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A B S T R A C T

Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to 
their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly 
explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in 
vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary 
compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.25 mM) to induce 
lipidemic-related complications. The results showed that both aspalathin and sulforaphane enhanced cellular 
metabolic activity and improved mitochondrial respiration correlating with improved mRNA expression of genes 
involved in mitochondrial function, including uncoupling protein 2, peroxisome proliferator-activated receptor, 
gamma coactivator 1-alpha, nuclear respiratory factor 1, and ubiquinol-cytochrome c reductase complex as
sembly factor 1. Beyond attenuating lipid peroxidation, the dietary compounds also suppressed intracellular 
reactive oxygen species and enhanced antioxidant responses, including the mRNA expression of nuclear factor 
erythroid 2-related factor 2. These envisaged benefits were associated with decreased cellular apoptosis. This 
preclinical study supports and warrants further investigation into the potential benefits of these dietary com
pounds or foods rich in aspalathin or sulforaphane in protecting against lipid-induced oxidative damage within 
the myocardium.

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death 
globally [1]. This explains the growing interest in understanding the risk 
factors associated with the development of CVDs [2]. It’s hypothesized 
that dyslipidemia, a pathophysiological condition that is associated with 
ectopic lipid accumulation may lead to the damage of various internal 
organs including the myocardium [3–5]. Indeed, available evidence 
suggests that dyslipidemia, specifically enhanced hypercholesterolemia, 
plays a significant role in causing lipid peroxidation, the pathological 

feature of oxidative stress that is linked to myocardial dysfunction [2]. 
Enhanced uptake or dysregulation of lipid products within the 
myocardium are being studied as prominent mechanisms for oxidative 
damage, the major characteristic feature of diabetic cardiomyopathy 
[6–8]. The latter describes undesired myocardial structural modifica
tions that are likely facilitated by oxidative stress-related abnormalities, 
occurring independent of coronary artery disease and are considered 
one of the leading causes of CVD-related deaths [9,10]. As a result, 
beyond scrutinizing the total cholesterol content, determining the 
oxidative status, including the levels of lipid peroxidation products like 
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malondialdehyde (MDA), has been increasingly used to assess the po
tential CVD risk in conditions of dyslipidemia or impaired metabolic 
function [11]. Pharmacological interventions with abundant antioxi
dant properties are emerging as a plausible strategy to attenuate 
oxidative stress and protect against dyslipidemia-associated cardiac 
damage [12,13].

Nutritional supplements containing strong antioxidant properties 
such as rooibos (Aspalathus linearis), including its major bioactive 
compound aspalathin, are actively screened for their cardioprotective 
effects, including attenuating oxidative stress-related complications 
[14]. Our group has already reviewed documented evidence indicating 
that the antioxidant properties of aspalathin, a dihydrochalcone 
C-glucoside of rooibos, can protect against oxidative damage in cultured 
cardiomyocytes or within the myocardium of diabetic animal models 
[15,16]. Similarly, another promising dietary compound is sulforaph
ane, an isothiocyanate rich in cruciferous vegetables of the genus 
Brassica like broccoli, which has also shown enhanced potential to 
protect against oxidative damage in preclinical models of diabetes [11, 
17]. The antioxidant properties of aspalathin and sulforaphane have 
been linked with enhanced activation of nuclear factor erythroid 
2-related factor 2 (Nrf2), which is proposed to be an important mech
anism to promote cytoprotective responses against oxidative 
stress-induced damage within the myocardium [17,18]. Although such 
evidence is acknowledged, there is a need to further investigate the 
broader context implicating the cardioprotective effects of both aspa
lathin and sulforaphane against lipid-associated damage. In this study, 
we hypothesize that aspalathin and sulforaphane exert cardioprotective 
effects by enhancing mitochondrial health, through improved mito
chondrial respiratory efficiency, reduced reactive oxygen species (ROS) 
production, and decreased lipid peroxidation. Additionally, we antici
pate that these compounds will positively influence lipid homeostasis 
and mitigate cellular injury.

2. Reagents and methods

2.1. Reagents

The rat heart ventricular-derived H9c2 cardiomyoblasts were pur
chased from the American Type Culture Collection (Manassas, VA, USA; 
catalogue number: CRL-1446). Dulbecco’s modified Eagle’s medium 
(DMEM), (BE12-604F), Dulbecco’s phosphate-buffered saline (DPBS, pH 
7.4 with calcium and magnesium), (BE17-512F), and trypsin (CC-5012) 
were from Lonza BioWhittaker (Walkersville, MD, USA). Free fatty acid 
bovine serum albumin (BSA), (03117057001) was from Roche (Man
nheim, Germany). The cell culture plates (3997) were from Corning (NY, 
USA); the Bradford kit (#5000201) was from Bio-Rad Laboratories 
(Hercules, CA, USA). Seahorse XF-96 microplate plates (103022-100), 
Seahorse XF assay media (103680-100), and Seahorse XF-cell Mito stress 
kit (103015-100) were all from Agilent (Santa Clara, CA, USA). QIAzol 
lysis reagent (79306) was from Qiagen (Hilden, Germany). Aspalathin 
(ca. 98 %, Batch SZI-356-54), synthesized following an already 
described method [19], was supplied by High Force Research LTD 
(Durham, UK). Gene expression probes, glyceraldehyde-3-phosphate 
dehydrogenase (Gapdh), NADH: ubiquinone oxidoreductase core sub
unit s 3 (Ndufs3), nuclear factor erythroid 2-related factor 2 (Nrf2), 
nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated 
receptor, gamma coactivator 1-alpha (Pprgc1α), superoxide dismutase 
2 (Sod2), ubiquinol-cytochrome c reductase complex assembly factor 1 
(Uqcc1), and uncoupling protein 2 (Ucp2) as well as Fetal bovine serum 
(FBS) (10493106) were purchased from Thermo Fisher Scientific 
(Waltham, MA, USA), (Table). Whereas simvastatin (S6196) ≥97 % 
high-performance liquid chromatography (HPLC), sulforaphane 
(S6317) ≥95 % (HPLC), dimethyl sulfoxide (DMSO), (D8418), palmitic 
acid (cell culture grade), (P5585), cell culture tested water (W3500). All 
other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, 
USA).

