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Abstract

The development of mechanistic models of biological systems is a central part of Systems

Biology. One major challenge in developing these models is the accurate inference of model

parameters. In recent years, nested sampling methods have gained increased attention in

the Systems Biology community due to the fact that they are parallelizable and provide error

estimates with no additional computations. One drawback that severely limits the usability of

these methods, however, is that they require the likelihood function to be available, and thus

cannot be applied to systems with intractable likelihoods, such as stochastic models. Here

we present a likelihood-free nested sampling method for parameter inference which over-

comes these drawbacks. This method gives an unbiased estimator of the Bayesian evi-

dence as well as samples from the posterior. We derive a lower bound on the estimators

variance which we use to formulate a novel termination criterion for nested sampling. The

presented method enables not only the reliable inference of the posterior of parameters for

stochastic systems of a size and complexity that is challenging for traditional methods, but it

also provides an estimate of the obtained variance. We illustrate our approach by applying it

to several realistically sized models with simulated data as well as recently published biolog-

ical data. We also compare our developed method with the two most popular other likeliood-

free approaches: pMCMC and ABC-SMC. The C++ code of the proposed methods, together

with test data, is available at the github web page https://github.com/Mijan/LFNS_paper.

Author summary

The behaviour of mathematical models of biochemical reactions is governed by model

parameters encoding for various reaction rates, molecule concentrations and other bio-

chemical quantities. As the general purpose of these models is to reproduce and predict

the true biological response to different stimuli, the inference of these parameters, given

experimental observations, is a crucial part of Systems Biology. While plenty of methods

have been published for the inference of model parameters, most of them require the

availability of the likelihood function and thus cannot be applied to models that do not

allow for the computation of the likelihood. Further, most established methods do not
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provide an estimate of the variance of the obtained estimator. In this paper, we present a

novel inference method that accurately approximates the posterior distribution of param-

eters and does not require the evaluation of the likelihood function. Our method is based

on the nested sampling algorithm and approximates the likelihood with a particle filter.

We show that the resulting posterior estimates are unbiased and provide a way to estimate

not just the posterior distribution, but also an error estimate of the final estimator. We

illustrate our method on several stochastic models with simulated data as well as one

model of transcription with real biological data.

This is a PLOS Computational Biology Methods paper.

Introduction

The accurate modelling and simulation of biological processes such as gene expression or sig-

nalling has gained a lot of interest over the last years, resulting in a large body of literature

addressing various types of models along with the means for their identification and simula-

tion. The main purpose of these models is to qualitatively or quantitatively describe observed

biological dynamics while giving insights into the underlying bio-molecular mechanisms.

One important aspect in the design of these models is the determination of the model

parameters. Often there exists a mechanistic model of the cellular processes, but their parame-

ters (e.g. reaction rates or initial molecule concentrations) are largely unknown. Since the

same network topology may result in different behaviour depending on the chosen parameters

([1]), this presents a major challenge for modelling and underscores the need for effective

parameter estimation techniques.

The models used in Systems Biology can be coarsely classified into two groups: determin-

istic and stochastic models. Deterministic models usually rely on ordinary differential equa-

tions which, given the parameters and initial conditions, can describe the time evolution of the

biological system in a deterministic manner. However, many cellular processes like gene

expression are subject to random fluctuations ([2, 3]), which can have important biological

functions ([4–6]) as well as contain useful information about the underlying molecular mecha-

nisms ([7]). The important role of stochastic fluctuations in biological systems has lead to

increased interest in stochastic models and methods for their parameter inference ([8–12]).

Such stochastic models are usually described in the framework of stochastic chemical reaction

networks that can be simulated using Gillespie’s Stochastic Simulation Algorithm (SSA) [13]).

In recent years, the availability of single-cell trajectory data has drastically increased, providing

detailed information about the (potentially stochastic) development of single cells throughout

time.

Despite the increasing interest in stochastic systems, performing inference on them is still

challenging and the available methods are computationally very demanding (see for instance

[8, 14, 15]). Several algorithms have been put forward to deal with such problems, such as vari-

ous kinds of sequential Monte Carlo methods (SMC) ([16, 17]), Markov Chain Monte Carlo

(MCMC) methods ([8, 18, 19]), approximate Bayesian computation (ABC) methods ([20, 21]),

iterative filtering ([22]) and nested sampling (NS) approaches ([23–25]). However, for the

problem of likelihood-free Bayesian inference the two most widely used methods are particle
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MCMC (pMCMC) ([26]) and ABC-SMC ([20]), as discussed in various recent review papers

[27–29]. Furthermore, to reduce computational complexity, several of these inference methods

rely on approximating the model dynamics (for instance using the diffusion approximation

([30]) or linear noise approximation ([31]). However, these approximations may not always be

justifiable (in the case of low copy numbers of the reactants for example) and might obscure

crucial system behaviour.

In this paper, we focus on nested sampling methods and investigate its applicability to sto-

chastic systems. Coming originally from the cosmology community, NS has gained increasing

popularity and found also applications in Systems Biology (see for instance [32–35]). Several

implementations of NS are available ([36, 37]) and in [38] the authors even provide a NS

implementation specifically for a Systems Biology context. Even though the original purpose

of NS was to efficiently compute the Bayesian evidence, it has more and more become a viable

alternative to MCMC methods for the approximation of the posterior (see for instance [39,

40]).

There are various reasons for the interest in NS which are discussed in detail in [41, 42] and

the references within. Some of the rather appealing features of NS is that it performs well for

multimodal distributions ([37, 39]), is easily parallelizable ([33, 43]) and provides a natural

means to compute error bars on all of its results without needing multiple runs of the algo-

rithm ([41, 44]). For a comparison of MCMC and NS see for instance [35, 41], for a discussion

of other methods to compute the Bayesian evidence using MCMC see [41, 45]. Like standard

MCMC methods, NS requires the availability of the likelihood which limits its use to models

that allow for the computation of the likelihood such as deterministic models and simple sto-

chastic models. In this paper, we consider an extension to the original NS framework that, sim-

ilarly to the particle MCMC method ([46]) and particle SMC ([47]), allows the use of

approximated likelihoods instead of the actual likelihood to be used for NS. In the following

we introduce the notation and problem formulation, the “Materials and methods” section is

dedicated to the likelihood-free NS formulation and in the section “Results” we demonstrate

its performance on several chosen examples.

