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Abstract

Context: According to Nottingham grading system, mitosis count in breast cancer 
histopathology is one of three components required for cancer grading and prognosis. 
Manual counting of mitosis is tedious and subject to considerable inter‑ and intra‑reader 
variations. Aims: The aim is to investigate the various texture features and Hierarchical 
Model and X  (HMAX) biologically inspired approach for mitosis detection using 
machine‑learning techniques. Materials and Methods: We propose an approach 
that assists pathologists in automated mitosis detection and counting. The proposed 
method, which is based on the most favorable texture features combination, examines 
the separability between different channels of color space. Blue‑ratio channel provides 
more discriminative information for mitosis detection in histopathological images. 
Co‑occurrence features, run‑length features, and Scale‑invariant feature transform (SIFT) 
features were extracted and used in the classification of mitosis. Finally, a classification is 
performed to put the candidate patch either in the mitosis class or in the non‑mitosis 
class. Three different classifiers have been evaluated: Decision tree, linear kernel Support 
Vector Machine (SVM), and non‑linear kernel SVM. We also evaluate the performance 
of the proposed framework using the modified biologically inspired model of HMAX 
and compare the results with other feature extraction methods such as dense SIFT. 
Results: The proposed method has been tested on Mitosis detection in breast cancer 
histological images (MITOS) dataset provided for an International Conference on Pattern 
Recognition (ICPR) 2012 contest. The proposed framework achieved 76% recall, 75% 
precision and 76% F‑measure. Conclusions: Different frameworks for classification 
have been evaluated for mitosis detection. In future work, instead of regions, we intend 
to compute features on the results of mitosis contour segmentation and use them to 
improve detection and classification rate. 
Key words: Classification, histopathology, Hierarchical Model and X, mitosis detection, 
Scale‑invariant feature transform, texture analysis
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INTRODUCTION

Researchers in histopathology have been familiar with 
the importance of qualitative analysis of histopathological 
images. These analyses are used to confirm the presence 
or the absence of disease and also to help in the 
evaluation of disease progression. Being important in 
diagnostic pathology, this qualitative assessment is also 
used to understand the ground realities for specific 
diagnostic being rendered like specific chromatin 
texture in the cancerous nuclei, which may indicate 
certain genetic abnormalities. In addition, quantitative 
characterization of pathology imagery is important not 
only for clinical applications  (e.g.,  to reduce/eliminate 
inter‑  and intra‑observer variations in diagnosis) but 
also for research applications  (e.g.,  to understand the 
biological mechanisms of the disease process).[1]

Nottingham Grading System is an international grading 
system for breast cancer recommended by the World 
Health Organization.[2] It is derived from the assessment 
of three morphological features: Tubule formation, 
nuclear pleomorphism, and mitotic count. Several studies 
on automatic tools to process digitized slides have been 
reported focusing mainly on nuclei or tubule detection. 
Mitosis detection is a challenging problem and has not 
been addressed well in the literature.

Mitosis detection has diagnostic significance for some 
cancerous conditions. Indeed, mitotic count provides 
clues to estimate the proliferation and the aggressiveness 
of the tumor and is a critical step in histological grading 
of several types of cancer.[3] In clinical practice, the 
pathologists examine proliferated area and determine 
mitotic count after a tedious microscopic examination of 
hematoxylin and eosin  (H and E) stained tissue slides at 
high magnification, usually ×40. The area visible under 
the microscope under a ×40 magnification lens is called 
a high power field  (HPF). This mitotic counting process 
is cumbersome and often subject to sampling bias due to 
massive histological images. This results in considerable 
inter‑  and intra‑reader variation of up to 20% between 
central and institutional reviewers in tumor prognosis.[4]

In histopathological image analysis, the accuracy of 
mitosis detection is crucial to identify the severity of 
the disease. Mitosis detection is a difficult task having 
to cope with several challenges such as irregular shaped 
object, artifacts, and unwanted objects because of slide 
preparation and acquisition. Mitosis has four main phases 
and each phase has different shape and texture. It is 
also observed that artifacts produce objects, which look 
similar to mitosis. As a result, there is no simple way to 
detect mitosis based on shape and pixels values. However, 
the major problem is the very low density of mitosis in a 
single HPF. It is not unusual to have an HPF without any 
mitosis.

