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The epithelial-mesenchymal transition (EMT) is one mechanism by which cells with mesenchymal features can be generated 
and is a fundamental event in morphogenesis. Recently, invasion and metastasis of cancer cells from the primary tumor are 
now thought to be initiated by the developmental process termed the EMT, whereby epithelial cells lose cell polarity and 
cell-cell interactions, and gain mesenchymal phenotypes with increased migratory and invasive properties. The EMT is 
believed to be an important step in metastasis and is implicated in cancer progression, although the influence of the EMT in 
clinical specimens has been debated. This review presents the recent results of two cell surface proteins, the functions and 
underlying mechanisms of which have recently begun to be demonstrated, as novel regulators of the molecular networks 
that induce the EMT and cancer progression.
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Epithelial-Mesenchymal Transition 

Metastasis is the leading cause of cancer-related deaths in 
most cancer types. As an initial step in cancer metastasis, 
epithelial tumor cells in general disseminate from a primary 
solid tumor mass and invade into the surrounding stromal 
tissues. Invasion is enhanced by tumor cell activation of the 
epithelial-mesenchymal transition (EMT) [1-4]. The EMT is 
characterized by the loss of epithelial apicobasal polarity and 
cell-cell contacts, modulation of cell-matrix adhesion, 
enhanced proteolytic activity, cytoskeletal remodeling, and 
acquisition of the ability to migrate and invade the 
extracellular matrix (ECM) [1, 3]. During the EMT, 
epithelial cells undergo molecular changes; epithelial cells 
gradually lose their epithelial markers, such as E- cadherin, 
ZO-1, and cytokeratins, and concomitantly acquire mesen-
chymal markers, such as vimentin, fibronectin, N- cadherin, 
and alpha smooth muscle actin [1, 3]. The EMT plays a 
critical role in the formation of various tissues and organs, 
such as the mesoderm, neural crest, heart, secondary palate, 

and peripheral nervous systems, during embryonic develop-
ment and wound healing in adult organism [2, 4]. Further-
more, the EMT is implicated in pathological processes, such 
as tumor cell invasion and metastasis and organ fibrosis [2]. 

One of the hallmarks of the EMT is the functional loss of 
E-cadherin, which is currently thought to be a metastasis 
suppressor [5]. Downregulation of E-cadherin is usually 
mediated by E-cadherin transcriptional repressors/EMT- 
inducing transcription factors, including the Snail super-
family of zinc-finger factors (Snail and Slug), the ZEB family 
(ZEB1 and ZEB2), and basic helix-loop-helix factors (Twist1 
and E47), which have been associated with tumor invasion 
and metastasis [4, 5]. These factors repress transcription of 
E-cadherin by interacting with proximal E-box elements in 
the E-cadherin promoter [5]. In addition, these E-cadherin 
repressors may be directly or indirectly involved in the 
upregulation of certain mesenchymal genes [5], although 
the precise mechanism of this regulation is largely unknown.

The EMT is triggered by soluble growth factors, such as 
members of the transforming growth factor-β (TGFβ) and 
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fibroblast growth factor families, epidermal growth factor, 
and hepatocyte growth factor (HGF) [3, 4]. Subsequent 
activation of receptor-mediated signaling triggers the activa-
tion of intracellular effector molecules, such as members of 
the small GTPase family, leading to changes in cytoskeletal 
organization, and also results in the activation of EMT- 
inducing transcription factors [3, 4]. In addition, compo-
nents of the ECM, such as collagen, and activation of integrin 
co-receptors are also involved in the EMT process [3]. 
Certain proteases are sufficient to induce the EMT [2]; for 
example, matrix metalloproteinase-3 triggers the EMT by 
increasing the cellular levels of reactive oxygen species, 
which in turn induces Snail expression [6]. 

Recently, microRNAs (miRs) have been identified as a 
novel class of EMT regulators; miRs that negatively regulate 
the EMT include miR-153, -155, -194, -25, -212, and -200, 
and miRs that positively regulate the EMT include miR-29a, 
-103/107, -150, and -221/22 [7]. miRs regulate invasion and 
metastasis by targeting the transcripts of various genes 
involved in the EMT event, including EMT-inducing tran-
scription factors. For example, members of the miR-200 
family are negative regulators of the EMT and are essential 
for maintenance of the epithelial status through the down-
regulation of ZEB1 and ZEB2. In turn, miR-200 members are 
transcriptionally repressed by ZEB1 and ZEB2, thus 
establishing a double-negative feedback loop [8]. 