Chemical reaction networks

We are considering a nx-dimensional Markov Process X(t) depending on a d-dimensional

parameter vector θ. We denote with Xi(t) the ith entry of the state vector at time t and with

XðtÞ ¼ fXiðtÞgi¼1;...;nx
the state vector at time t. We will write Xτ = X(tτ) when talking about the

state vector at a timepoint tτ indexed with τ.

In the context of stochastic chemical reaction networks this Markov process describes the

abundances of nx species X 1;X 2; . . . ;X nx
, reacting through nR reactions R1;R2; . . . ;RnR

writ-

ten as

Rj :
Xnx

i¼1

pjiX i !
Xnx

i¼1

qjiX i;

where pji is the numbers of molecules of species X i involved in reaction Rj, and qji is the num-

ber of molecules of species X i produced by that reaction. The random variable Xi(t) corre-

sponds to the number of molecules of species X i at time t. Each reaction Rj has an associated

propensity. The reaction propensities at a given time t depend on the current state X(t) and on

the parameter vector θ.
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General task

The process X(t) is usually not directly observable but can only be observed indirectly through

a ny-dimensional observation vector

Yt � pð�jXt; yÞ;

which depends on the state Xτ and on the parameter vector θ 2 O, where O � Rd denotes the

parameter space. We use the notation p(�|Xτ, θ) to emphasize that we think of the measure-

ment Yτ as a random variable sample from a conditional distribution p(�|Xτ, θ). We shall

assume that the variable Y is not observed at all times but only on T timepoints t1, . . ., tT and

only for M different trajectories. With y we denote the collection of observations at all time

points. In the Bayesian approach the parameter vector θ is treated as a random variable with

associated prior π(θ). The goal is not to find just one set of parameters, but rather to compute

the posterior distribution PðyjyÞ of θ

PðyjyÞ ¼
1

Z
lðyjyÞpðyÞ;

where l(y|θ) (we will also write l(θ) if the dependence on y is clear from the context) is the like-

lihood of θ for the particular observation y and Z is the Bayesian evidence

Z ¼
Z

O

lðyjyÞdpðyÞ: ð1Þ

This has several advantages over a single point estimate as it gives insight into the areas of the

parameter space resulting in model behaviour similar to the observations as well as about their

relevance for the simulation outcome (a wide posterior indicates non-identifiability for exam-

ple). The notation dπ(θ) above indicates that the integral is taken over the prior distribution.

For a detailed discussion of Bayesian approaches see for instance [45]. In this paper we follow

the Bayesian approach and aim to recover the posterior PðyjyÞ. In the following we briefly out-

line the basic nested sampling approach.

Nested sampling (NS)

Nested sampling is a Bayesian inference technique that was originally introduced in [23] to

compute the Bayesian evidence (1). NS can be viewed as an importance sampling technique

(as for instance discussed in [48]) as it approximates the evidence by generating samples θi,

weights wi and likelihoods li = l(θi) such that the weighted samples can be used to obtain

numerical approximations Ẑ of the evidence (1)

Ẑ ¼
X

i

wili �
Z

lðyÞdpðyÞ: ð2Þ

NS samples parameter vectors (particles) from the prior distribution constrained to super-

level sets of the likelihood

pðyjlðyÞ > �iÞ ð3Þ

corresponding to an increasing sequence of thresholds �i. The NS sampling scheme iteratively

removes at each iteration i the particle θi with the lowest likelihood l(θi) = �i from the current

set of particles Li (called “live” set) and replaces it with a newly sampled particle with a likeli-

hood higher than �i to obtain the next set Liþ1. This way, while still suffering from the “curse of

dimensionality”, NS exponentially shrinks the sample space to regions of high likelihood and
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allows one to reach these regions in a reasonable number of iterations. Nested sampling

exploits the fact that the Bayesian evidence (1) can also be written (see [23]) as a one-dimen-

sional integral

Z ¼
Z1

0

LðxÞdx;

over the prior volume

xð�Þ≔ pðlðyÞ > �Þ ¼

Z

lðyÞ>�

dpðyÞ;

where L(x) denotes the likelihood corresponding to the constrained prior with volume x

LðxÞ ¼ arg inf
�
fxð�Þ � xg: ð4Þ

For this reformulation to hold some weak conditions have to be satisfied, see for details [49]

and [25]. For an illustration of the above quantities see Fig 1A and 1B. The NS sampling

scheme approximates the prior volumes xi through x̂i ¼ tðiÞxi� 1, where t(i) denotes the ith sam-

ple from a Beta distribution. These approximated prior volumes allow to compute the weights

as wi ¼ x̂iþ1 � x̂i in (2). One can also use the weights li × wi instead of wi to approximate func-

tions over the posterior PðyÞ

1

Ẑ

X
f ðyiÞliwi �

Z

f ðyÞdPðyÞ:

Fig 1. Illustration of the nested sampling approximation with a uniform prior on [0, 1]. A: The integral over the

parameter space
R
O l(θ)dθ. B: The transformed integral

R 1

0
LðxÞdx over the prior volume x.

https://doi.org/10.1371/journal.pcbi.1008264.g001
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For a more detailed description of NS see S1 Appendix.

Materials and methods

In many cases (such as most of the above mentioned stochastic models) the likelihood l(θ) can-

not be directly computed, making approaches like MCMC methods or nested sampling not

applicable. Fortunately, many variations of MCMC have been described circumventing this

problem by introducing likelihood-free MCMC methods such as [50] or [46] as well as other

likelihood-free methods such as ABC ([20]) or likelihood-free SMC methods ([51]). These

approaches usually rely on forward simulation of a given parameter vector θ to obtain a simu-

lated data set that can then be compared to the real data or can be used to compute a likelihood

approximation l̂ðyÞ � lðyÞ. In the following we briefly illustrate one such likelihood

approximation.