The remaining paper is organized as follows. Section 2 
presents an overview for mitosis detection and counting 
in histopathology. Section 3 describes the proposed 
framework for mitosis detection. Experimental results to 
demonstrate the effectiveness of our mitosis detection 
method with different classifiers are presented in 
section 4. Finally, the concluding remarks with future 
work are given in section 5.

Review of Previous Work
A number of research studies have been applied to nuclei 
detection in H  and  E images but to the best of our 
knowledge there are very few research studies specifically 
dedicated to automated mitosis detection. Sertel et  al., 
developed a computer‑aided system based on pixel‑level 
likelihood functions and two‑step component‑based 
thresholding for automatic detection and counting of 
mitosis nuclei in digitized images of neuroblastoma tissue 
slides.[5] This approach resulted in 81% of detection rate 
and 12% false positive rate. Anari et  al., proposed fuzzy 
c‑mean clustering algorithm along with ultra‑erosion 
operation in CIE Lab  (Commission Internationale 
de l’Eclairage; L  =  luminance, a  =  red‑green axis, and 
b = blue‑yellow) color space for detection of proliferative 
nuclei and mitosis index in immunohistochemistry (IHC) 
images of meningioma.[6] Recently, Roullier et  al., 
proposed a graph based multi‑resolution segmentation 
for mitosis detection.[7] This approach performed 
unsupervised clustering at each resolution level 
driven by domain specific knowledge and refined the 
associated segmentation in the specific areas as the 
resolution increases. The whole strategy was based on 
graph formalism that enabled to perform segmentation 
adaptation at each resolution. They performed mitosis 
detection at higher resolution and resulted in more 
than 70% sensitivity and 80% specificity. These 
methods, mainly based on clustering, thresholding and 
morphological operations and using only pixel level 
information, achieve mitosis detection with low true 
positive rate and high false positive rate.

Mitosis nuclei have large variations in shape, size and 
pixel intensity values. In the proposed framework, we 
address the limitations and weaknesses of previous 
works:  (1) By including comprehensive analysis of 
texture features  (second order statistics features such 
as co‑occurrence and run‑length features) in RGB color 
space and blue‑ratio image and  (2) by exploring other 
feature models like SIFT and HMAX model to achieve a 
better discrimination of mitosis from other objects.

MATERIALS AND METHODS

We propose a color image processing‑based strategy 
for mitosis detection in H  and  E images. The aim 
is to improve the accuracy of mitosis detection by 
integrating the color channels that better capture the 
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texture features, which discriminate mitosis from other 
objects. Two main stages are involved in the proposed 
method as shown in Figure  1. In the first stage, we 
perform detection of candidate mitosis. The input RGB 
images are transformed into blue‑ratio images.[8] We 
perform Laplacian of Gaussian  (LoG), thresholding 
and morphological operations on blue‑ratio images to 
generate candidate mitosis regions. Later, we selected 
candidate regions using morphological rules; we 
calculate center point for each region as seed points for 
mitosis and extract a patch of size 80  ×  80 pixels from 
blue‑ratio image and red and blue channel of RGB color 
space. In the second stage, we compute co‑occurrence 
features, run‑length features and SIFT features for each 
candidate patch, and select those features having better 
discrimination of mitosis regions from others. Finally, a 
classification is performed to put the candidate patch 
either in the mitosis class or in the non‑mitosis class. 
Three different classifiers have been evaluated: Decision 
tree, linear kernel SVM, and non‑linear kernel SVM. We 
also evaluate the performance of the proposed framework 
using the modified biologically inspired model of HMAX 
and compare the results.

