation and
same–different tasks as well. The networks consistently
learned the classification early in the training procedure
for spatial–relation tasks and achieved high final
accuracy. For same–different tasks, the performance
was highly dependent on the image size. Bigger image
sizes led to slower training and lower-end accuracy and
resulted in the networks failing more often at learning
the task at all, depending on the random seed used for
initialization of the network. In addition, the size of the
network (the number of parameters) did not influence
the achievable accuracy much for spatial–relation
tasks but did so for same–different tasks. Since the
same images were used in both experiments, the
authors conclude that image variability was not what
hindered CNNs, and learning the same–different
relation problem itself is what is more difficult for
the networks, supporting Hypothesis 2 that relational
concept learning is more difficult for current neural
network architectures than learning other concepts.

The authors hypothesize that the network learns
subtraction templates to solve the same–different task
because the image’s patch size and number do not
seem to influence the achievable accuracy. The authors
argue that more subtraction templates would only
be needed if the number of possible patch positions
changes, increasing exponentially with growing image
size. Unfortunately, the authors do not provide a more
detailed explanation for their hypothesis.

The PSVRT dataset has one unfortunate flaw: The
patches are not matched for the number of black and
white pixels if they are different. Therefore, a simple
comparison of the sum of all pixel values between
different image parts is sufficient to “compare” the
patches in many cases. If this is what the authors
mean by subtraction templates, then we agree that the
networks might use this, but we would argue that this
is a flaw of the dataset and not an explanation of how
comparison, in general, could be solved by a CNN.
Future experiments should test the PSVRT dataset with
patches with a matched number of black and white
pixels.

Relation networks and siamese networks applied to the
PSVRT dataset

Kim et al. (2018b) extended the work by Ricci
et al. (2018b) by testing the PSVRT dataset with two
additional network architectures. The first was an
RN proposed by Santoro et al. (2017), which was
specifically designed to learn relationships between
objects. Kim et al. (2018b) hypothesize that the original
performance of the architecture on the CLEVR dataset
mainly stems from memorization since, as previously
mentioned, the dataset only has a minimal amount of
variation. The authors could support this hypothesis by
testing RNs on the PSVRT dataset and showing that
performance decreases with image size in the same way
for relational networks as it does for CNNs until the
architecture can not learn the task at all at an image size
of 180 × 180 pixels. As previously argued, we think that
the increased number of relation features that have to be
integrated might pose another problem. Of course, this
could be circumvented using attention, strengthening
Hypothesis 1. Also, with increasing patch size, it might
become challenging to pass all needed information to
the network that integrates all relationships (i.e., fφ).

The second architecture tested by Kim et al.
(2018b) is a type of Siamese network, first proposed by
Bromley, Guyon, LeCun, Säckinger, and Shah (1994).
Siamese networks were specifically designed to make
same–different decisions for images. The caveat of
Siamese networks is that the network expects the objects
to be compared as separate images (i.e., preattended)
(see Figure 17 for a schematic visualization). As Kim
et al. (2018b) point out, this splitting into two images
can be interpreted as a kind of attention mechanism
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Figure 17. Schematic visualization of a Siamese network. Two
images to be compared are passed through the same CNN to
extract high-level features. These features are then compared
using a contrastive loss to determine the similarity of the
original images.

simulating the effects of perceptual grouping. The
authors were able to show that such Siamese networks
can solve PSVRT successfully, not showing a qualitative
performance difference between the same–different
and the spatial–relation tasks. The performance was
also independent of the image parameters (i.e., image
size, patch size, and the number of patches). These
results are in support of Hypothesis 1, which states that
attentional mechanisms are an important component in
solving relational concept learning. We could also show
in Stabinger et al. (2021) that just separating the entities
to be compared into different channels of a normal
CNN made a task similar to PSVRT considerably
easier.

Discussion and future work

In the beginning, we stated two hypotheses: With
Hypothesis 1, we stated that “attentional mechanisms
will be an important component to successfully and
efficiently learn relational concepts.” We have shown
that relation networks, which generally perform very
favorably on relational reasoning tasks, need attention
to keep the number of object comparison operations
low. This is especially important if relations between

more than two objects have to be detected. Kim et al.
(2018b) as well as our research in Stabinger et al. (2021)
show that preattending data considerably improves
performance for relation tasks. In addition, as can
be seen in Table 4, this preattention is already an
integral part of many datasets that are currently used
to test systems for learning relational concepts. This
demonstrates that many researchers have recognized
this need, even if they did not communicate or consider
this themselves from the viewpoint of attention. In
our opinion, this explains why the results on these
datasets are surprisingly good, considering that the
straightforward PSVRT dataset can only be solved
using massive amounts of training data, and even
in these cases, the results are far from perfect. We
think that datasets with a form of preattention grossly
overestimate the performance, which could be expected
under real-world conditions, where such a form of
preattention is not available.

One promising group of architectures that integrates
attention at its core and has gained traction in many
fields of deep learning over the last year are transformer
architectures. Vaswani et al. (2017) first proposed these
for the field of machine translation; Devlin, Chang,
Lee, and Toutanova (2018) later generalized them to
many other natural language processing tasks, and by
now, they are also heavily researched for many other
tasks, including computer vision by Dosovitskiy et al.
(2020) and Jaegle et al. (2021), among many others.
All transformer architectures contain a self-attention
mechanism as one essential building block and,
therefore, should be a promising architecture to study
for relational reasoning tasks.