The EMT was recently shown to be linked to stemness and 
self-renewal capacity [9, 10]. In cases of breast cancer stems, 
the linkage among EMT phenotype, stemness, and drug 
resistance has been well studied [11]. Further, epithelial- 
mesenchymal plasticity (consisting of EMT and MET) is also 
described in circulating tumor cells (CTCs) [12-14]. CTCs 
with various degrees of EMT phenotypes are found during 
breast cancer metastasis [15]. Therefore, CTCs may involve 
self-renewal capacity, which is linked to the EMT, during 
cancer metastasis [16].

Transmembrane Protease Serine 4 (TMPRSS4)
Introduction to type II transmembrane serine 
proteases

Dysregulation of proteases is a hallmark of cancer pro-
gression; thus, proteases in general have been the subject of 
numerous cancer studies. Extracellular proteolytic enzymes, 
including matrix metalloproteinases (MMPs) and serine 
proteases, contribute to tumor cell invasion and metastasis 
through both direct proteolytic activity and the regulation of 
cellular signaling and functions [17-19]. Most members of 
the serine protease family are either secreted or sequestered 
in cytoplasmic organelles awaiting signal-regulated release. 
Recently, type II transmembrane serine proteases (TTSPs) 

have been recognized as a new subfamily of serine proteases 
that have in common an extracellular proteolytic domain, a 
single-pass transmembrane domain, a short intracellular 
domain, and a variable-length stem region containing 
modular structural domains [20-24]. Enteropeptidase (also 
known as enterokinase), identified over a century ago due to 
its pivotal role in food digestion, is the first TTSP, which was 
revealed by molecular cloning of the enteropeptidase cDNA 
two decades ago [25]. TMPRSS2, human airway trypsin-like 
protease (HAT), corin, and matriptase have been 
subsequently identified as cell surface-associated proteases 
[23, 24]. To date, 20 TTSPs have been identified in mouse 
and humans due to the analysis of sequence data from 
mammalian genome projects [23]. Analysis of the tissue 
distribution of TTSPs and gene targeting in mice of certain 
TTSPs suggested that a significant number of TTSPs may 
have important functions in embryonic development and 
homeostasis of mammalian tissues, such as heart, skin, 
inner ear, placenta, and digestive tract [23, 24]. 

Most TTSPs are overexpressed in a variety of tumors 
compared to normal tissues, implicating their potential as 
novel markers of tumor development and progression and 
possible molecular targets for anti-cancer therapeutics [23, 
26]. Recently, a number of works have focused on the 
evaluation of the expression of individual TTSPs during 
tumor progression and on the investigation of the potential 
roles of these proteases in tumor cell proliferation, 
migration, and invasion [23, 27].

TMPRSS4 in cancer

TMPRSS4 (gene ID, 56649; chromosomal location, 
11q23.3), initially referred to as TMPRSS3, was originally 
identified as a gene expressed in most pancreatic cancer 
tissues but not in the normal pancreas or chronic 
pancreatitis [28]. To date, 7 isoforms have been reported. 
The deduced sequence of 437 amino acids of the longest 
isoform (isoform 1) contains a serine protease domain with 
putative trypsin-like activity and a transmembrane domain 
[28]. In human, TMPRSS4 mRNA was detected in bladder, 
esophagus, stomach, small intestine, colon, and kidney [28], 
although the physiological roles of TMPRSS4 remain 
unknown. Furthermore, TMPRSS4 expression was upre-
gulated in malignant compared to benign thyroid neoplasm 
and was suggested as both a diagnostic and prognostic 
marker [29, 30]. TMPRSS4 was associated with poor prog-
nosis in non-small-cell lung cancer (NSCLC) with squamous 
cell histology [31], triple-negative breast cancer [32], 
cervical cancer [33], and gastric cancer patients [34]. Kim et 
al. [35] reported that TMPRSS4 mRNA levels were upre-
gulated in colorectal cancer tissues versus adjacent normal 
mucosa. The authors also reported that TMPRSS4 protein 
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Fig. 1. Cellular functions of TMPRSS4. ENaC, epithelial sodium 
channel; uPA, urokinase plasminogen activator; EMT, epithelial- 
mesenchymal transition.