2.2. Palmitic acid experimental model and preparation of treatment 
compounds, aspalathin and sulforaphane

Briefly, 204 mg of palmitic acid was dissolved in 2 ml absolute 
ethanol and heated in boiling water for 5 min to make a stock concen
tration of 400 mM. To prepare for the working solution, the appropriate 
volume of 400 mM palmitic acid was conjugated in 1 % BSA for 1 h in a 
sonicator bath. Stock solutions of aspalathin and sulforaphane were 
prepared by dissolving the compounds in 100 % DMSO to make stock 
solutions of 22.10 mM aspalathin and 28.20 mM sulforaphane, respec
tively. The final working solutions of these compounds were prepared by 
diluting the appropriate amounts of a stock solution with DMEM (sup
plemented with 8 mM glucose, 3.7 g/L NaHCO3, and 0.1 % (w/v), 1 % 
BSA to yield a final working solution of DMSO <0.001 % DMSO, as 
previously described [20].

2.3. Cell culture conditions for H9c2 cardiomyoblasts

The H9c2 cardiomyoblasts are routinely used as a screening tool for 
novel therapeutic agents against cardiotoxicity [21]. Here, H9c2 car
diomyoblasts were cultured in DMEM supplemented with 10 % FBS at 
standard tissue culture conditions (37 ◦C, in humidified air and 5 % 
CO2). Cells were regularly sub-cultured at a confluency of 80–90 % and 
seeded in 96-well or 6-well plates at a density of 5 x104 cells/ml for all 
the assays performed.

2.4. Determination of cellular metabolic activity using ATP production

To assess the potential toxicity of aspalathin, sulforaphane, and 
simvastatin on H9c2 cardiomyoblasts, a dose-response study was con
ducted. The concentrations tested were selected based on previous 
research: 1 and 10 μM for aspalathin (Dludla, Muller et al., 2017), 2.5 
and 10 μM for sulforaphane [22], and 2.5 μM for simvastatin [23] which 
served as the experimental-comparative control. Additionally, a pal
mitic acid concentration of 0.25 mM was derived from our previous 
study study [3]. Subsequently, cellular metabolic activity was assessed. 
Briefly, cells were pretreated with aspalathin and sulforaphane, together 
with simvastatin as a comparator, for 24 h before exposure to 0.25 mM 
palmitic acid (together with treatment compounds) for an additional 24 
h. Subsequently, cytoplasmic adenosine triphosphate (ATP), as a mea
sure of cellular metabolic activity, was quantified using a CellTiter-Glo® 
Luminescent Cell Viability Assay Kit from Promega (MA, USA), as per 
the manufacturer’s instructions. The SpectraMax i3x multi-mode 
microplate reader (Molecular Devices, CA, USA) was used to measure 
the luminescence. Protein concentrations quantified using Bradford 
assay (Bio-Rad Laboratories, Hercule, CA, USA), as per manufacturer 
instructions, were used for normalization.

2.5. Assessment of mitochondrial respiration status

To assess mitochondrial respiration in H9c2 cardiomyoblasts, oxy
gen consumption rate (OCR) and extracellular acidification rate (ECAR) 
were measured using the Mito Stress Kit and XF-96 Extracellular Flux 
Analyser from Seahorse Bioscience (MA, USA), following a method that 
has already been described [3]. Measuring oxygen consumption is 
crucial in this study as this can be used to explore how palmitic 
acid-induced metabolic shifts affect mitochondrial function and energy 
production in cardiomyoblasts. Briefly, the protocol involves injections 
of 10 μM oligomycin in port A (20 μl) to inhibit ATP synthase, 7.5 μM 
carbonyl cyanide 4 trifluoromethoxy-phenylhydrazone (FCCP) in port B 
(22 μl) for maximal respiration, as well as 5 μM of rotenone (complex I 
inhibitor) combined with antimycin A (complex III inhibitor) in port C 
(25 μl). After the assay protein concentrations were quantified using the 
Bradford for normalization, as previously explained [3].
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2.6. mRNA expression analysis

To quantify the gene expression, RNA was extracted using QIAzol 
lysis reagent, cleaned, and reverse transcribed into complementary DNA 
(cDNA) using a High-Capacity cDNA Reverse Transcription kit from 
Applied Biosystems (Thermo Scientific™, MA, USA). cDNA synthesis 
was carried out using Applied Biosystems® 2720 Thermal Cycler with 
the following conditions: 10 min at 25 ◦C, 120 min at 37 ◦C, 5 s at 85 ◦C 
and 4 ◦C for cooling the samples. The TaqMan gene expression probes 
used are included in Table 1 and gene expression was analyzed using a 
QuantStudio™ 7 Flex Real-Time PCR System (Thermo Scientific TM, 
MA, USA). The quantitative RT-PCR conditions were as follows: 95 ◦C 
for 10 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. 
Gene expression data was normalized to Glyceraldehyde-3-phosphate 
dehydrogenase (Gapdh).

2.7. Evaluation of mitochondrial mass and changes in mitochondrial 
membrane potential (Δψm)

The fluorescent dyes, MitoTracker Green (Thermo Fisher Scientific, 
MA, USA) and JC-10 (5,5’,6,6’-tetrachloro-1,1’,3,3-tetraethylbenzimi
dazolyl-carbocyanine iodide; Sigma-Aldrich, St Louis, MO, USA) were 
used to measure mitochondrial mass and determine changes in mito
chondrial membrane potential, respectively. Both assays were per
formed using methods that have already been described [3]. 
Mitochondrial mass was measured using a BD Accuri® C6 flow cytom
eter (Becton Dickinson, NJ, USA). For the changes in mitochondrial 
membrane potential, the fluorescence intensity of JC-10 aggregates, 
orange fluorescence at ~590 nm (excited by 540 nm), and JC-10 
monomers, green fluorescence at ~525 nm (excited by 490 nm) was 
measured using the SpectraMax i3x multi-mode microplate reader.