Likelihood approximation using particle filters

A common way to approximate the likelihood through forward simulation is using a particle

filter (see for instance [52]), which iteratively simulates the stochastic system with H particles

and then resamples these particles. The main idea behind particle filters is to exploit the recur-

sive relationship

pðy1; . . . ; ytjyÞ ¼ pðy1; . . . ; yt� 1jyÞ

Z

pðytjXtÞpðXtjy1; . . . ; yt� 1; yÞdXt

where y1, . . ., yt denotes all observations until timepoint t and Xt the (possibly unobserved) sys-

tem state at time t. The above integral can be approximated by creating samples xt,i from the

distribution p(Xt|y1, . . ., yt−1, θ), through forward simulation of of the system and resampling

the simulated paths weighted by the likelihood at each timepoint. Then the likelihood for all

observations up until timepoint t can be approximated by

Z

pðytjXtÞpðXtjy1; . . . ; yt� 1; yÞdXt �
1

H

XH

h¼1

pðytjxt;iÞ:

As the above approximation is unbiased, the resulting particle filter approximation of the like-

lihood is unbiased as well. In the following we illustrate such a particle filter likelihood approx-

imation on a simple birth death model, where one species (mRNA) is produced at rate k = 1

and degrades at rate γ = 0.1. We simulated one trajectory of this system using SSA and, using

the finite state projection (FSP [53]), computed the likelihood l(k) for different values of k
while keeping γ fixed to 0.1. The true likelihood for different k is shown as the solid red line in

Fig 2A and 2B. We also illustrated the likelihood approximation l̂ðkÞ using a particle filter with

H = 100 particles for three values of k. For each of the values for k we computed 1000 realiza-

tions of l̂ðkÞ and plotted the empirical distributions in Fig 2B. Note that l̂ðkÞ is itself a random

variable with distribution pð̂lðkÞjkÞ and has a mean equal to the true likelihood Eð̂lðkÞÞ ¼ lðkÞ
(see for instance [52]). We also sampled 106 values of k from a log uniform prior and approxi-

mate for each k its likelihood with the same particle filter with H = 100 particles. We plotted

the contour lines of this joint distribution

Pðk; l̂ðkÞÞ ¼ pðkÞpð̂lðkÞjkÞ

in Fig 2A.

In the following we discuss how to utilize such a likelihood approximation to apply the

above described NS procedure to cases where the likelihood is not available. Throughout the

PLOS COMPUTATIONAL BIOLOGY Likelihood-free nested sampling for biochemical reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008264 October 9, 2020 6 / 24

https://doi.org/10.1371/journal.pcbi.1008264


paper we assume that the likelihood approximation l̂ðyÞ is obtained using a particle filter, but

our result hold for any unbiased likelihood estimator.

The LF-NS scheme

For NS, the constraint prior π(θ|l(θ) > �i) needs to be sampled. Since in the likelihood-free

case, the likelihood l(θ) is not available and l̂ðyÞ is itself a random variable, the set

fy 2 OĵlðyÞ > �ig (which is the support of the constrained prior) is not defined. To apply the

NS idea to the likelihood-free case, we propose to perform the NS procedure on the joint prior

Pðy; l̂ðyÞÞ ¼ pðyÞpð̂lðyÞjyÞ ð5Þ

on the set O� R>0. This joint prior can be sampled by drawing a sample θ? from the prior

π(θ) and then drawing one sample l̂? from the distribution of likelihood approximations

pð̂lðy?Þjy?Þ. With such a sampling scheme we perform the NS steps of constructing the set of

“dead” particles D on the joint prior (5). As in standard NS, we sample a set of N “live” parti-

cles fy; l̂g from Pðy; l̂ðyÞÞ, then we iteratively remove the particle fy; l̂g with the lowest likeli-

hood sample l̂ from the set of live points and add it to the dead points. The LF-NS algorithm is

shown in Algorithm 1.

Algorithm 1: Likelihood-free nested sampling algorithm
1: Given observations y, a prior π(θ) for θ and a likelihood

approximation pð̂lðyÞjyÞ.
2: Sample N particles fyk

; l̂kg from the prior Pðy; l̂ðyÞÞ and save it in the
set L0, set D ¼ f;g

3: for i = 1, 2, . . ., m do
4: Find i0 ¼ arg min

k
ð̂lkjfy

k
; l̂kg 2 Li� 1Þ and set yi ¼ y

i0 and �i ¼ l̂ i0

5: Add {θi, �i} to D
6: Set Li ¼ Li� 1 nfyi; �ig

7: Sample fy?; l̂?g � Pðy; l̂ðyÞĵlðyÞ > �iÞ and add it to Li

8: end for

Fig 2. Illustration of likelihood approximation with a particle filter. A: Top: Likelihood for different parameters k

(red) and contour lines of the joint distributionP(k, log(k) of the parameter k and its likelihood approximation l̂ðkÞ,
based on 106 samples of the likelihood approximation obtained with a particle filter with 100 particles. Bottom: The

constrained priors π(k|l(k)> �) and pðkÞpð̂lðkÞ > �jkÞ for � = 1e − 24. B: Example distributions pð̂lðkÞjkÞ (blue) for

k = 1, 1.2 and 1.4 and the true likelihood l(k) red.

https://doi.org/10.1371/journal.pcbi.1008264.g002
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The parallel version of LF-NS with r parallel processes is analogous to the parallelization of

the standard NS algorithm as described in S2 Appendix.

LF-NS is unbiased

As for standard NS, the sampling procedure for LF-NS guarantees that each set of live points

Li contains N samples uniformly distributed according to the constrained joint prior

Pðy; l̂ðyÞĵlðyÞ > �iÞ, thus removing the sample with the lowest likelihood approximation l̂k

results in the same shrinkage of prior volume as the standard NS scheme. The prior volumes

xi = t(i) xi−1 now correspond to the volumes of the constraint joint priors Pðy; l̂ðyÞĵlðyÞ > �iÞ

and the resulting weights wi ¼ x̂i� 1 � x̂i can be used, similarly as in Eq (2), to integrate the

likelihood l over the constrained prior. Writing the density functions of π(θ) and pð̂lðyÞjyÞ as

fπ(θ) and fpð̂lðyÞjyÞ respectively we have

Xm

i

wi�i �

Z

l̂ðyÞdPðy; l̂ðyÞÞ

¼

Z

O

Z1

0

l̂ðyÞfpðyÞfpð̂lðyÞjyÞd̂lðyÞdy ¼
Z

O

fpðyÞ
Z1

0

l̂ðyÞfpð̂lðyÞjyÞd̂lðyÞdy

¼

Z

O

lðyÞfpðyÞdy ¼ Z;

where the last equality relies on the unbiasedness of l̂ðyÞ. While the procedure for LF-NS is

very similar to the standard NS algorithm, the new samples θ? have to be drawn from the con-

straint joint prior Pðy; l̂ðyÞĵlðyÞ > �Þ instead from the constrained prior π(θ|l(θ)> �). In the

following we discuss the resulting difficulties and show how to overcome them.