expression was significantly higher in human colorectal 
cancer tissues from advanced stages (52.5% and 50.0% of 
stages III and IV, respectively) than in that of early stage 
(6.3% in stage I), suggesting that TMPRSS4 may play a role 
in the progression of non-invasive tumors to invasive 
malignancies [35]. Jia et al. [36] showed that the inhibitory 
tripeptide tyroserleutide led to downregulation of TMPRSS4 
in hepatocellular carcinoma (HCC), thereby reducing the 
invasion and metastasis of HCC induced by irradiation. 
Taken together, TMPRSS4 may be a novel biomarker for the 
prognosis of certain types of cancers and could be employed 
for diagnostics and therapeutics. 

On the other hand, the mechanism by which TMPRSS4 
expression is modulated has not been well characterized. 
Recently, Nguyen et al. [37] reported that TMPRSS4 was 
increased in NSCLC cells under hypoxic conditions, 
suggesting that hypoxia within the tumor microen-
vironment may upregulate TMPRSS4 expression. 

Function of TMPRSS4 in the regulation of EMT and 
invasion

In colon cancer cells, TMPRSS4 induces downregulation 
of E-cadherin and leads to EMT events, accompanying 
morphological changes and actin reorganization [38]. Sup-
pression of TMPRSS4 by siRNA reduces cell invasion in 
colon and lung cancer cells, while overexpression TMPRSS4 
induces migration, invasion, and metastasis [38]. Attach-
ment and spreading of cells on the ECM, with concomitant 
formation of stress fibers and focal adhesions, is a pre-
requisite for cell migration. TMPRSS4 also modulates 
cell-matrix adhesion and cell spreading mainly through 
modulation of integrins, such as α5β1, which has been 
centrally implicated in the EMT and cell motility [39, 40], 
which probably contributes to enhanced motility and invasi-
veness. One of the molecular mechanisms by which 
TMPRSS4 mediates the EMT and invasiveness in tumor cells 
is that TMPRSS4 mediates focal adhesion kinase (FAK) 
signaling pathway activation and extracellular signal- 
regulated kinase (ERK) activation, mainly through integrin 
α5 upregulation, leading to the EMT and invasiveness. 
Furthermore, TMPRSS4 overexpression in human colorectal 
cancer tissues positively correlates with enhanced expres-
sion of integrin α5 and inversely correlates with E-cadherin 
expression, confirming that TMPRSS4 modulates expres-
sion of EMT markers. Recently, Larzabal et al. [41] reported 
that miR-205 is involved in TMPRSS4-induced integrin α5 
expression in NSCLC cells. To further implicate TMPRSS4 in 
the EMT, Cheng et al. [42] suggested that interactions 
between HGF activator inhibitor (HAI-1) and TMPRSS4 
contribute to EMT events, including E-cadherin reduction 
and morphological changes in pancreatic cancer cells. In 

addition, TMPRSS4-induced E-cadherin reduction and EMT 
play a critical role in radiation-induced long-term metastasis 
of residual HCC in nude mice [43]. 

Interaction of TMPRSS4 and integrin α5, based on the 
observation that TMPRSS4 partially interacts with integrin 
α5 under certain coimmunoprecipitation conditions in a 
cell line-dependent manner [35] (Kim S, unpublished 
observation), suggests the possibility that TMPRSS4 may 
modulate or participate in the interaction of integrin and 
other cell surface proteins (for example, tetraspanin, 
receptor tyrosine kinases, etc.), leading to subsequent 
signaling transduction activation. In fact, TMPRSS4 can 
interact with urokinase plasminogen activator receptor 
(uPAR; CD87) [44], which can induce the EMT in hypoxic 
breast cancer cells [45], although it is not clear whether 
TMPRSS4 interacts with uPAR directly or via integrin(s). 

