Supplemental Information

Effect of aliovalent bismuth substitution on structure and optical properties of CsSnBr₃

Madhusudan Chaudhary, Abhoy Karmakar, Vidyanshu Mishra, Amit Bhattacharya, Dundappa Mumbaraddi, Arthur Mar, and Vladimir K. Michaelis*

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

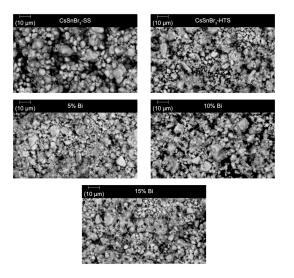


Figure S1. SEM images of CsSnBr3 and Bi-substituted compounds.

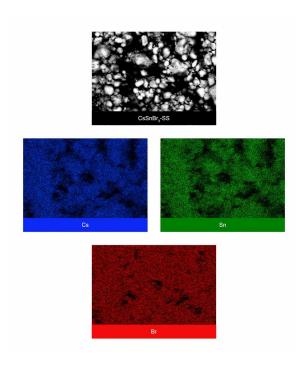


Figure S2. Elemental mapping of CsSnBr₃-SS.

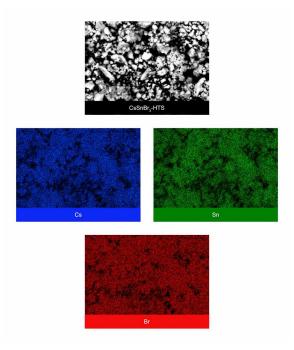
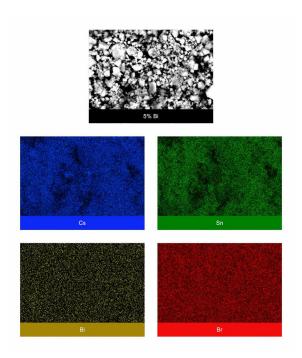



Figure S3. Elemental mapping of CsSnBr₃-HTS.

Figure S4. Elemental mapping of 5% Bi-substituted compound.

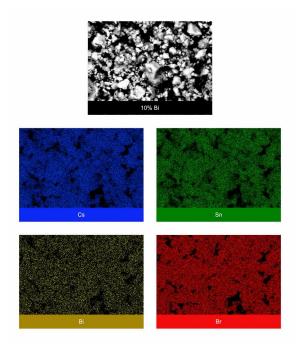


Figure S5. Elemental mapping of 10% Bi-substituted compound.

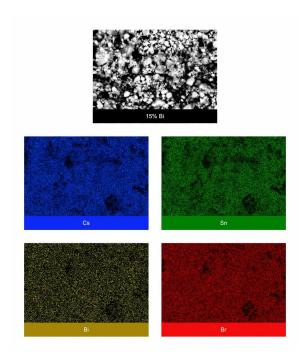
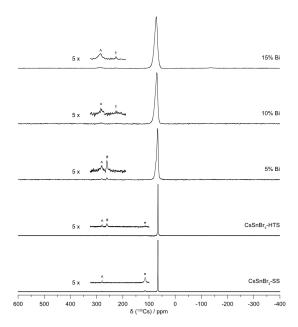
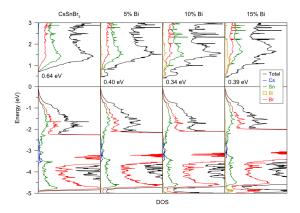
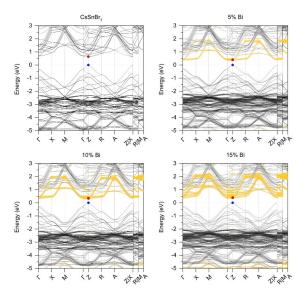
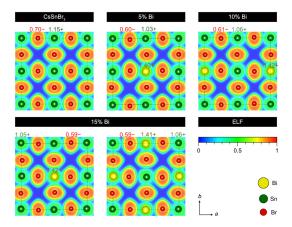



Figure S6. Elemental mapping of 15% Bi-substituted compound.

Sample	Cs atom (%)		Sn atom (%)		Bi atom (%)		Br atom (%)	
	Nominal	EDX analysis	Nominal	EDX analysis	Nominal	EDX analysis	Nominal	EDX analysis
CsSnBr ₃ -SS	20	21	20	20	0	0	60	59
CsSnBr ₃ -HTS	20	21	20	21	0	0	60	58
5%Bi	19.8	20	18.81	17	0.99	1	60.4	62
10%Bi	19.61	20	17.65	16	1.96	2	60.78	62
15%Bi	19.42	20	16.5	15	2.91	3	61.17	62

Figure S7. ¹³³Cs MAS NMR spectra ($B_0 = 11.75$ T, $\omega_r/2\pi = 14$ kHz) for CsSnBr₃ and Bisubstituted samples. Trace secondary phases include Cs₂SnBr₆ (asterisks, *), CsBr (hash marks, #), and CsSn₂Br₅ (daggers, †). Spinning side bands are marked by carets, ^.

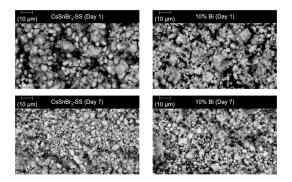

Figure S8. PBE DOS curves for CsSnBr3 and Bi-substituted models.

Figure S9. PBE band dispersion plots for CsSnBr₃ and Bi-substituted models. The contributions of Bi-based states are highlighted in yellow. The valence band maxima are marked by blue circles and the conduction band minima by red circles.

Figure S10. ELF plots and Bader charges for CsSnBr₃ and Bi-substituted models, from calculations using HSE06 functionals.

Figure S11. SEM images of CsSnBr₃ and 10% Bi-substituted compound, before (Day 1) and after (Day 7) exposure to 65% relative humidity.

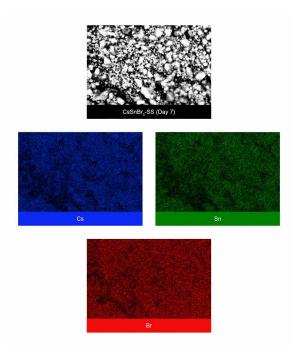
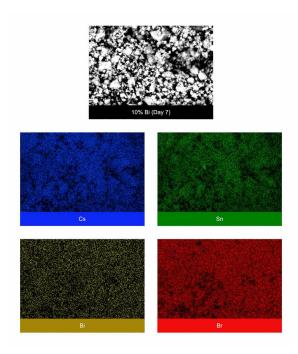



Figure S12. Elemental mapping of CsSnBr₃-SS after exposure to 65% relative humidity (Day 7).

Figure S13. Elemental mapping of 10% Bi-substituted compound after exposure to 65% relative humidity (Day 7).