2.8. Measuring total cholesterol content and lipid peroxidation

Total cholesterol content was quantified using the Cholesterol/ 
Cholesteryl Ester Assay Kit from Abcam (Cambridge, UK). Lipid perox
idation was assessed by measuring the MDA levels, using an OxiSelect™ 
Thiobarbituric Acid Reactive Substances (TBARS) Assay Kit from Cell 
Biolabs (San Diego, USA). Both assays were performed using the man
ufacturer’s protocol, and the relevant fluorescence was read on a 
SpectraMax i3x multi-mode microplate reader (Molecular Devices, CA, 
USA).

2.9. Evaluation of cytosolic and mitochondrial reactive oxygen species 
production (ROS)

Cytosolic and mitochondrial ROS production were detected using an 
OxiSelect Intracellular ROS Assay Kit from Cell Biolab (San Diego, CA, 
USA), and MitoSOX (mitochondrial superoxide indicators) Red kit 
(Thermo Fisher Scientific, MA, USA), respectively. Briefly, cytosolic and 
mitochondrial ROS were measured using fluorescent dyes, 2’, 7’- 
dichlorodihydrofluorescin diacetate (DCFH-DA) and MitoSox red, 

respectively. For both assays, the fluorescence was measured using a BD 
Accuri® C6 flow cytometer (Becton Dickinson, NJ, USA).

2.10. Evaluation of intracellular antioxidants

The levels of intracellular antioxidants, total glutathione (GSH) 
content, and superoxide dismutase (SOD) activity were measured using 
the OxiSelect Total Glutathione Assay Kit from Cell Bio-lab (San Diego, 
USA), as well as the Superoxide Dismutase Activity Assay Kit from 
Abcam (Cambridge, UK), respectively. The assays were performed as per 
the manufacturer’s instructions. The relative optical density was 
measured using a SpectraMax i3x multi-mode microplate reader at 405 
nm for total GSH content and 440 nm for SOD activity.

2.11. Evaluation of cellular damage

Cellular apoptosis and necrosis in H9c2 cardiomyoblasts were 
assessed using Annexin V-FITC from Invitrogen (Carlsbad, CA, USA), 
and propidium iodide from Sigma-Aldrich (St Louis, MO, USA), 
respectively. Fluorescence measurements for both annexin V (apoptosis) 
and propidium iodide (necrosis) were acquired using a BD Accuri C6 
flow cytometer following the method previously described [3]. The 
following channels were used, FITC signal detector FL1 (excitation =
488 nm; emission = 530 nm) for Annexin V positive (apoptotic) cells, 
and the FL3 detector (excitation = 488 nm; emission = 670/LP) for 
propidium positive (necrotic) cells.

2.12. Statistical analysis

Data was expressed as the mean ± standard error of the mean (SEM). 
Results for all experiments consist of three independent experimental 
repeats. Specifically, the ATP production assay and the Seahorse (Mito 
stress) analysis included six technical replicates per experiment (n = 6), 
while mRNA analysis and flow cytometry assays had three technical 
replicates each (n = 3). To ensure that repeated measurements were 
derived from biologically distinct samples, each well in the 96-well or 6- 
well plates was treated as an independent biological sample. To further 
guarantee the independence of the measurements, cells were seeded on 
different days and from different passages, across three separate plates. 
Statistical analysis was performed using GraphPad Prism software 
version 8.0.1 (GraphPad Software, Inc., La Jolla, CA, USA). To reduce 
the variability of data, seahorse and PCR mean values were log- 
transformed (Y = Log *Y). Prior to the statistical analysis both a 
normality test and an outlier test were performed using GraphPad Prism. 
After that, comparisons between groups were performed using one-way 
multivariate ANOVA, followed by a Tukey post-hoc test, this method is 
specifically designed to control for family-wise error rates across all 
pairwise comparisons, ensuring that the significance level remains valid 
despite multiple tests. Where appropriate, the student’s t-test (and 
nonparametric test) was used, with p < 0.05 considered significant for 
all experiments performed.

3. Results

3.1. Aspalathin and sulforaphane enhanced the ATP production in 
cardiomyoblasts exposed to palmitic acid

ATP production served as a measure of cellular metabolic function 
(Fig. 1). After exposing cells to 0.25 mM palmitic acid for 24 h, there was 
a significant decrease in ATP production compared to the experimental 
control (p < 0.001). However, pretreatment with both doses of aspala
thin and sulforaphane increased ATP production (p < 0.01) compared to 
the palmitate control (Fig. 1). The comparative control, simvastatin (p 
< 0.01) similarly demonstrated enhanced ATP production compared to 
the palmitic acid control (Fig. 1).

Table 1 
The list of TaqMan probes used in the study.

Probe Gene Assay ID

Glyceraldehyde-3-phosphate dehydrogenase Gapdh Rn01775763_g1
NADH: Ubiquinone Oxidoreductase Core Subunit S3 Ndufs3 Rn01484390_m1
Nuclear factor erythroid 2-related factor 2 Nrf2 Rn00582415_m1
Nuclear respiratory factor 1 Nrf1 Rn01455958_m1
Peroxisome proliferator-activated receptor 

Gamma coactivator 1-alpha
Pprgc1α Rn00580241_m1

Superoxide dismutase 2 Sod2 Rn00690588_g1
Ubiquinol-Cytochrome C Reductase Complex 

Assembly Factor 1
Uqcc1 Rn01535673_m1

Uncoupling protein 2 Ucp2 Rn01754856_m1
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3.2. Aspalathin and sulforaphane enhanced mitochondrial respiration 
and glycolytic energy levels while reducing proton leak (H+) in 
cardiomyoblasts exposed to palmitic acid

Mitochondrial respiration was assessed by measuring OCR, and 
ECAR (Fig. 2AB), respectively. Exposure to palmitic acid significantly 
reduced basal respiration (p < 0.001), maximal respiration (p < 0.001), 
and non-mitochondrial respiration (p < 0.01), while increasing H+

(proton) leak (p < 0.05) (Fig. 2C–G). Aspalathin and sulforaphane 
demonstrated significant improvement in both basal (p < 0.01) and 
maximal respiration (p < 0.05) compared to the palmitic acid control. 
Remarkably, this improvement surpassed the effect observed with sim
vastatin, which was used as a comparative control, as depicted in 
Fig. 2CD. Spare capacity was also not affected by treatment compounds 
(Fig. 2E), however, elevated H+ (proton) leak was significantly reduced 
by aspalathin (p < 0.05), sulforaphane (p < 0.001), and simvastatin (p 
< 0.05) compared to the palmitic acid control (Fig. 2F). Notably, non- 
mitochondrial respiration was also improved by aspalathin (p < 0.05) 
and sulforaphane (p < 0.05), comparable to simvastatin relative to the 
palmitic acid control (Fig. 2G).