Loss or reduction of E-cadherin expression is a well- 
known hallmark of the EMT and correlates positively with 
tumor cell invasion and metastasis [3]. TMPRSS4 appears to 
modulate SIP1/ZEB2 expression, based on the observation 
that SIP1 mRNA is upregulated in TMPRSS4-overex-
pressing colon cancer cells, although induction of SIP1 at the 
protein level remains to be determined. Therefore, it is 
possible that SIP1 mediates TMPRSS4-induced EMT events, 
including E-cadherin reduction. 

Several studies have shown that suppression of high 
endogenous E-cadherin expression renders non-invasive 
cells partially invasive [46], whereas reconstitution of 
E-cadherin results in tumor cell reversion from an invasive 
mesenchymal phenotype to a benign epithelial phenotype 
[46, 47]. In contrast, other studies have shown that ectopic 
expression of E-cadherin could not reverse EMT phenotypes 
induced by the transcription factor Twist1 [10]. On the other 
hand, downregulation of E-cadherin was required for 
TMPRSS4-mediated EMT and invasion in colon cancer cells 
but was not sufficient for induction of these phenotypes 
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[35], suggesting that downregulation of E-cadherin is not 
the sole contributor to TMPRSS4-mediated phenotypes. In 
this respect, upregulation of specific mesenchymal markers, 
such as integrin α5, besides the downregulation of E-cad-
herin by TMPRSS4, may be required for full invasiveness 
during colon cancer progression (Fig. 1). 

Molecular mechanisms and signals regulated by 
TMPRSS4 

Numerous studies have focused on the investigation of in 
vivo substrates of TTSPs. However, few studies have 
conclusively addressed the in vivo molecular targets and 
function of TTSPs during tumor progression. In vitro, several 
TTSPs, including matriptase, were shown to activate pro- 
urokinase plasminogen activator, pro-macrophage stimula-
ting protein-1, and pro-HGF, which are implicated in the 
proliferation, migration and invasion of various cancer cell 
types [23]. 

Like most of the members of the TTSP family, TMPRSS4 
can activate epithelial sodium channel (ENaC) in vitro 
through its proteolytic activity, possibly regulating sodium 
and water flux across high-resistance epithelia [48, 49]. 
TMPRSS4 induces cancer cell invasion in a manner that is 
dependent on serine proteolytic activity [38], and inhibitory 
compounds against TMPRSS4 serine protease activity were 
reported to reduce colon cancer cell invasion [50]. However, 
it remains unknown which precursor substrates are cleaved 
by TMPRSS4 to contribute to tumor progression. On the 
other hand, it has recently been reported that TMPRSS4 
induces urokinase plasminogen activator (uPA) gene ex-
pression through activation of the transcription factors AP-1, 
Sp1, and Sp3 in mainly a JNK-dependent manner in prostate 
and lung cancer cells but not in colon cancer cells [44]. uPA 
is a well-known serine protease involved in invasion and 
metastasis and correlates with poor prognosis in breast, 
lung, stomach, bladder, colon, prostate, and ovarian cancers 
[51], and TMPRSS4 expression significantly correlates with 
uPA expression in human lung and prostate adenocar-
cinomas [44]. In addition, TMPRSS4-mediated uPA ex-
pression contributes to prostate cancer cell invasion (Fig. 1) 
[44]. It is intriguing that TMPRSS4 activates JNK signaling 
pathways, possibly through its association with uPAR, 
leading to uPA expression. uPAR can induce the EMT and 
stem cell-like properties in breast cancer cells by activating 
diverse cell signaling pathways, including ERK, phospho-
inositide-3-kinase-Akt, and Rac1 [45, 52]. Therefore, the 
association of TMPRSS4 and uPAR and subsequent cell 
signaling modulation may be a novel mechanism for the 
control of invasion and the EMT. 

The observations that TMPRSS4 modulates cell signaling 
and subsequently activates both AP-1 and Sp1/3 trans-

criptional activities [44], which have been reported to be 
involved in the transcriptional regulation of the EMT and 
invasion [53], suggest that TMPRSS4 could modulate the 
expression of various genes, which may be associated with 
invasion and metastasis. 

