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Introduction

The incidence of cutaneous malignant melanoma has been 
steadily increasing over the last decades. While complete surgi-
cal excision yields high 5-year survival for patients with local-
ized tumors exhibiting a depth < 0.75 mm, the outcome is poor 
for patients with a greater depth of invasion or bearing metasta-
ses. The development of novel therapeutic approaches is there-
fore of great importance. Interestingly, melanomas are relatively 
immunogenic tumors and sensitive to cytotoxic T lymphocyte 
(CTL)-mediated lysis. As dendritic cells (DCs) are the main 
antigen-presenting cell (APC) population capable of inducing 
CTLs, DC transfer, DC targeting and in situ DC induction, 
recruitment and/or activation have been explored as promising 
immunotherapeutic strategies against melanoma. The topical or 
intratumoral administration of DC-activating agents—including 
interferon α (IFNα), bacillus Calmette-Guérin (BCG), or puri-
fied Toll-like receptor (TLR) ligands such as imiquimod—are 
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The infiltration of melanoma lesions by dendritic cells (DCs) has 
been suggested to play a tumorigenic role due to the capacity 
of DCs to induce tumor tolerance and promote angiogenesis as 
well as metastasis. However, it has also been shown that tumor-
infiltrating DCs (TiDCs) induce antitumor responses and hence 
may be targeted in cost-effective therapeutic approaches 
to obtain patient-specific DCs that present relevant tumor 
antigens, without the need for ex vivo DC expansion or tumor 
antigen identification. Unfortunately, little is known about the 
composition, nature and function of TiDCs found in human 
melanoma. The development of mouse melanoma models 
has greatly contributed to the molecular understanding of 
melanoma immunology in mice, but many questions on TiDCs 
remain unanswered. Here, we discuss current knowledge 
about melanoma TiDCs in various mouse models with regard 
to their translational potential and clinical relevance.
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recommended as treatment options for patients with in-transit 
melanoma metastasis.1–5 While this approach is relatively suc-
cessful against cutaneous metastases, efficacy is limited for sub-
cutaneous metastases. An improved understanding of the type, 
nature and functionality of TIDCs could lead to novel and more 
effective therapeutic approaches. To circumvent ethical issues and 
TIDC availability constraints associated with human research, 
various animal models for melanoma have been established in 
organisms including Xiphophorus, Danio rerio, guinea pigs, opos-
sum and small rodents, all of which have unique advantages and 
disadvantages. The relevance of the model under examination 
depends on the questions to be answered and how closely the 
model mimics the histological, immunological and metastatic 
pattern observed in humans.6 To date, most work is performed 
in mice due to the availability of genetically modified animals, 
insights into mouse immunology, pathology and physiology and 
the plethora of mouse-specific research tools.

Here, we will briefly review the current knowledge of TIDCs 
obtained in the most common mouse melanoma models and the 
insight they have provided into the human disease.

Selection of Mouse Model for Melanoma

Melanoma models are generally divided into 3 different groups 
based on research focus: xenograft models, which allow for the 
study of tumor cell behavior; transplantation models, to study 
melanoma immunology; and genetically modified animal mod-
els, which focus on melanomagenesis. Pure chemical carcinogen-
induced melanoma models have decreased in popularity as they 
have relatively low relevance to human disease and therefore will 
not be discussed further in this article.

Xenograft models consist of orthotopic or ectopic transplan-
tation of human cancer cells or solid tumors into immunocom-
promised mice. The primary advantage of these models is the 
preservation of human cancer cell behavior, including meta-
static potential and tissue preference. However, the absence of a 
functional immune system does not allow for the study of the 
interactions between tumors and immune cell subsets. While 
DC function is relatively normal in some immunocompromised 
mouse strains, various others—including those with a NOD.
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and low levels of positive co-stimulatory molecules. Upon activa-
tion via innate receptors such as TLRs or NOD-like receptors 
(NLRs), pro-inflammatory cytokines or cross-linking of CD40, 
DCs mature, reduce their phagocytic potential, increase anti-
gen-presenting capacity, upregulate co-stimulatory molecules, 
change their cytokine production profile (qualitatively and quan-
titatively) and migrate to draining (lymphoid) areas, where they 
interact with T cells.24–26

Cells with DC characteristics have been repeatedly described 
in human melanoma samples. Depending on study, markers 
used, localization and maturation status, DC infiltration has 
been linked to a positive27–30 or negative31 prognostic outcome. 
The discrepancy in outcomes can be attributed to differences in 
clinical stages, the use of primary vs. metastatic lesions, as well 
as use of markers that are relatively non-specific or restrictive to a 
subpopulation of DCs.32