3.3. Aspalathin and sulforaphane increased the mRNA expression levels 
of some markers involved in mitochondrial function in cardiomyoblasts 
exposed to palmitic acid

We further explored the effects of aspalathin and sulforaphane on the 
mRNA expression of Pprgc1α, Nrf1, Ucp2, Ndufs3, and Uqcc1 (Fig. 3A–E). 
Among the analyzed genes, results showed that palmitic acid signifi
cantly decreased the mRNA expression of Pprgc1α (p < 0.01), Nrf1 (p <
0.05), and Uqcc1 (p < 0.001) when compared to the experimental 
control (Fig. 3A–E). Aspalathin supplementation significantly increased 
the mRNA expression of Pprgc1α (p < 0.05), Nrf1 (p < 0.05), and Uqcc1 
(p < 0.05) (Fig. 3A–E). Whereas sulforaphane supplementation signifi
cantly improved the mRNA expression of Pprgc1α (p < 0.05), Nrf1 (p <

0.05), and Uqcc1 (p < 0.05) (Fig. 3A–E). Simvastatin supplementation 
did not have much effect on regulating most genes, except for increasing 
the mRNA expression of Ucp2 (p < 0.05) in comparison to the palmitic 
acid control (Fig. 3A–E).

3.4. Aspalathin and sulforaphane increased mitochondrial mass and 
improved mitochondrial membrane potential in cardiomyoblasts exposed 
to palmitic acid

Exposure to palmitic acid led to a significant decrease in mitochon
drial mass (p < 0.001), accompanied by observable alterations in the 
morphology and structure of H9c2 cardiomyoblasts, as indicated by 
green fluorescence in the accompanying representative images 
(Fig. 4A). However, both aspalathin (p < 0.001) and sulforaphane (p <
0.001), along with the comparative control-simvastatin (p < 0.001) 
improved mitochondrial mass and improved cellular morphology/ 
structure (as highlighted in accompanying images) compared to the 
palmitic acid control (Fig. 4A). Exposure to palmitic acid also induced 
undesirable changes in mitochondrial membrane potential (p < 0.001), 
as evidenced by increased intensity of green fluorescence intensity 
(highlighting JC-10 monomers) (Fig. 4B). Notably, treatment with both 
aspalathin (p < 0.05) and sulforaphane (p < 0.05) resulted in improved 
mitochondrial membrane potential, even more significantly compared 
to simvastatin (which did not show any significance) (Fig. 4B). Repre
sentative images further demonstrate improved mitochondrial mem
brane integrity, showing the increased intensity of orange fluorescence 
(highlighting JC-10 aggregates and orange color within accompanying 
images) (Fig. 4B).

3.5. Aspalathin and sulforaphane reduce cytosolic and mitochondrial 
production of reactive oxygen species (ROS) in cardiomyoblasts exposed to 
palmitic acid

Exposure to palmitic acid resulted in a significant increase in both 
cytosolic (p < 0.001) and mitochondrial ROS levels, respectively 
(Fig. 5AB). This effect was similar to the intracellular ROS control, H2O2, 
which significantly elevated cytosolic and mitochondrial ROS produc
tion (p < 0.001). Notably, treatment with aspalathin (p < 0.001) and 
sulforaphane (p < 0.001) effectively mitigated this effect by reducing 
cytosolic ROS production compared to the palmitic acid control 
(Fig. 5A). Both aspalathin (p < 0.01) and sulforaphane (p < 0.001) 
demonstrated comparable effects to simvastatin (p < 0.01) in reducing 
mitochondrial ROS production relevance to the palmitic acid control 
(Fig. 5B).

3.6. Aspalathin and sulforaphane did not affect cholesterol levels but 
protected against lipid peroxidation in cardiomyoblasts exposed to palmitic 
acid

We evaluated the impact of both aspalathin and sulforaphane on 
cholesterol levels (Fig. 6A) and lipid peroxidation (Fig. 6B). Exposure to 
palmitic acid caused an increase in total cholesterol content (p < 0.001) 
(Fig. 6A). However, only treatment with simvastatin, a known lipid- 
lowering agent, effectively reduced cholesterol content (p < 0.001) 
compared to the palmitic acid control (Fig. 6A). As expected, palmitic 
acid caused an elevation in MDA levels (p < 0.05), indicating enhanced 
lipid peroxidation compared to the experimental control (Fig. 6B). 
Treatment with aspalathin (p < 0.001) and sulforaphane (p < 0.01) 
demonstrated comparable efficacy in reducing MDA levels (p < 0.001) 
(Fig. 6B).

3.7. Aspalathin and sulforaphane enhance intracellular antioxidant 
response in H9c2 cardiomyoblasts exposed to palmitic acid

We further explored the protective effects of aspalathin and sulfo
raphane against oxidative damage by analyzing the mRNA expression of 