Sampling from the super-level sets of the likelihood

One of the main challenges ([54, 55]) in the classical NS algorithm is the sampling from the

prior constrained to higher likelihood regions π(θ|l(θ) > �). A lot of effort has been dedicated

to finding ways to sample from the constrained prior efficiently, the most popular approaches

include slice sampling ([37]) and ellipsoid based sampling ([39]).

In the case of LF-NS, at the ith iteration we are sampling not just a new parameter vector θ?

but also a realization of its likelihood approximation l̂? from

Pðy; l̂ðyÞĵlðyÞ > �iÞ ¼ pðyÞpð̂lðyÞjy; l̂ðyÞ > �iÞ: ð6Þ

Since it is in general not possible to sample l̂? from the constraint distribution

pð̂lðy?Þjy?; l̂ðy?Þ > �iÞ directly, we use rejection sampling. We sample θ? from the prior π(θ),

then sample l̂? from the unconstrained distribution pð̂lðy?Þjy?Þ and accept the pair ðy
?
; l̂?Þ only

if l̂? > �i. While this procedure guarantees that the resulting samples are drawn from (6), the

acceptance rate might become very low. Each live set Li consists of N pairs ðy
k
; l̂kÞ distributed

according to (6), thus the parameter vectors θk in Li are distributed according to

y �

Z

Pðy; l̂ðyÞĵlðyÞ > �iÞd̂lðyÞ ¼ pðyÞpð̂lðyÞ > �iÞ: ð7Þ

We plotted an example of the distributions (3) and (7) for the example of the birth-death
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process in Fig 2A. The distribution (7) has usually an infinite support, although in practice the

density function of (7) will be close to zero for large areas of the parameter space O. Similarly

to NS, we propose to use the set Li to drawn from the areas where (7) is non-zero. Slice sam-

pling methods ([32, 37]) are unfortunately not applicable for LF-NS since they require a way

to evaluate its target distribution at each of its samples. We can still use ellipsoid sampling

schemes, but unlike in the case of NS where the target distribution π(θ|l(θ)> �) has compact

support, the target distribution (7) has potentially infinite support framing ellipsoid based

sampling approaches rather unfitting. Sampling using MCMC methods (as suggsted in [23]) is

expected to work even for target distributions with infinite support, but suffers from the

known MCMC drawbacks, as they produce correlated samples and might get stuck in discon-

nected regions.

To account for the smooth shape of (7) we propose to employ a density estimation

approach. At each iteration i, we estimate the density pðyÞpð̂lðyÞ > �iÞ from the live points and

employ a rejection sampling approach to sample uniformly from the prior on the domain of

this approximation. As density estimation technique, we use Dirichlet Process Gaussian Mix-

ture Model (DP-GMM) ([56]). For further details and an illustration of the different sampling

schemes see S3 Appendix.

Even though for the presented examples we employ DP-GMM, we note that in theory any

sampling scheme that samples uniformly from the prior π(θ) over the support of pðyÞpð̂lðyÞ >
�iÞ will work.

A lower bound on the estimator variance

Unlike for NS, for LF-NS, even if at each iteration the proposal particle θ? is sampled from the

support of pðyÞpð̂lðyÞ > �iÞ, it will only be accepted with probability pð̂lðy?Þ > �iÞ. This means

that depending on the variance of the likelihood estimation pð̂lðyÞjyÞ and the current likeli-

hood threshold �i, the acceptance rate for LF-NS will change and with it the computational

cost. For an illustration see S4 Appendix.

Due to this possible increase in computational time, it is important to terminate the LF-NS

algorithm as soon as possible. We propose to use for the Bayesian evidence estimation not

only the dead particles D, but also the current live points Lm. This possibility has been already

mentioned in other places (for instance in [40, 49, 57]) but is usually not applied, since the

contribution of the live particles decreases exponentially with the number of iterations. Since

for standard NS each iteration is expected to take the same amount of time, most approaches

simply increase the number of iterations to make the contribution of the live particles negligi-

bly small.

The Bayesian evidence can be decomposed as

Z ¼
Zxm

0

LðxÞdx

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≕Zm

L

þ

Z1

xm

LðxÞdx

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≕Zm

D

ð8Þ

where xm is the prior volume for iteration m. The first integral Zm
L is the part that can be

approximated through the N live samples at any given iteration, while the integral Zm
D is

approximated through the dead samples.
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Writing

�Lm ≔
1

N

X

fy;̂lg2Lm

l̂ �
Z

l̂ðyÞdPðy; l̂ðyÞĵlðyÞ > �mÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕Lm

for the estimator of the integral of the likelihoods in the live set, we propose the following esti-

mator for Z

Ẑm
tot ¼ x̂m

�Lm|ffl{zffl}
¼Ẑm

L�Zm
L

þ
Xm

i¼1

�iwi

|fflfflffl{zfflfflffl}
¼Ẑm

D�Zm
D

;
ð9Þ

where Ẑm
D approximates the finite sum ~Zm

D ¼
Xm

i¼1

�iðxi� 1 � xiÞ by replacing the random vari-

ables xi with their means x̂i. Since x̂m
�Lm is an unbiased estimator of Zm

L and Ẑm
D is an unbiased

estimator of Zm
D , the estimator Ẑm

tot is an unbiased estimator of the Bayesian evidence Z for any

m. In particular, this implies that terminating the LF-NS algorithm at any iteration m will

result in an unbiased estimate for Z. However, terminating the LF-NS algorithm early on will

still result in a very high variance of the estimator. This variance is a result of the variances in

xi and the variance in the Monte Carlo estimate �Lm. As pointed out in [40], when using nested

sampling approximations to approximate the integral of arbitrary functions f over the poste-

rior, an additional error is introduced by approximating the average value of f(θ) on the con-

tour line of l(θ) = �i with the value f(θi). In the following we formulate a lower bound s2m
min on

the estimator variance s2m
tot ¼ Varð~Zm

D þ Ẑm
LÞ at iteration m, show that this lower bound is

monotonically increasing in m and propose to terminate the LF-NS algorithm as soon as the

current estimator variance differs from this lower bound by no more than a predefined thresh-

old δ.