Transmembrane 4 L Six Family Member 5 
(TM4SF5) 
The tetraspanins

Tetraspanins (TM4SFs) have four transmembrane protein 
domains with two extracellular loops and one intracellular 
loop (ICL) and the N- and C-terminal tails [54]. They are 
expressed on the cell surface and/or intracellular vesicles 
and contain 33 members in mammals [55]. Tetraspanins, or 
TM4SFs, are suggested to be located at tetraspanin-enriched 
microdomains (TERMs) [56], where they form protein- 
protein complexes in a homophilic or heterophilic manner 
with other TM4SFs, integrins, or growth factor receptors 
[57, 58]. The protein complexes are known to regulate the 
dynamics of the complex components on the cell surface 
with regard to diffusion, trafficking, retention, and stability, 
in addition to influencing intracellular signal transductions 
[56, 59, 60]. 

TM4SF5 in cancer

TM4SF5 (gene ID, 9032) maps to chromosome 17 at 
17p13.3 according to Entrez Gene. In AceView, it covers 
11.34 kb, from 4621928 to 4633262 (NCBI 36, March 2006), 
on the direct strand containing 4 different gt-ag introns. Its 
transcription produces 2 alternatively spliced mRNAs via 
alternative polyadenylation sites, which putatively encode 2 
different isoforms (197 and 132 amino acids), containing an 
L6 membrane domain (http://www.ncbi.nlm.nih.gov/IEB/ 
Research/Acembly/av.cgi?db=35g&c=Gene&l=TM4SF5). 
TM4SF5 (20,823 Da) is a transmembrane glycoprotein; as a 
family group, it is related to the tetraspanin family (trans-
membrane 4 L six family), including TM4SF1 (L6, L6-Ag), 
TM4SF4 (IL-TIMP), TM4SF518 (L6D), and TM4SF20 [61, 
62]. TM4SF5 is highly expressed in diverse types of cancers, 
including liver, pancreatic, gastric, colon, adrenocorti-
cotropic hormone (corticotropin)-negative bronchial carci-
noid tumors, soft-tissue sarcoma, nonendocrine lung, and 
papilla vateri carcinoma [63-66]. Similar to tetraspanins 
(i.e., transmembrane 4 superfamily, TM4SFs), TM4SF5 has 
four transmembrane domains (TM1-TM4), short cyto-
plasmic domains at their N- and C-termini, an ICL between 
TM2 and TM4, two extracellular loops, a smaller ex-
tracellular loop between TM1 and TM2, and a larger 
extracellular loop between TM3 and TM4 [61, 62]. Recent 
clinical studies separately report that TM4SF5 is highly 



16 www.genominfo.org

S Kim and JW Lee. EMT by TMPRSS4 or TM4SF5

expressed in tumors from deceased breast cancer patients, 
compared to those from 10-year breast cancer survivors 
[67], and that postoperative 5-year overall survival of 
esophageal cancer patients negatively correlates with 
TM4SF5 expression [68]. These reports suggest that 
TM4SF5 overexpression correlates with poor prognosis of 
cancer patients. 

TM4SF5-mediated regulation of signaling molecules

TM4SF5 can appear to form TERMs on the cell surface, via 
formation of large protein-protein complexes with tetras-
panins, integrins, and growth factor receptors [61, 69]. 
Therefore, by virtue of the protein complex formation, over-
expressed TM4SF5 in cancer cells can influence or activate 
diverse intracellular signaling pathways for cell adhesion, 
proliferation, the EMT, migration, and invasion for tumor 
progression and maintenance.

TM4SF5 is shown to associate with integrins α2, β1 [70, 
71], α5 [72], and epidermal growth factor receptor (EGFR) 
[73, 74] during cell migration [70, 71], angiogenesis [72], 
drug resistance [74], and fibrosis [73]. With association and 
retention of integrin α5 on the cell surface, TM4SF5 can 
activate intracellular signaling for FAK/c-Src activation, 
leading to STAT3 activity for vascular endothelial growth 
factor (VEGF) induction [72]. In addition, TM4SF5 directly 
interacts with FAK or c-Src to regulate migration [75] and 
invasive ECM degradation [76]. In addition, TM4SF5 ex-
pression causes AKT activation, which in turn causes 
phosphorylation of p27Kip1 Ser10 for its cytosolic translo-
cation, where it can regulate RhoA activity for morphological 
change and migratory function [74].