Fig. 1. Aspalathin and sulforaphane enhanced the metabolic activity in 
cardiomyoblasts exposed to palmitic acid. Briefly, H9c2 cardiomyoblasts 
were pretreated with aspalathin (Asp) and sulforaphane (Sul) followed by co- 
treatment with palmitic acid (Pal) for an additional 24 h. Simvastatin 
(Simva) was used as a comparative control. Subsequently, cellular metabolic 
activity was assessed using an ATP production kit. Results are presented as the 
mean ± standard error of the mean (SEM) from three independent experiments, 
each with at six technical replicates (n = 6), relative to the control (Ctrl). 
Comparisons between groups were performed using one-way multivariate 
ANOVA, followed by Tukey’s multiple comparisons test. Statistical significance 
was represented by ***p < 0.001 compared to the experimental control, while 
##p < 0.01 and ###p < 0.001 were compared to the palmitic acid control.
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intracellular antioxidants, specifically Nrf2 and Sod2, together with SOD 
activity and total GSH content (Fig. 7AB). The mRNA expression of both 
Nrf2 and Sod2 was significantly reduced after exposure to palmitic acid 
(p < 0.05 and p < 0.001, respectively) (Fig. 7AB). However, the mRNA 
expression of Nrf2 and Sod2 was significantly enhanced by the treatment 
of aspalathin and sulforaphane (p < 0.01), along with the comparative 
control, simvastatin (p < 0.05) in comparison to the palmitic acid con
trol (Fig. 7AB). These results were collaborated by assessing the activity 
of SOD activity and total GSH content, which showed that both aspa
lathin (p < 0.001 and p < 0.001, respectively) and sulforaphane (p <
0.05 and p < 0.001, respectively) could significantly increase the levels 
of these antioxidants in comparison to the palmitic acid control 
(Fig. 7CD). This was similar to the effect of simvastatin on SOD activity 
(p < 0.001), whereas this comparative control did not affect the GSH 
content (Fig. 7CD).

3.8. Aspalathin and sulforaphane protect against cellular apoptosis 
induced by palmitic acid in cardiomyoblasts

In this study, we assessed the protective effects of aspalathin and 
sulforaphane against palmitate-induced cellular damage, by measuring 
the apoptotic rate and necrosis using annexin V and propidium iodide, 
respectively (Fig. 8). Measuring live cells showed that palmitic acid 
reduced cell viability (p < 0.001); however, both aspalathin (p < 0.05) 
and sulforaphane (p < 0.01) could reverse this effect (Fig. 8A). Palmitic 
exposure also significantly increased the rates of early (p < 0.01) and 
late (p < 0.01) apoptosis, including cell necrosis (p < 0.01) (Fig. 8B–D). 
Treatment with both aspalathin and sulforaphane decreased early (p <
0.05) and late (p < 0.01) apoptosis (Fig. 8BC). Simvastatin reduced early 
apoptosis (p < 0.05) but failed to affect the later stage of apoptosis or cell 
necrosis, while all treatment compounds did not protect against cell 

Fig. 2. Aspalathin and sulforaphane enhanced mitochondrial respiration and glycolytic energy levels while reducing proton leak (Hþ) in H9c2 car
diomyoblasts exposed to palmitic acid. Briefly, H9c2 cardiomyoblasts were pretreated with 1 μM aspalathin (Asp) and 10 μM sulforaphane (Sul) as well as 2.5 μM 
Simvastatin (Simva) which was used as a comparative control. Thereafter, cells were co-treated with 0.25 mM palmitic acid (Pal) for an additional 24 h. Oxygen 
consumption rate (OCR) and extracellular acidification rate (ECAR) were measured for all treatments (A and B). Parameters assessed included basal respiration (C), 
maximal respiration (D), spare respiratory capacity (E), proton leak (H+) (F), and non-mitochondrial respiration (G). Results are presented as Log values, repre
senting the mean ± standard error of the mean (SEM) from three independent experiments, control consist of 6 technical repeats and all the treatment groups consists 
of 8 technical repeats per experiments. Comparisons between groups were performed using student’s t-test (and nonparametric test). Statistical significance was 
represented by *p < 0.05, **p < 0.01, ***p < 0.001 compared to the experimental control; and #p < 0.05, ##p < 0.01, ###p < 0.001 compared to the palmitic 
acid control.
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necrosis (Fig. 8B–D).

4. Discussion

Myocardial-induced lipid overload, as a consequence of dyslipide
mia, is considered a prominent pathological feature contributing to 
increased CVD risk [24]. As such, several experiments have made use of 
cultured heart cells, including H9c2 cardiomyoblasts, exposed to pal
mitic acid as an experimental model to study the detrimental effects of 
lipid overload on myocardial physiology [3,25–27]. In the current study, 
we evaluated whether the dietary compounds aspalathin and sulfo
raphane with reputable antioxidant properties can mitigate the detri
mental effects associated with palmitic acid-induced cardiac toxicity. To 
assess cellular responses, an ATP production assay was utilized for its 
sensitivity, followed by real-time cell viability analysis through flow 
cytometry. This included the use of a reactive oxygen species (ROS) 
detection kit and fluorescent staining dyes (Annexin V and propidium 
iodide) to quantify apoptotic and necrotic cell populations, thereby of
fering detailed insights into the effects of palmitic acid-induced stress. 
Our results showed that exposing cardiomyoblasts to elevated levels of 
palmitic acid was associated with reduced metabolic activity which was 
measured by ATP production. The potentially toxic effects of palmitic 
acid could be reflected through reduced ATP production in collaboration 
with accelerated apoptosis in cultured H9c2 cardiomyoblasts [3]. The 
myocardium relies on a fine balance of respiratory production, and the 
availability of ATP levels, necessary for contractile function [28]. The 
current study showed that palmitic acid exposure interfered with the 

efficiency of the mitochondrial respiratory processes as seen with 
reduced basal and maximal respiration, which could have hindered the 
oxidative capacity of the cells. Measuring oxygen consumption is a 
highly informative experimental method that provides valuable insights 
[29]. It is particularly useful for identifying mitochondrial functionality 
parameters that could be influenced by pharmacological treatments and 
for characterizing energy metabolism within a physiological and path
ological state [30]. For example, changes in oxygen consumption rates 
can indicate metabolic shifts, such as a transition from aerobic to 
anaerobic metabolism, triggered by exposure to palmitic acid [31,32]. 
This shift may disrupt ATP production and affect the overall cellular 
energy balance. Additionally, alterations in oxygen consumption can 
serve as a marker for oxidative stress, as increased proton leak and 
elevated production of ROS may lead to cellular damage [33,34].