With Hypothesis 2, we stated that “relational
concepts are more difficult to learn for current neural
network architectures than other concepts.”We would
argue that despite the progress in recent years, it is still
evident that deep learning methods have a weakness in
relational reasoning tasks. Results are either not on par
with human performance (PGM, V-PROM, PSVRT,
chess dataset), might be results of weak datasets (IQ
dataset, SVRT, CLEVR), or are unrealistic because
the datasets have an attention mechanism embedded
in the way the data are presented (IQ dataset, PGM,
V-PROM). Our work (Stabinger et al., 2016a) was

Name Citation Problems

IQ Dataset Hoshen and Werman (2017) Dataset is preattended, unknown variance
Procedurally Generated Matrices Barrett et al. (2018) Dataset is preattended
V-PROM Teney et al. (2019) Dataset is preattended
SVRT Fleuret et al. (2011) Possibly low variance of the images
PSVRT Kim et al. (2018b) Can be solved using pixel value sums
CLEVR Johnson et al. (2017) Low variance of the scenes
Chess Dataset Stabinger and Rodríguez-Sánchez (2017) Static checkerboard might give too many hints

Table 4. Datasets presented in this article and possible problems with them.



Journal of Vision (2021) 21(11):8, 1–23 Stabinger, Peer, Piater, & Rodríguez-Sánchez 19

the first to show this divergence in performance for
different kinds of concept learning. This dichotomy
was later also shown by Ricci et al. (2018b) and is
currently demonstrated exceptionally well with the
PSVRT dataset by Kim et al. (2018b). In our opinion,
the recent advances on the SVRT dataset are more
indicative of possible shortcomings of the dataset and
less of advances of the methods, especially considering
the poor performance of the same architectures on
the conceptually very similar PSVRT dataset. All of
the datasets we presented in this article have, in our
opinion, one or more problems (see Table 4).

We think the PSVRT dataset by Ricci, Kim, and
Serre (2018a), with an added restriction to pixel value
matched patches, to prevent the system from using a
simple sum to compare patches, would likely provide the
cleanest datasets to test relational reasoning capabilities
while minimizing the chance of introducing secondary
features a deep learning system can use to “cheat” at
the task.

In our opinion, even simple bottom-up attention will
not be sufficient to solve relational tasks efficiently, and
iterative attention shifts will be necessary to efficiently
solve many relational concept learning tasks in the
real world. Attention solves the problem of separating
entities to be compared but does not solve the problem
of information density. For example, if two objects have
to be compared for identity, all information about the
two objects has to be forwarded to a subsystem that can
decide on identity. As the objects’ variability increases,
this will likely mean that the layers transporting this
information, and the network deciding on identity,
will both grow rapidly, making the system inefficient
and data-hungry. We theorize that iteratively shifting
attention will more favorably balance network size with
computation time. We also think that the necessarily
shared parameters and substructures will lead to a
reduced need for training data and better generalization
for relational tasks. This is already partly put into effect
in relation networks by the iterative application of gθ ,
which might be one of the reasons it performs better on
average for relational tasks than most other network
architectures.

We think future research should concentrate on
creating datasets that test for relational reasoning,
without providing a form of preattention or introducing
unwanted features that can be used to “cheat” the task.
Creating non-preattended instances of existing datasets
(like PGM, V-PROM, and the IQ dataset) might be
able to further demonstrate the importance of attention
for such tasks. Architectures with iterative processing
of the input and a mechanism to shift attentional focus
between the iterations are currently not very popular
but should be investigated more deeply with respect to
relational concepts.

Conclusion

In this study, we have summarized and interpreted
current deep learning research from the perspective of
concept learning. We were able to show that perceptual
concepts are easily solved by deep learning methods
since they were initially developed for this class of
problems.Associative concepts, even though preliminary
evidence suggests that at least some deep learning
architectures do implicitly learn such concepts in their
intermediary representations, seem to have not been
studied until now in the field of deep learning. Thus, we
focused our analysis on work that can be classified as
learning visual relational concepts.

We hope we were able to convince the reader that
relational concepts are of practical importance and
seem to be particularly difficult for current neural
network architectures to learn. We also demonstrated
that attentional mechanisms would be, together with
a form of an iterative attentional shift, an essential
component in solving these problems in the future.

We have also demonstrated that many of the
currently used datasets are not ideal and likely
overestimate the actual performance of tested systems.
Many datasets have a form of preattention built in, or
the complexity and variability of the produced samples
might be overestimated. New datasets that take these
findings into account will therefore have to be created
for future research.

Keywords: deep learning, concept learning, relational
concepts
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Footnotes
1A widely used activation function is the ReLU function f (x) = max(0, x),
which is differentiable for all inputs but 0. In practical implementations,
it is common to return, if possible, one of the one-sided derivatives for
points that are not fully differentiable. Even though this is mathematically
not completely accurate, it works well in practice.
2Zentall, Galizio, and Critchfield (2002) provide a more in-depth overview
of these three concept classes, and Murphy (2004) gives a comprehensive
overview of concepts in general.
3For the top-5 error rate, five predictions of the correct class are made,
and an image is classified correctly if one of the five predictions is the
correct one.
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