Treating the prior volumes xi and the Monte Carlo estimate �Lm as random variables, the

variance s2m
tot of the NS estimator at iteration m can be estimated at each iteration without addi-

tional computational effort (see S5 Appendix and [57]). This variance depends on the variance

Var ð�LmÞ of the Monte Carlo estimate �Lm and is monotonically increasing in Var ð�LmÞ (see S5

Appendix). We define the term s2m
min which is the same variance Var ð~Zm

D þ Ẑm
LÞ but with the

term Varð�LmÞ set to 0. Clearly we have for any m (see S6 Appendix)

s2m
tot � s

2m
min:

More importantly, as we show in S6.2 Appendix, s2
min is monotonically increasing in m

s2m0
min � s

2m
min; 8m0 � m:

This allows us to bound the lowest achievable estimator variance s2
min ¼ sup

m!1
s2m
min from

below

s2
min � s

2m
min:

The terms for s2m
tot and s2m

min both contain the unknown value Lm which can be approximated

using its Monte Carlo estimate �Lm giving us the estimations of the above variances ŝ2m
tot and
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ŝ2m
min. We use these variance estimates to formulate a termination criteria by defining

D
m
LFNS ≔

ffiffiffiffiffiffiffi
ŝ2m

tot

p
�

ffiffiffiffiffiffiffiffi
ŝ2m

min

p

Ẑm
tot

ð10Þ

and terminate the algorithm as soon as D
m
LFNS < d for some predefined δ. The term in the

numerator in (10) is the difference between the current estimator standard deviation ŝm
tot and

the lowest standard deviation ŝm
min that can possibly be achieved by continuing to run the

LF-NS algorithm beyond the current iteration m. The denominator is used to normalized this

possible reduction in standard deviation by the current evidence estimate Ẑm
tot. This termina-

tion criteria seems intuitive since it terminates the LF-NS algorithm as soon as a continuation

of the algorithm is not expected to make the final estimator significantly more accurate. As a

final remark we note that the final estimator Ẑm
tot as well as the termination criteria using D

m
LFNS

can of course also be applied in the standard NS case.

Results

We test our proposed LF-NS algorithm on three examples for stochastic reaction kinetic mod-

els. The first example is the birth death model, already introduced above, the second example

is the Lac-Gfp model used for benchmarking in [10] and the third example is a transcriptional

model from [58] with corresponding real data. We also compare the performance of the

LF-NS algorithm with two of the most widely used likelihood-free inference methods

pMCMC and ABC-SMC. We point out that for deterministic systems with available likeli-

hoods, our LF-NS algorithm reduces to the standard NS method and has been discussed in

several other places (see for instance [41]). In the following examples all priors are chosen as

uniform or log-uniform in the bounds indicated in the posterior plots.

The stochastic birth-death model

We first revisit the birth-death example from above to compare our inference results to the

solution obtained by FSP. We use the same data as above and use the same log-uniform prior.

We ran our LF-NS algorithm as described above using DP-GMM for the sampling. We used

N = 100 LF-NS particles, H = 100 particle filter particles and sample at each iteration r = 10

particles. We ran the LF-NS algorithm until D
m
LFNS is smaller than 0.001. We show the obtained

posterior in Fig 3A. Fig 3B shows the obtained estimates of the Bayesian evidence, where the

shaded areas indicate the standard error at each iteration. The dashed red line indicates the

true BE computed from 106 samples from Pðy; l̂ðyÞÞ. We observe that due to the simplicity

of the birth-death model, the BE is already well estimated in the very first iteration. However,

the estimates of the lower and upper bound of the variance ŝ2m
min and ŝ2m

tot indicate that a

continuation of LF-NS scheme may result in a lower estimator variance. The development

of these upper and lower bound estimators are shown in Fig 3C and we can clearly see how

they converge to the same value. For our termination criteria we show the quantities

D
m
max ¼ xmmaxð̂l 2 LmÞ, that is frequently used as a termination criteria for regular nested sam-

pling (see S1.3 Appendix) and D
m
LFNS in Fig 3D.

The Lac-Gfp model

We demonstrate how our algorithm deals with a realistic sized stochastic model, by inferring

the posterior for the parameters of the Lac-Gfp model illustrated in S5 Fig. This model has

been already used in [10] as a benchmark, although with distribution-data. Here we use the
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model to simulate a number of trajectories and illustrate how our approach infers the posterior

of the used parameters. This model is particularly challenging in two aspects. First, the number

of parameters is 18, making it a fairly large model to infer. Secondly, the model exhibits

switch-like behaviour which makes it very hard to approximate the likelihood of such a switch-

ing trajectory (see S7.2 Appendix and particular S6 Fig for further details). We used N = 500

LF-NS particles, H = 500 particle filter particles and sample at each iteration r = 50 particles.

The measured species in this example is fluorescent Gfp (mGFP) where it is assumed that

each Gfp-molecule emits fluorescence according to a normal distribution. We used one trajec-

tory to infer the posterior, whose marginals are shown in Fig 4D. The posterior covers the true

parameters (indicated in blue) and we can observe that while several parameters (particularly

θ1—θ7) cannot be well identified by the posterior, the remaining parameters seem to have

been identified well. Fig 4A shows the estimated Bayesian evidence with corresponding stan-

dard errors for each iteration. Fig 4B shows the corresponding estimations of the bounds of

the lowest achievable variance. As we see, the estimated Bayesian evidence, as well as the esti-

mated variance bounds, do several jumps in the process of the LF-NS run. These jumps are

Fig 3. Inference on the birth-death model. A: Histogram of the posterior PðkÞ estimate obtained with LF-NS using

N = 100 and H = 100. The true posterior is indicated in black. B: Development of the estimation of the Bayesian

evidence using the estimation based solely on the dead points ẐD, the estimate approximation from the live points ẐL

and the estimation based on both Ẑ tot. The corresponding standard errors are indicated as the shaded areas. The true

Bayesian evidence is indicated with the dashed red line. C: Estimate of the current variance estimate ŝ2m
tot and the lower

bounds for the lowest achievable variance ŝ2
min. D: Developments of the different error estimations for each iteration.