Our results showed that palmitic acid exposure facilitated H+ (pro
ton) leak, indicating an imbalance of membrane proton gradient, 
together with suppressing the mRNA expression of markers involved in 
mitochondrial function, including both biogenesis and bioenergetics 
(Pprgc1α, Nrf1, and Uqcc1). In fact, beyond affecting mitochondrial 
oxidative capacity, palmitic acid exposure also interfered with mito
chondrial biogenesis by reducing the expression of Nrf1, which is 
consistent with what has been previously reported ([35]; X. [36]). 
Furthermore, mitochondrial dysfunction has been linked with excessive 
accumulation of ROS [37]. Reviewed literature [38] suggests that 
exacerbated H+ (proton) leak may be associated with increased oxida
tive stress and subsequently cardiovascular complications. In this study, 
palmitic acid exposure enhanced the production of both cytosolic and 

Fig. 3. Aspalathin and sulforaphane increased the mRNA expression of some markers involved in mitochondrial function in cardiomyoblasts exposed to 
palmitic acid. Briefly, H9c2 cardiomyoblasts were pretreated with 1 μM aspalathin (Asp) and 10 μM sulforaphane (Sul) as well as 2.5 μM Simvastatin (Simva) which 
was used as a comparative control. Thereafter, cells were co-treated with 0.25 mM palmitic acid (Pal) for an additional 24 h. The mRNA expression levels of 
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pprgc1α), nuclear respiratory factor 1 (Nrf1), NADH: ubiquinone oxidoreductase core subunit 
S3 (Ndufs3), ubiquinol-cytochrome C reductase complex assembly factor 1 (Uqcc1), and uncoupling protein 2 (Ucp2) were quantified (A, B, C, D, and E, respectively). 
Results are presented as the mean ± standard error of the mean (SEM) from three independent experiments, each with three technical repeats (n = 3), relative to the 
experimental control (Ctrl). Comparisons between groups were performed using student’s t-test (and nonparametric test). Statistical significance was represented by 
*p < 0.05, **p < 0.01, ***p < 0.001 compared to the experimental control; and #p < 0.05 compared to the palmitic acid control.
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mitochondrial ROS consistent with impairments in mitochondrial 
respiration. In agreement, previous data [3,39,40] suggests that pro
longed exposure to saturated fatty acids could cause impairments in 
mitochondrial respiration and enhance the generation of oxidative 
stress. As such, advances in treatments for CVD-related complications 
have increasingly focused on targeting alleviating mitochondrial ab
normality with pharmacological compounds [41,42].

Furthermore, increased levels of ROS production are linked to 

decreased activities of intracellular antioxidants within a pathological 
state [43]. Endogenous antioxidants are vital for maintaining optimal 
cellular function and overall systemic health [44]. GSH is considered the 
most abundant endogenous antioxidant molecule in humans, found in 
relatively high concentrations enabling it to directly interact with su
peroxide radicals and other ROS molecules, while also indirectly sup
porting the function of other antioxidants [45]. Another crucial 
antioxidant is SOD also which also primarily neutralizes superoxide 

Fig. 4. Aspalathin and sulforaphane increased mitochondrial mass and membrane potential (Δψm) in cardiomyoblasts exposed to palmitic acid. Briefly, 
H9c2 cardiomyoblasts were pretreated with 1 μM aspalathin (Asp) and 10 μM sulforaphane (Sul) as well as 2.5 μM Simvastatin (Simva) which was used as a 
comparative control. Thereafter, cells were co-treated with 0.25 mM palmitic acid (Pal) for an additional 24 h. Mitochondrial mass was detected using Mito Tracker 
Green, while changes in mitochondrial membrane potential were probed through JC-10 fluorescent stain (B). The quantification of JC-10 aggregates, indicated by 
orange fluorescence at ~590 nm (excited by 540 nm), and JC-10 monomers, indicated by green fluorescence for mitochondrial membrane depolarization at ~525 nm 
(excited by 490 nm). Results are presented as the mean ± standard error of the mean (SEM) from three independent experiments, each with three technical replicates 
(n = 3) for mitochondrial mass and six technical replicates (n = 6) for mitochondrial membrane potential, relative to the control (Ctrl). Comparisons between groups 
were performed using one-way multivariate ANOVA, followed by Tukey’s multiple comparisons test. Statistical significance was represented by ***p < 0.001 
compared to the experimental control while #p < 0.05, ##p < 0.01, ###p < 0.001 compared to the palmitic acid control. In Figure A, the images depict green 
fluorescence representing changes in cellular ultrastructure to represent intact mitochondrial mass. In Figure B, images depict intact mitochondria in orange colour, 
whereas mitochondrial membrane depolarization is stained green. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.)

Fig. 5. Aspalathin and sulforaphane reduced cytosolic and mitochondrial production of reactive oxygen species (ROS) in cardiomyoblasts exposed to 
palmitic acid. Briefly, H9c2 cardiomyoblasts were pretreated with 1 μM aspalathin (Asp) and 10 μM sulforaphane (Sul) as well as 2.5 μM Simvastatin (Simva) which 
was used as a comparative control. Thereafter, cells were co-treated with 0.25 mM palmitic acid (Pal) for an additional 24 h. Simvastatin (Simva) was used as a 
comparative control. 2’, 7’-dichlorodihydrofluorescin diacetate (DCFH-DA) (A) and MitoSox (mitochondrial superoxide indicators) fluorescent stains (B) were used 
for the detection of cytosolic and mitochondrial ROS production, respectively. Results are represented as the mean ± standard error of the mean (SEM) of three 
independent experiments, with three technical repeats (n = 3), per experiment relative to the control (Ctrl). Comparisons between groups were performed using one- 
way multivariate ANOVA, followed by Tukey’s multiple comparisons test. Statistical significance was represented by ***p < 0.001 compared to the experimental 
control and #p < 0.05; ##p < 0.01, ###p < 0.001 compared to the palmitic acid control.