TM4SF5-mediated EMT in tumor progression

TM4SF5 expression in hepatocytes or NSCLC leads to 
EMT phenotypes, which in turn cause loss of contact 
inhibition [74], enhance migration and invasion for meta-
stasis [77], and render gefitinib resistance [78]. TM4SF5 
expression causes morphological changes through abnormal 
regulation of RhoA and Rac1 in hepatocytes, together with 
the loss of E-cadherin expression leading to EMT induction 
[74] via induction of Slug [79]. Inhibition of TM4SF5- 
mediated signaling events of the cytosolic enrichment of 
p27Kip1 abolishes abnormal multilayer cell growth [74] and 
retards the G1 to S phase progression [80]. Further, inhi-
bition of TM4SF5-mediated EMT by suppression of cytosolic 
p27Kip1 expression leads gefitinib-resistant NSCLC cells to 
become gefitinib-sensitive [78]. TM4SF5 is involved in 
activation of hepatic stellate cells by causing EMT processes, 
leading to a correlation with the development of liver fibrosis 
in CCl4-treated mouse models [81]. TM4SF5 expression is 
achieved by TGFβ1-mediated Smad actions on EGFR 

activation [73], such that the important roles of the multi-
functional cytokine TGFβ1 in the activation of hepatic 
stellate cells and the EMT are confirmed in a development of 
murine liver fibrosis. Since liver fibrosis can eventually lead 
to hepatocarcinoma at a high rate of over 70% [82], the roles 
of TM4SF5 in the development of both fibrosis and tumo-
rigenesis in the liver can be reasonable. 

Meanwhile, TM4SF5 expression enhances directional 
migration and invasion of hepatocytes. TM4SF5 in hepa-
tocytes causes directional migration at an enhanced speed 
and the formation of more invadosome-like structures 
enriched with cortactin, actin, and actin-regulatory proteins, 
like Arp2 and WASP [77]. TM4SF5-mediated directional 
migration involves direct interaction and activation of FAK 
via the ICL domain of TM4SF5 and the F1 lobe of the FAK 
FERM domain [75]. Further, TM4SF5-mediated invasive 
ECM degradation requires direct interaction between the 
COOH-terminus of TM4SF5 and c-Src, which is linked to 
Tyr845 phosphorylation of EGFR to form more invasive 
protrusions [76]. TM4SF5-mediated multilayer growth 
[74], FAK activity, migration, and invasion [75] are 
abolished by an anti-TM4SF5 reagent, TSAHC (a synthetic 
compound), which appears to affect its N-glycosylation and 
at the same time block induction of the TM4SF5-dependent 
EMT phenotype and multilayer growth [83]. Therefore, 
TM4SF5 also plays important roles in tumor initiation and 
progression, possibly being supported by an EMT process.

Other TM4SF5-mediated EMT-related biological 
processes

The EMT is well known to be related also to the develop-
ment [84] and stemness of self-renewal [9]. We also 
observed that TM4SF5 can play roles in other EMT-mediated 
biological processes, like development of muscles and 
self-renewal of cancer cells. In zebrafish, suppression of 
tm4sf5 results in abnormal development, with an aberrant 
trunk and morphology of muscle fibers, presumably via 
alterations in the expression and localization of integrin α5, 
which is necessary for somite boundary maintenance (Choi 
YJ and Lee JW, in revision). In addition to liver fibrosis and 
tumorigenesis, therefore, TM4SF5 expression is importantly 
involved in the development of zebrafish muscles, which 
might bemediated by EMT.

Presumably, these diverse cellular effects by TM4SF5 ex-
pression might be possible due to the characteristics of 
TM4SF5―similar to tetraspanins―which forms large pro-
tein networks via heterophilic or homophilic interactions 
between tetraspanins, integrins, and growth factor recep-
tors. TM4SF5 is shown to bind integrin α2, β1 [70, 71], α5 
[72], EGFR [73], and interleukin 6 receptor (IL6R) (Ryu J 
and Lee JW, in revision). Although its ligand has not been 
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Fig. 2. TM4SF5-mediated epithelial-mesenchymal transition (EMT) 
is involved in diverse cellular functions, leading to liver tumo-
rigenesis and maintenance in addition to developmental processes.

identified, interaction(s) with (an)other membrane protein 
or receptor can recapitulate the ligand binding-based acti-
vation. Therefore, TM4SF5 can transduce signaling activities 
for diverse cellular functions, including the EMT and 
different EMT-mediated phenotypes. Although diverse miRs 
are known to regulate the EMT [7], miRs targeting TM4SF5 
are being studied.