Candidate Detection
In H  and  E stained color images, nuclear and cytoplasm 
regions appear as hues of blue and purple while 
extracellular material have hues of pink. To reduce the 
complexities for integrating LoG responses, the RGB 
images are transformed to accentuate the nuclear dye. 
We first convert RGB images into blue‑ratio images 
for computing LoG responses, which discriminate the 
nuclei region from the background, hence, assisting in 
classification of mitosis from other objects. In a blue‑ratio 
image, a pixel with a high blue intensity relatively to its 
red and green components is given a high value, whereas, 
a pixel with a low blue intensity or a low blue intensity 

as compared to its red and green components is given a 
low value. As we are interested in nuclei, which appear as 
blue‑purple areas, a blue‑ratio image is an efficient tool 
to have a first clue on the position of nuclei in the image. 
An example of blue‑ratio image is shown in Figure  2b. 
Then, we perform binary thresholding and morphological 
operations to eliminate too small regions and fill hole. 
Finally we use morphological rules to select the candidate 
regions and take a patch of window size 80  ×  80 from 
blue ratio image and red and blue channels of RGB color 
space. An example of candidate detection is shown in 
Figure 2.

Candidate Classification
We proposed three different methods for classification 
of candidates that have been detected in candidate 
detection stage.

Method 1: Texture Based Classification
We extracted the following second order statistics features 
using co‑occurrence matrices and run‑length matrices.

Co‑occurrence Matrices
The grey level co‑occurrence matrix  (CM) describes the 
joint probability of certain sets of pixels having certain 
grey‑level values. A co‑occurrence matrix C is defined over 
an image I, and parameterized by an offset(∆x,∆y), as

It calculates how many times a pixel with grey‑level i occurs 
jointly with another pixel having a grey value j. By varying the 
displacement vector between each pair of pixels many CMs 
with different directions can be generated. For each image 
segment, four CMs having direction (0°, 45°, 90°, 135°) were 
generated with a displacement vector.

Figure 1: Framework for mitosis detection
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We extracted eight second order statistics features for 
each direction of a swatch, which are also known as 
Haralick features.[9] These eight features are: Correlation, 
cluster shade, cluster prominence, energy, entropy, 
inertia, Haralick correlation, and Inverse Difference 
Momentum (IDM).

Run‑Length Matrices
The set A of consecutive pixels, with same grey level, 
collinear in a given direction, constitute a grey level run. 
The run length is the number of pixels in the run and the 
run length value is the number of times such a run occurs in 
an image. The grey level run length matrix (RLM) is a two 
dimensional matrix in which each element P(i,j|q), gives 
the total number of occurrences of runs of length j at grey 
level i, in a given direction q.[10] RLM were generated for 
each candidate region having directions (0°, 45°, 90°, 135°), 
then the following ten second order statistics features 
are derived: Short run emphasis  (SRE), long run 
emphasis  (LRE), grey‑level non‑uniformity  (GLN), run 
length non‑uniformity  (RLN), low grey level runs 
emphasis  (LGLRE), high grey level runs emphasis 
(HGLRE), short run low grey level emphasis  (SRLGLE), 
short run high grey level emphasis  (SRHGLE), long run 
low grey level emphasis (LRLGLE), and long run high grey 
level emphasis (LRHGLE).

The eight CM features and ten RL features are computed 
for each candidate in blue ratio image and blue and red 
channels of RGB color space, which resulted in a total 
of 54  features. When we used all the extracted features 
for classification of mitosis and non‑mitosis region, the 
classification performance was poor. Some features are 
irrelevant for classification and some features are redundant 
that represents duplication of features, degrading the 
classification performance. All extracted features in the 
combined measures have been investigated for possibly 
highly correlated features that helped in eliminating bias 
towards certain features, which might afterwards affect the 
classification procedure. The relevant features are isolated 

from both texture feature sets based on their ability to 
distinguish candidate with mitosis and non‑mitosis nuclei. 
We used principal component analysis  (PCA) to select 
a subset of features that maximize the variance of data. 
We selected all the features having an eigenvalue greater 
than 1, which is a total of eight features. All together, 
these eight features cover  95.82% of the variance of the 
original 54 features. We used these eight features to train 
different classifiers like decision tree, linear kernel SVM 
and non‑linear kernel SVM.