https://doi.org/10.1371/journal.pcbi.1008264.g003
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due to the exploration of the parameter space and correspond to iterations in which previously

unsampled areas of the parameter space got sampled with a new maximal likelihood. In Fig 4C

we plotted the acceptance rate of the LF-NS algorithm for each iteration as well as the cumula-

tive computational time. The computation was performed on 48 cores of the Euler cluster of

the ETH Zurich. The inference for this model took well over 12 hours and as we see, the

computational time for each iteration seems to increases exponentially as the acceptance rate

decreases. The low acceptance rate is expected, since the number of particle filter particles

Fig 4. Inference on the Lac-Gfp model. A: Development of the estimation of the Bayesian evidence using the

estimation based solely on the dead points ẐD, the estimate approximation from the live points ẐL and the estimation

that uses both Ẑ tot. The corresponding standard errors are indicated as the shaded areas. B: Estimate of the current

variance estimate ŝ2m
tot and the lower bounds for the lowest achievable variance ŝ2

min. C: The acceptance rate of the

LF-NS algorithm for each iteration (blue) and the cumulative time needed for each iteration in hours (red). The

computation was performed on 48 cores in parallel on the Euler cluster of the ETH Zurich. D: Marginals of the

inferred posterior distributions of the parameters based on one simulated trajectory. The blue lines indicate the

parameters used for the simulation of the data.

https://doi.org/10.1371/journal.pcbi.1008264.g004
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H = 500 results in a very high variance of the particle filter estimate (see S6B Fig). From Fig 4A

we can clearly see that using only the dead points for the BE estimation would result in a very

strong underestimation of the true BE. The use of the live sets and our developed termination

criteria is what allows us to terminate the algorithm in a reasonable time. We can also see from

Fig 4A that our LF-NS algorithm seems to approximated the BE already quite well after around

110 iterations. To reach this iteration the LF-NS needed only approximately 35 minutes (as

can be seen in Fig 4C), and we conclude that the majority of the computational time is used

not to find new regions of high likelihood, but rather to reduce the variance of the final BE esti-

mator. We point out that we could have terminated the algorithm after the first hour and

would have had already a good estimate of the BE, where the final variance (as seen in Fig 4B)

would still be in an acceptable range. The runtime of around 13 hours is therefore mainly due

to our very high standards of accuracy.

A stochastic transcription model

As a third example we use a transcription model recently used in [58], where an optogeneti-

cally inducible transcription system is used to obtain live readouts of nascent RNA counts. The

model consists of a gene that can take two configurations “on” and “off”. In the “on” configu-

ration mRNA is transcribed from this gene and can be individually measured during this

transcription process (see [58] for details). We modelled the transcription through n = 8 subse-

quent RNA species that change from one to the next at a rate λ. This is done to account for the

observed time of 2 minutes that one transcription event takes. An illustration of the model is

shown in Fig 5A. For the inference of the model parameters we chose five trajectories of real

biological data, shown in Fig 5C. Clearly, the system is inherently stochastic and requires cor-

responding inference methods. We ran the LF-NS algorithm for N = 500 and H = 500 on these

five example trajectories. The resulting marginal posteriors are shown in Fig 5B, we also indi-

cated the parameter ranges considered in [58]. These ranges were chosen in [58] in an ad-hoc

manner but, apart from the values for koff, seem to fit very well with our inferred results. To

make sure that our approach inferred the right posterior, we also ran a pMCMC algorithm

(see S8.1 Appendix) on the problem. pMCMC methods have been shown to target the true

posterior distribution, which is why we chose the obtained pMCMC posterior as ground truth.

To make sure that the pMCMC run converged in an acceptable time, we used the posterior

obtained from the LF-NS run to pick the initial sample of pMCMC. We also picked the pertur-

bation kernel q for pMCMC to be a Gaussian with covariance equal to the covariance matrix

of the obtained LF-NS posterior. We ran the pMCMC algorithm for 24 hours and indicated

the obtained marginal posteriors in blue. As can be seen, our obtained LF-NS posterior fits

very well with the posterior obtained through pMCMC. In S7 Fig we show the development of

the evidence approximation as well as the corresponding standard errors and the development

of the upper and lower bound estimation for the lowest achievable variance s2
min.

Comparison with other likelihood-free approaches

To further evaluate and compare our LF-NS algorithm with other state-of-the-art likelihood-

free approaches, we compare it to two of the most popular current methods in this field, parti-

cle MCMC (pMCMC) and Approximate Bayesian Computation—Sequential Monte Carlo

(ABC-SMC), that have both been the subject of several recent review papers [27–29].

The pMCMC method (as presented for instance in [46]) is in its core a Metrpolis-Hastings

MCMC (MH-MCMC) method, where the likelihood in the acceptance ratio is replaced with

its particle filter approximation (for more details see S8.1 Appendix). It therefore inherits

many of the strengths and weaknesses of the MH-MCMC method. Among its strengths is that
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it targets the true posterior PðyÞ, is easy to implement and has been very well studied. The

downsides of pMCMC include that for realistic problems its performance depends on the ini-

tial sample θ0 of the Markov Chain as well as the choice of the perturbation kernel q that is

used to create the Markov Chain. Further, as pMCMC produces a sequence of dependent sam-

ples it is rather difficult to parallelize and can get stuck in local regions of high-likelihood. Like

our LF-NS method, the pMCMC method is the result of using an established inference method

(for pMCMC it is MH-MCMC and in the case of LF-NS it is nested sampling) and replacing

the likelihood computation with a particle filter approximation. Like the LF-NS method,

pMCMC requires the unbiasedness of the particle filter approximation to guarantee the con-

vergence to the true posterior.