TM4SF5-mediated gene regulation

Comparison of protein expression patterns between 
TM4SF5-null and -expressing cells shows a negative corre-
lation between TM4SF5 and cell-cell adhesion-related mole-
cules of epithelial markers, including E-cadherin [74], and a 
positive correlation between TM4SF5 and mesenchymal 
markers, including Slug [79], supporting TM4SF5- mediated 
EMT. Reverse transcription polymerase chain reaction 
analyses of show that TM4SF5-mediated regulation of their 
expressions occurs at the transcriptional level (Lee JW, 
unpublished observation). However, the signaling path-
ways underlying this regulation have not been determined 
yet. 

In addition, TM4SF5 expression also correlates with 
cytosolic p27Kip1 [74]. Although p27Kip1 in the nucleus is 
inhibitory to cyclin-dependent kinases, suppressing the cell 
cycle and proliferation, its localization in the cytosol can lead 
to tumorigenic functions [85]. Cytosolic p27Kip1 has been 
reported in different clinical reports, where different cancer 
types show enriched cytosolic localization of p27Kip1 [86-88], 
suggesting that cytosolic p27Kip1 can be tumorigenic [89]. 
p27Kip1 can be phosphorylated by Akt, KIS, or JNK [90-92], 
resulting in translocalization and stabilization in the cytosol, 
where it binds to and inactivates RhoA GTPase, leading to 
alterations in actin organization and motility regulation 
[93]. TM4SF5 expression also causes overexpression of 
p27Kip1, although how it occurs is unknown; TM4SF5 causes 
Akt-mediated Ser10 phosphorylation of p27Kip1, leading to 
its stabilization, RhoA activity changes, and eventually 
morphological elongation for the EMT and contact inhi-
bition loss [74]. JNK-mediated p27Kip1 phosphorylation in a 
TM4SF5-dependent manner also results in localization of 
p27Kip1 at cell-cell contacts [91], possibly leading to altered 
actin organization at cell-cell contacts. In addition, inhi-
bition of the proteasome in terms of activity and subunit 
expression also depends on TM4SF5 expression, resulting in 
morphological changes and the EMT, suggesting another 
novel mechanism for TM4SF5-mediated EMT [79].

Meanwhile, TM4SF5 causes activation of the FAK/c-Src 
signaling pathways, leading to STAT3 phosphorylation at 
Tyr705 for the induction and secretion of VEGF, which can 
stimulate neighboring endothelial cells for enhanced (tu-
mor) angiogenesis [72]. During modeling of the tumor 

microenvironment, cancer cells overexpressing TM4SF5 
appear to negatively regulate expression of the cytokine IL6, 
and exogenous IL6 treatment leads to less STAT3 signaling 
activation in TM4SF5-positive cancer cells (Ryu J and Lee JW, 
in revision); thus, TM4SF5-dependent suppression of IL6 
can be a strategy for TM4SF5-positive tumor cells to avoid 
pro-immunological actions by IL6 secreted by neighboring 
immune cells. As for invasion, TM4SF5 expression also 
increases the mRNA and protein levels of MMP2, in addition 
to its activity [77].

Therefore, TM4SF5 expression correlates with or plays 
important roles in tumorigenesis in different mechanisms, 
including induction of the EMT and gene regulation (Fig. 2). 

Concluding Remarks

Considering that such membrane proteins as TMPRSS4 or 
TM4SF5 may be important upstream regulators of the EMT 
and the invasiveness of cancer cells and because their ex-
pression differs substantially in normal and cancer tissues, 
targeting them could be a novel therapeutic strategy for the 
treatment of cancer metastasis. In the future, the functional 
involvement of TMPRSS4 and/or TM4SF5 in the initiation 
and progression of tumors needs to be evaluated using  
mouse models. Cancer-associated mutations and single- 
nucleotide polymorphisms within TMPRSS4 or TM4SF5 also 
need to be analyzed in association with cancer risk. 
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