Method 2: Scale Invariant Feature Transform
Scale Invariant Feature Transform  (SIFT) feature 
extraction method is a well‑known method which has 
produced promising results in classification tasks.[11] 
Here we investigate its application in classification of 
mitosis patch. In SIFT methods, a series of features 
are calculated using difference of Gaussian  (DoG) 
methods over different scales. Once a set of features is 
selected, features from new images are compared with 
these candidate regions using their Euclidean distance 
and from the full set of matches. A  subset of key point 
features, which agree on the object, its scale, orientation 
and location in the new image, are identified to filter 
out good matches. Finally, a histogram of features is 
calculated and the final histograms are sent to a SVM 
classifier. In this experiment we use Pyramid histogram of 
visual words  (PHOW) features  (dense multi‑scale SIFT 
descriptors), Elkan k‑means for fast visual word dictionary 
construction, spatial histograms as image descriptors, a 
homogeneous kernel map to transform a Chi2  support 
vector machine  (SVM) into a linear one and finally an 
internal SVM for classification using VLFeat toolbox.[12]

Method 3: Modified Biologically Inspired 
Approach of Hmax
In order to compare with other feature extraction and 
classification methods, we use HMAX  (Hierarchical 
MAX) model, a biologically inspired model of image 
classification,[13] which shows promising results on general 

Figure 2: Example of candidate detection; (a) RGB image, (b) Blue-ration image, (c) Detected candidates

cba
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classification tasks such as Caltech101 dataset.[14]

Our biologically inspired model of image classification is 
similar to the one in.[15] In the first three layers  (S1, C1, 
and S2) as in illustrated in Figure 3. However, our approach 
is different in the creation of dictionary of features and 
in the way C2 layer is created. In the first layer of the 
hierarchy, the normalized dot products of Gabor filters of 
different orientations are calculated over all ten scales of 
the image pyramid (S1 layer). In the C1 layer, a local max 
on neighboring positions and scales is taken on the Gabor 
filter responses on all image pyramid levels for pooling in 
order to provide invariance to scale and position of features. 
A dictionary of features is sampled from C1 layer pyramid 
using frequency and spatial information of features. Once 
the dictionary of features is created, the response of 
each feature in the dictionary to each candidate region 
is calculated  (S2) and a max is taken over all candidate 
regions and over all dictionary features  (C2) and fed to a 
linear support vector machine for classification.

In order to learn the features for the HMAX model, we use 
candidate patches, which include mitosis and non‑mitosis. 
Features are extracted from these patches using multiple 
scale Gaussian filters on different layers of the hierarchy 
of the patches. A  max operator is used in C layers to 
provide invariance to translation and scale variations.

RESULTS AND DISCUSSION

We evaluated the proposed framework on MITOS 
dataset,[16] a freely available mitosis dataset. This dataset 
consists of 35 HPF images at ×40 magnification. 
A  HPF has a size of 512  ×  512 μm2  (that is an area of 
0.262 mm2), which is the equivalent of a microscope field 
diameter of 0.58  mm. Each HPF has a digital resolution 
of 2084  ×  2084 pixels. These 35 HPFs contain a total 
of 226 mitosis. The pathologists have annotated mitosis 
manually in each HPF images. We select 25 HPFs 
containing 154 mitosis and 12,446 non‑mitosis as training 
set, the remaining 10 HPFs containing 72 mitosis being 
used for testing.

On testing dataset, the candidate detection phase 
identified 2,182 mitosis candidates, containing 66 mitosis 

from a total of 72 ground truth mitosis. Therefore, 
among the entire candidate detection set, there is 2116 
non‑mitosis in testing dataset. The candidate detection 
phase generated a large number of non‑mitosis and 
missed six ground truth mitosis.