Unlike pMCMC, ABC methods do not target the true posterior p(θ|y), but instead aim at

obtaining an approximate posterior p(θ|d(yθ, y)< �), where yθ is the simulated dataset

using parameter θ, y is the experimental data, d is some chosen distance and � > 0 is some pre-

defined threshold. ABC-SMC ([51]) further improves on this idea, as it creates the distribution

p(θ|d(yθ, y)< �) by constructing a sequence of intermediate distributions p(θ|d(yθ, y)< �i),

corresponding to a decreasing sequence of �0 > . . .> �F = �. In each iteration i, ABC-SMC

samples a set of N particles from the distribution obtained in the previous iteration and accepts

the new particles if d(yθ, y)< �i (see for details [20, 51] and S8.2). This sequential approach is

very similar to our LF-NS algorithm and differs from it mainly in the way the intermediate dis-

tributions are defined. The ABC-SMC methods create them so that the distance d(yθ, y) lies

Fig 5. Inference on the transcription model. A: Schematic representation of the gene expression model. The model

consists of a gene that switches between an “on” and an “off” state with rates kon and koff. When “on” the gene is getting

transcribed at rate kr. The transcription process is modelled through n RNA species that sequentially transform from

one to the next at rate λ. The observed species are all of the intermediate RNAi species. B: The marginal posterior

distribution of the parameters of the system. The histogram indicates the posterior obtained through LF-NS, the blue

line indicates the posterior obtained from a long pMCMC run and the shaded areas indicate the parameter ranges that

were considered in [58]. The scale of the x-axis does not represent the range of the prior and has been chosen for

presentational purposes. C: The five trajectories used for the parameter inference.

https://doi.org/10.1371/journal.pcbi.1008264.g005
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under a certain threshold �i, while the LF-NS algorithm requires the likelihood approximation

l̂ðyÞ to be above a certain threshold �i.

The advantages of ABC-SMC include that, unlike pMCMC methods they create uncorre-

lated samples and can therefore be easily parallelized, are not in danger of getting stuck in iso-

lated parameter regions and do not require the specification of a good initial sample.

Additionally, the computation of the distance d(yθ, y) is usually much cheaper than running a

particle filter. The obvious downsides of ABC-SMC methods is that they do not target the true

posterior and depend on the definition of the distance d as well as a suitable sequence of

thresholds �1, > . . .>�F. For further discussions on pMCMC and ABC methods we refer the

reader to the above mentioned review papers [27–29] and S8 appendix in the supplementary.

To give an idea of the performance of these algorithms compared to our LF-NS algorithm,

we implemented both the pMCMC algorithm as well as the ABC-SMC method and used them

to infer the posterior distribution of the parameters of the Lac-Gfp model. As discussed earlier,

this model is particularly challenging due to its large parameter space and its switch-like

behavior. We ran the pMCMC method for 48 hours on the same machine as the LF-NS algo-

rithm. To make the comparison as favorable as possible to the pMCMC method, we used the

previously obtained LF-NS posterior for the Lac-Gfp model to tune the parameters of the

pMCMC run. We chose as perturbation kernel q, a Gaussian distribution with the covariance

being the sample covariance matrix of the posterior distribution of the previously obtained

posterior. We used the same number of particle filter particles H = 500 as for the LF-NS run.

We performed a total of two runs, one where the initial sample θ0 was chosen randomly from

the prior π(θ) and one where it was sampled from the posterior PðyjyÞ previously obtained

with LF-NS. The resulting posteriors, as well as the detailed pMCMC runs are shown in S8 and

S9 Figs. We observed that when choosing the initial sample θ0 from the true posterior, the

pMCMC method converges to the true posterior. While we ran the pMCMC algorithm

sequentially for 48 hours, this runtime can be improved by combining various approaches

from the literature such as running several parallel MCMC or parallelizing the particle filter

approximation. However, these modifications take a significant effort to implement and tune,

and a thorough discussion of all possible option is beyond the scope of this simple comparison.

When sampling θ0 from the prior distribution π(θ) (and not from the previously obtained pos-

terior PðyjyÞ), we observed that even after 48 hour the pMCMC method did not converge to

the parameter region of the posterior and thus failed to give any meaningful parameter esti-

mate (see S8 and S9 Figs). We conclude that the pMCMC method is generally capable of infer-

ring the parameter posterior for models of size and complexity comparabvle to the Lac-Gfp

model, but requires extensive tuning and an initial sample that is already in a high likelihood

region. We also point out that in this example we used as the perturbation kernel the covari-

ance of the actual posterior distribution. In a realistic setting, this perturbation kernel and the

initial sample need to be determined without any knowledge of the true posterior, which

proves to be considerably more difficult. Further, it is difficult to know when the pMCMC

algorithm reaches the posterior distribution without the knowledge of the true distribution.

This can be seen from S9 Fig, where the pMCMC with initial sample taken from the prior

θ0 * π(θ) seems to reach a region of high likelihood, but is in truth far away from true poste-

rior. This issue of tuning the pMCMC method is well known and discussed in the literature.

For a further discussion on the tuning problem see for instance [27, 28].

We also ran the ABC-SMC method for the Lac-Gfp model, using as distance metric the

euclidean distance between the simulated dataset yθ and experimental data y. As in [27] we cre-

ated the sequence of �i by picking it to be the 30% quantile of the distances computed in the

previous iteration. Due to its easy parallelization we ran the ABC-SMC algorithm in parallel
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on 48 cores for 24 hours. The resulting marginal posteriors are shown in S10 Fig. We observe

that for many of the parameters (θ1-θ7, θ10, θ15–θ18), the inferred marginal posteriors corre-

spond to the marginal posteriors obtained with the LF-NS method. For several other parame-

ters (θ8, θ9, θ11–θ14) the inferred distributions do not seem to match the posterior distribution

inferred with LF-NS. This can be due to several reasons. The ABC-SMC method may not have

been run for a sufficiently long time or the final �F was not small enough. This result is not sur-

prising, as the ABC-SMC method is not expected to return the true posterior. However, if the

true posterior is not of interest and the modeler wishes to only get an idea about the likely loca-

tion of the model parameters, the ABC-SMC method provides a viable option.

We also compared our LF-NS method with previously published results on the inference

for the Lotka-Voltera model (see S7.4 Appendix) that was performed in [27]. There, the

authors compared the development of the pMCMC and ABC-SMC methods on this example.

We used our LF-NS algorithm to infer the posterior for the same problem. First, we compare

the obtained posteriors for the three methods. As ground truth we take the posterior obtained

from a very long (12 hours) pMCMC run. We ran all three algorithms sequentially for the

same amount of time (12 minutes). The obtained posteriors are shown in S11 Fig. We can

clearly see that the LF-NS and the pMCMC algorithms target the true posterior distribution.

The ABC-SMC algorithm, while still identifying the true parameters θ�, seem to infer a distri-

bution slightly different than the posterior distribution.