Fig. 6. Aspalathin and sulforaphane reduced cholesterol content and lipid peroxidation levels in H9c2 cardiomyoblasts. Briefly, H9c2 cardiomyoblasts were 
pretreated with 1 μM aspalathin (Asp) and 10 μM sulforaphane (Sul) as well as 2.5 μM Simvastatin (Simva) which was used as a comparative control. Thereafter, cells 
were co-treated with 0.25 mM palmitic acid (Pal) for an additional 24 h. Thereafter, the total cholesterol content (A) and malondialdehyde (MDA) levels were 
measured as indicators of lipid peroxidation (B). Results are represented as the mean ± standard error of the mean (SEM) of three independent experiments, with 
three technical repeats (n = 3), per experiment relative to the control (Ctrl). Comparisons between groups were performed using one-way multivariate ANOVA, 
followed by Tukey’s multiple comparisons test. Statistical significance was represented by *p < 0.05, ***p < 0.001 compared to the experimental control; and #p <
0.05, ##p < 0.01, ###p < 0.001 compared to the palmitic acid control.
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radicals as a protection against oxidative stress [46]. In this study, pal
mitic acid toxicity interfered with oxidative capacity and increased lipid 
peroxidation while diminishing the capacity of antioxidant enzymatic 
responses (SOD and GSH). Similar effects were observed with a reduc
tion in the mRNA expression levels of Nrf2, the master regulator of 
antioxidant response, which is required for adequate responses for 
cytoprotective actions and attenuation of oxidative stress [47]. The 
reduced mRNA expression of Nrf2, together with other intracellular 
antioxidants, in response to palmitic acid exposure was associated with 
accelerated apoptosis and necrosis within our experimental model. 
These results support previous studies implying that cell death could 
occur as the consequence of impaired mitochondrial function under the 
condition of lipid-induced toxicity within the myocardium [48,49]. 
Furthermore, this study provides novel insights into the molecular 
mechanisms by which palmitic acid induces mitochondrial dysfunction 
in cardiac cells, specifically through the downregulation of key mito
chondrial markers.

There is no doubt that oxidative stress is the sole driver of suppressed 
intracellular antioxidant response within many pathological conditions 
[50], necessitating the supplementation with dietary antioxidants to 
support cellular function [51]. The capacity of dietary compounds to 
enhance or conserve intracellular antioxidant responses could 

significantly contribute to cardiovascular protection [52]. Published 
preclinical studies indicate that plant extracts or bioactive compounds 
from plants, including those found in rooibos and broccoli, like aspala
thin and sulforaphane, could potentially enhance the intracellular an
tioxidants to protect against diabetes-related complications [53,54]. 
These dietary compounds can protect the heart against oxidative dam
age by activating the antioxidant response element, Nrf2, within hy
perglycemic conditions [55,56]. Clinical studies have demonstrated that 
consuming six cups of rooibos tea, which is rich in aspalathin, can help 
improve the oxidative status in individuals at risk of CVD [57]. Aspa
lathin has shown promising bioavailability, with evidence indicating its 
absorption in the gastrointestinal tract and detection in plasma 
following consumption [58]. It has been suggested that regular con
sumption of rooibos tea may further enhance its beneficial effects [59]. 
On the other hand, sulforaphane exhibits relatively low bioavailability 
due to rapid metabolism and instability [60]. This can limit its effec
tiveness in certain clinical contexts. However, consuming whole food 
sources or supplements, as well as utilizing advanced formulation stra
tegies like myrosinase supplementation and encapsulation, have been 
shown to improve sulforaphane’s absorption and stability[60–62]. 
Despite challenges in bioavailability, sulforaphane has shown thera
peutic potential in clinical studies, particularly in cancer prevention, 

Fig. 7. Aspalathin and sulforaphane enhanced intracellular antioxidant responses in H9c2 cardiomyoblasts exposed to palmitic acid. Briefly, H9c2 car
diomyoblasts were pretreated with 1 μM aspalathin (Asp) and 10 μM sulforaphane (Sul) as well as 2.5 μM Simvastatin (Simva) which was used as a comparative 
control. Thereafter, cells were co-treated with 0.25 mM palmitic acid (Pal) for an additional 24 h. Subsequently, mRNA expression of nuclear factor erythroid 2- 
related factor 2 (Nrf2) and superoxide dismutase (Sod2) was quantified (A and B, respectively). This was in addition to the enzymatic capacity of superoxide dis
mutase (SOD) and glutathione (GSH) (C and D). Results are represented as the mean ± standard error of the mean (SEM) of three independent experiments, with 
three technical repeats (n = 3), per experiment relative to the control (Ctrl). Comparisons between groups were performed using student’s t-test (and nonparametric 
test) for Nrf2 and Sod2 and one-way multivariate ANOVA, followed by Tukey’s multiple comparisons test for SOD activity and GSH. Statistical significance was 
represented by *p < 0.05, **p < 0.01, ***p < 0.001 compared to the experimental control; and #p < 0.05, ##p < 0.01, ###p < 0.001 compared to the palmitic 
acid control.
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neuroprotection, and inflammation, with promising effects even at 
lower concentrations [63]. Nonetheless, further research is required to 
understand its pharmacokinetics and optimize its clinical application 
fully.

The primary objective of this study was to evaluate the car
dioprotective effects of aspalathin and sulforaphane, focusing on mito
chondrial respiratory chain efficiency, reactive oxygen species (ROS) 
production, and lipid peroxidation, all of which serve as key indicators 
of mitochondrial health and oxidative stress. In addition to these 

primary outcomes, we also assessed secondary measures, including 
cholesterol levels and apoptosis/necrosis rates, to gain a more compre
hensive understanding of the impact of these dietary compounds on lipid 
homeostasis and cellular injury. Our results showed that both aspalathin 
and sulforaphane could neutralize the harmful effects of palmitic acid by 
maintaining the metabolic activity of cells, while also positively 
affecting some parameters of mitochondrial respiration such as basal 
and maximal respiration, proton leak, and non-mitochondrial con
sumption. Spare capacity is a critical indicator of a cell’s ability to 