In classification phase, we compared the results of these 
classification methods with ground truth information 
provided along with the dataset. The metrics used 
to evaluate the mitosis detection of each method 
include: Number of true positive  (TP), number of false 
positive  (FP), number of false negative  (FN), sensitivity 
or true positive rate  (TPR), precision or positive 
predictive value  (PPV) and F‑measure. A  comparison 
of all different classification methods is presented 
in Table  1. One of the parameters that affect our 
experiments is the existence of no balance between the 
number of mitosis and non‑mitosis candidates. When 
we used this dataset for training the classifier, then most 
of the classifiers are biased toward non‑mitosis, which 
resulted in high number of false positives. When we used 
all textures features with decision tree classifier, we get 
very few false positive but also not so many true positive 
resulting in 58% F‑measure as shown in Table 1.

In first method, we used linear and non‑linear SVM 
and decision tree classifier on eight selected texture 
features. As compared with linear kernel, the experiments 
with non‑linear kernel resulted in better performances 
in terms of less false positives but less true positives 
as well resulting in 49% F‑measure. When we used 
selected texture features with random forest, an ensemble 
classifier consisting of many decision trees, we achieved 
classification with low false positives and highest PPV 
and F‑measure. The random forest classifier has better 
results as compared to other classifiers because of 
balancing error in class population unbalanced datasets. 
Figure  4 shows an example of a detected, undetected, 
and mistakenly detected mitosis using texture features 
with random forest method. Figure  5 shows the results 
of mitosis detection in testing set images.

SIFT features are also examined in this study, but due to the 
lack of balance between number of mitosis and non‑mitosis 
regions, the SIFT method does not perform as good as 

Table 1: Results of different classifiers (ground truth = 72)

Methods TP FP FN TPR % PPV % F-Measure %

All features with Decision Tree 34 12 38 47 74 58

Selected features with Decision Tree 55 18 17 76 75 76

Selected features with L-SVM 43 71 29 60 38 46

Selected features with NL-SVM 41 53 31 57 44 49

SIFT with SVM 59 78 13 82 43 56

HMAX model 61 41 11 85 60 70

HMAX model (generative features) 63 43 9 88 60 71
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other methods. As can be seen in Table  1, we have also 
used HMAX model to train a dictionary of features from 
local max on Gabor filter responses over 12 orientations as 
described in Section 3, which resulted in high true positives 
but high false positives as well. The dimensionality of 
features in HMAX model is directly related to the size 
of the dictionary of features and we evaluated different 
sizes over several runs and used the optimum numbers. 
A  global dictionary of features from generative images 
(Caltech 101) was also used in another experiment to 
evaluate the performance of different dictionaries on these 
images and achieved almost the same results. It is because 
of the nature of this model in which the statistics of natural 
images are encoded. However, using a non‑linear kernel for 
SIFT and HMAX, in which the features’ dimensions are 
high, (order of 10,000) results in over‑fitting, which resulted 
in lower classification accuracies.

CONCLUSION AND FUTURE WORK

An automated mitosis detection framework for H  and  E 
images based on different features and classifiers has 

Figure 3: Global architecture of the HMAX model[15]

Figure 4: Mitosis detection framework results

Figure 5: Visual results of mitosis detection in a testing set images
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been proposed in this study. The candidate detection 
stage represents detection of candidate regions for 
mitosis using thresholding and morphological processing 
in blue‑ratio space. Different frameworks for classification 
have been evaluated on candidate regions. In future work, 
instead of regions, we intend to compute features on the 
results of mitosis contour segmentation and use them 
to improve detection and classification rate. One future 
modification is to tune different parameters of HMAX 
model to achieve the best performance for mitosis 
detection rather than using general settings for natural 
images. Furthermore, we also plan to investigate other 
model‑based features for mitosis detection.
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