To compare the computational efficiency of the three algorithms, we followed [27] and

used the LF-NS, the pMCMC and the ABC-SMC algorithm to infer the posteriors for the

Lotka-Voltera model while limiting ourselves to comparable computational effort. We first ran

the LF-NS algorithm with different number of live particles (N = 10, 20, 40, 60, 80, 100, 200)

using as termination criteria D
m
LFNS ¼ 0:01. The runs were performed sequentially (rather than

in parallel) to make the results more comparable between the three algorithms. We ran the

ABC-SMC algorithm for the same problem using the same number of particles as in the

LF-NS runs. As the ABC-SMC algorithm does not provide any termination criteria, we termi-

nate it after the same runtime as the LF-NS algorithm. We also performed several pMCMC

runs, one with initial sample from the posterior distribution and one with the initial sample

from the prior distribution. We ran each of the pMCMC runs for the same amount of time as

the LF-NS runs took and plotted the obtained results in Fig 6.

In Fig 6A we show the development of the Bayesian evidence estimate for each of the

LF-NS runs, as well as the estimator variance. Fig 6B shows the estimated marginal posterior

Fig 6. Runtime comparison between LF-NS, pMCMC and ABC. A: The estimated Bayesian evidence for the

different LF-NS runs. The error bars indicate the standard deviation of the final BE estimate. B: The estimated mean

and standard deviation of the marginal posterior for c3 for the different algorithm runs. The solid red line indicates the

mean and standard deviation of the true marginal posterior for c3.

https://doi.org/10.1371/journal.pcbi.1008264.g006
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means and variance for the parameter c3. The only algorithm that clearly failed at obtaining

the true parameter mean and variance is the pMCMC run where θ0 was picked from the prior.

We also see that the ABC-SMC algorithm gets very close to the true parameter mean, but con-

sistently underestimates it, which is a strong indicator that the targeted distribution is not the

true posterior. For the LF-NS algorithm as well as the pMCMC algorithm with θ0 picked from

the posterior, we see that every run results in an estimate very close to the true mean and vari-

ance. For the Lotka-Voltera model, the runtime of the pMCMC as well as the infered posterior

distribution depends on the initial sample. When θ0 is picked close enough to high posterior

regions, the convergence is very quick, while when picked from the prior, the convergence can

take very long. The speed of the converges will in general also depend on the used perturbation

kernel q and can be greatly improved by tuning the pMCMC algorithm further. The LF-NS

algorithm captures the posterior for all runtimes reliably, where larger runtimes result in a

lower estimator variance. Unlike pMCMC, the LF-NS algorithm as well as the ABC-SMC algo-

rithm both explore the full parameter space and then converge to the (approximate) posterior.

Further LF-NS and ABC-SMC can easily be parallelized which will greatly improve the run-

time in practical problems.

Discussion

We have introduced a likelihood-free formulation of the well known nested sampling algo-

rithm and have shown that it is unbiased for any unbiased likelihood estimator. While the uti-

lization of NS for systems without an available likelihood is straight forward, one has to take

precautions to avoid infeasibly high computational times. Unlike for standard NS, it is crucial

to include the estimation of the live samples to the final BE estimation as well as terminate the

algorithm as soon as possible. We have shown how using a Monte Carlo estimate over the live

points not only results in an unbiased estimator of the Bayesian evidence Z, but also allows us

to derive a formulation for a lower bound on the achievable variance in each iteration. This

lower bound at each iteration has been shown to be a lower bound for the best achievable vari-

ance and has allowed us to formulate a novel termination criterion that stops the algorithm as

soon as a continuation can at best result in an insignificant improvement in accuracy. While

the formulation of the variances and its lower bound were derived having a parallel LF-NS

scheme in mind, they can equally well be used in the standard NS case and can be added effort-

lessly to already available toolboxes such as [36] or [37]. We emphasize that the lower variance

bound approximation ŝ2m
min is neither a strict error term, as it only gives information of the vari-

ance of the estimator, nor a strict lower bound of the estimator variance since it contains the

unknown term Lm. Instead, it gives an estimate of the lowest achievable estimator variance

that depends on the Monte Carlo estimate of the likelihood average over the live points �Lm.

This can be seen Fig 4A and S7A Fig, where the lower bound estimate ŝ2m
min does not only make

jumps, but also decreases after each jump (the actual lower bound estimate s2m
min is monotoni-

cally increasing in m as shown in S6.2 Appendix). Our suggested LF-NS scheme has three dif-

ferent parameters that govern the algorithm behaviour. The number of LF-NS particles N
determines how low the minimal variance of the estimator can get, where low values for N
result in a rather high variance and high values for N result in a lower variance. The number of

particles for the particle filter H determines how wide or narrow the likelihood estimation is

and thus determines the development of the acceptance rate of the LF-NS run, while the num-

ber of LF-NS iterations determines how close the variance of the final estimate comes to the

minimal variance. We have demonstrated the applicability of our method on several models

with simulated as well as real biological data.
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We also compared the performance of the LF-NS scheme with the most widely used other

likelihood-free inference schemes in the field, pMCMC and ABC-SMC. We have shown that

for the considered example of the Lac-Gfp model, the ABC-SMC method failed to recover the

desired posterior in any reasonable time, while the pMCMC algorithm did recover the true

posterior, but only after extensive tuning and after a much longer run time than our proposed

method. Further we have compared the LF-NS method with the performance of pMCMC and

ABC-SMC on the Loktka-Voltera model and have demonstrated that on this example, the

computational effort as well as the accuracy of the results compares very well with the other

two state-of-the-art methods. Both the issues with ABC-SMC as well as the extensive tuning

with pMCMC are well known and discussed in the literature. Further, we have introduced a

clear termination criteria for the LF-NS method that allows to terminate the algorithm as soon

as no improvement of accuracy can be expected.

We believe that our method, while in its individual elements similar to pMCMC and

ABC-SMC, combines the strengths of each approach while circumventing the crucial tuning

required by pMCMC and the issue of targeting an approximate rather than the true posterior

distribution of the ABC-SMC.

Our LF-NS can, similarly to ABC, pMCMC or SMC models deal with stochastic models

with intractable likelihoods and has all of the advantages of classic NS. We believe that particu-

larly the variance estimation that can be performed from a single LF-NS run proves to be use-

ful as well as the straight forward parallelization.
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solely on the dead points ẐD, the estimate approximation from the live points ẐL and the esti-
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