Fig. 8. Aspalathin and sulforaphane protected against cellular apoptosis induced by palmitic acid in cardiomyoblasts. Briefly, H9c2 cardiomyoblasts were 
pretreated with 1 μM aspalathin (Asp) and 10 μM sulforaphane (Sul) as well as 2.5 μM Simvastatin (Simva) which was used as a comparative control. Annexin V and 
propidium iodide staining were used to assess apoptotic and necrotic rates, respectively. The fluorescent images represent different stages of cell death, with viable 
cells in the lower left quadrant, early and late apoptotic cells in the lower and upper right quadrants respectively, and necrotic cells in the upper right quadrant. The 
graphs display the percentages of viable cells (A), as well as the rate of early apoptosis (B), and late apoptosis (C), including cell necrosis (D). Results are presented as 
the mean ± standard error of the mean (SEM) from three independent experiments, each with three technical repeats (n = 3), relative to the experimental control 
(Ctrl). Comparisons between groups were performed using student’s t-test (and nonparametric test). Statistical significance was represented by **p < 0.01, ***p <
0.001 compared to the experimental control; and #p < 0.05, ##p < 0.01, ###p < 0.001 compared to the palmitic acid control.
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respond to increased energy demands and manage stress [64]. Notably, 
we observed no significant differences in spare capacity across the 
treatment groups. This lack of effect suggests that while aspalathin and 
sulforaphane enhance ATP production under baseline conditions, they 
do not significantly alter the cardiomyoblasts’ capacity to respond to 
additional energy demands. This finding is noteworthy, as spare ca
pacity is commonly used as an indicator of pathophysiological stress 
states [65]. The absence of an effect on spare capacity under these 
experimental conditions suggests that further exploration is needed to 
understand the specific mechanisms through which aspalathin and sul
foraphane may influence cellular stress responses. The dietary com
pounds further improved mitochondrial membrane potential including 
the mRNA expression of key markers involved in this process, including 
Pprgc1α, Nrf1, and Uqcc1. Additionally, these dietary compounds could 
reduce H+ (proton) leaks while restoring the physiological state of 
cardiac cells by ameliorating the toxic effects of ROS. These results align 
with previously published studies from different experimental models, 
which demonstrated the protection of aspalathin by improving mito
chondrial function in hepatic and skeletal muscle cells against palmitate 
insult [30,66]. Beyond aspalathin, other dietary compounds like cur
cumin and resveratrol have been shown to have enhanced therapeutic 
potential by improving mitochondrial function and detoxifying ROS 
production to improve cardiac function in conditions of metabolic stress 
[67,68]. Interestingly, these results corroborate previous findings sup
porting the potential therapeutic effects of sulforaphane improving the 
mitochondrial function and cellular function of cultured cardiomyocytes 
exposed to elevated palmitic acid levels [69]. Further, affirming the 
therapeutic potential of these dietary compounds, or foods rich in them, 
in protecting against diabetes-related complications.

We have also observed that conventional pharmacological ap
proaches for both primary and secondary prevention of CVDs often focus 
on lowering circulating cholesterol levels [70,71]. Although our com
pounds of interest did not significantly affect the cholesterol levels, our 
results showed that they were able to reduce lipid peroxidation 
following the detrimental effect of palmitic acid. The strong antioxidant 
properties of these dietary compounds are aligned with their capability 
to up-regulate Nrf2 expression as a strategy to protect against 
hyperglycemia-induced oxidative damage in cardiac cells [55,56]. 
Activation of Nrf2, including its downstream target genes, is one of the 
major mechanisms to protect against cardiac damage [72]. However, 
our results showed that both aspalathin and sulforaphane can inhibit 
apoptosis but fail to protect against cell necrosis. Perhaps inferring that 
these dietary compounds cannot reverse severe damage to the myocar
dium can serve as an appropriate intervention to protect against the 
development of the disease. However, this is a hypothesis that must be 
confirmed in well-designed in vivo studies, or clinical trials.

Overall, both these dietary compounds demonstrated improved 
beneficial effects in mitigating palmitic acid-induced cardiac abnor
malities in our experimental model. The enhancement of intracellular 
antioxidants, possibly through the activation of Nrf2, appears to be the 
potential mechanism for blocking oxidative stress-induced cardiac 
apoptosis. Remarkably, both aspalathin and sulforaphane exhibit anti
oxidant effects that surpass simvastatin, a widely recognized lipid- 
lowering medication known to influence Nrf2/HO-1 signaling in 
diverse diseases ([73]; Q. [36]). These results indicate that both com
pounds not only have the capacity to protect against oxidative 
stress-induced cardiac damage but also potentially reduce lipid levels to 
prevent dyslipidemia and its associated complications. Our results offer 
promising insights into potential dietary strategies for mitigating cardiac 
oxidative damage, but we recognize that these findings are preliminary 
and largely based on in vitro models. The concentrations of compounds 
used in this study are higher than what is typically achievable through 
standard dietary intake. While dietary sources of these compounds may 
provide beneficial effects, their bioavailability and metabolism in 
humans could limit their ability to replicate the cellular responses 
observed in vitro [74]. To fully understand the practical applicability of 

these findings, further research is necessary to determine the optimal 
concentrations needed to achieve similar protective effects in human 
tissues, particularly in the context of lipid overload. Continued investi
gation will be crucial for refining dietary recommendations and assess
ing their real-world potential to improve cardiovascular health.

5. Conclusion

Our findings provide new insights into the potential therapeutic ef
fects of aspalathin and sulforaphane in protecting against dyslipidemia- 
related cardiac toxicity. While we observed that these compounds 
enhanced ATP production under baseline conditions, there were no 
significant changes in spare capacity, suggesting that their protective 
effects may not extend to the ability of cardiomyoblasts to respond to 
additional energy demands under stress. These results highlight the need 
for further exploration into the mechanisms through which aspalathin 
and sulforaphane exert their cardioprotective effects.

This preclinical study supports the potential benefits of dietary 
compounds or foods rich in aspalathin or sulforaphane, such as rooibos 
and broccoli, in protecting against dyslipidemia-associated cardiac 
complications. However, it’s important to recognize the limitations of 
using the H9c2 cardiomyoblasts model in vitro, which does not fully 
replicate human cardiac tissue complexities. Additionally, the concen
trations of these dietary compounds used in the experiments may exceed 
those typically attainable through diet, posing challenges in applying 
these findings directly to dietary practices. Therefore, to comprehen
sively assess the cardioprotective properties of aspalathin and sulfo
raphane, further research using advanced models, such as primary 
cardiomyocytes, the AC16 human cardiac cell line, and animal studies, 
is essential to better understand their mechanisms and enhance the 
relevance of these findings to human health.
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