Studies in several other tumor systems indicate that malignant 
cells inhibit dendropoiesis, decelerate DC differentiation and 
maturation, induce functional DC deficiencies and accelerate 
cell death in DCs or their precursors.33,34 The maintenance of an 
immature phenotype or the promotion of a tolerogenic one could 
lead to anergy/deletion of tumor-specific T cells and the induc-
tion of cells with immunosuppressive functions such as FOXP3+ 
regulatory T cells (Tregs). An inhibited DC differentiation might 
also contribute to the accumulation of myeloid-derived suppres-
sor cells, as the latter generate from precursors that under physi-
ological conditions would differentiate into DCs, macrophages 
and neutrophils.35 In addition, immature DCs and pre-DCs have 
been suggested to promote angiogenesis through the secretion of 
growth factors (i.e., vascular endothelial growth factor, VEGF) 
that directly act on the endothelium, or the production of media-
tors that enhance the sensitivity of endothelial cells to growth 
factors.36,37 Some studies suggest that DC precursors might even 
undergo endothelial transdifferentiation or provide a scaffold for 
subsequent lining by endothelial cells.38

Murine and Human DC Populations

Recent genomic and proteomic approaches have discovered 
significant similarities between human and mouse DC popula-
tions,39–43 thereby strengthening the relevance of TIDC research 
in mouse melanoma models. While several aspects of localiza-
tion, surface marker and TLR expression, phagocytic poten-
tial and antigen presenting capacity are relatively comparable 
between some mouse and human DC subsets, these are not per-
fect matches and in some cases the equivalent populations are 
absent. We will briefly describe the mouse and human DC popu-
lations in the following sections.

Mouse DC populations. Under steady-state conditions, 
mouse DCs express Cd11c as well as MHC Class II molecules 
and can be subdivided into plasmacytoid DC (pDCs) and con-
ventional DCs (cDCs).21 pDCs express intermediate levels of 
Cd11c as well as high levels of Cd45ra (B220), Pdca1 (Cd317), 
Tlr1, Tlr2, Tlr4, Tlr7 and Tlr9, and play an important role in 
infection due to their capacity to produce large amounts of Type I 
IFNs.44 Antigen presentation by pDCs is thought to be relatively 

Cg-Prkdcscidil2rg background—exhibit defective DC development 
and function.7–9 In addition, human tumor-derived mediators 
might affect the recruitment, retention, development and func-
tion of mouse DCs in a different fashion than their mouse homo-
logs. The more recent development of human melanoma models 
in humanized mice10–12 circumvents these issues and provides an 
intriguing platform for clinically relevant TIDC studies.

Syngenic transplantation models have been around since the 
identification of the Cloudman S91 melanoma in BDA/2 mice, 
Harding-Passey melanoma in BALB/c × DBA/2F1 mice and B16 
melanoma in C57BL/6 mice.13–16 B16 is currently the most widely 
used melanoma model and has the advantages that it expresses at 
least 5 homologs of the best characterized human melanoma anti-
gens (gp100/pmel17, MART-1/MelanA, tyrosinase, TRP-1/gp75 
and TRP-2/DCT),17 it is immunogenic and it displays metastatic 
behavior. The main drawback of this model is the rapid growth of 
the primary tumor, resulting in problems related to vasculariza-
tion, necrosis and swift mortality that preclude the assessment of 
prolonged tumor burden on TIDC behavior. Nevertheless, most 
TIDC studies have been performed in B16 melanoma models.

Genetically engineered models (GEMM). The identification 
of genetic and epigenetic abnormalities in human melanomas has 
led to the development of genetically engineered mice with a heri-
table predisposition to the development of melanoma. The (tissue-
specific) expression of oncogenes including Ret, mutant forms of 
(N/K/H)-Ras and Braf and Hgf, coupled or not to backcrossing in 
susceptible genetic backgrounds (Ink4a/Arff/f, Tp53t/t, Cdkn2d−/−, 
Cdkn2a−/−, Cdk4R24C/R24C, etc.) has yielded melanoma models with 
different latency, penetrance and metastatic potential (reviewed 
in refs. 18, 19). Although the distribution of melanocytes differs 
between mice and humans, these models have great clinical rel-
evance as they are based on genes known to be involved in the 
genesis and progression of human melanoma, and can be easily 
combined with relevant environmental triggers such as UV irra-
diation, to accelerate melanoma incidence. Only recently the field 
has begun to use these models for TIDC studies.

Dendritic Cells

DCs are a heterogeneous population in terms of origin, mor-
phology, phenotype and function. DCs are derived from com-
mon myeloid and lymphoid precursors and rely heavily on FLT3 
ligand (FLT3L) and/or granulocyte macrophage colony-stimu-
lating factor (GM-CSF) for their development.20–22 DCs express 
on their surface MHC Class I and Class II molecules together 
with a wide variety of positive (CD40, CD80, CD86, CD137L, 
CD70) and negative (PDL1, PDL2) co-stimulatory molecules. 
In addition, DCs can produce a broad range of soluble pro-and 
anti-inflammatory mediators, including multiple cytokines and 
chemokines. T cells interacting with DCs via cognate TCR-
peptide-MHC complexes will undergo apoptosis, anergy, or 
develop a regulatory phenotype if the balance of co-stimulation is 
tilted on the negative side.23 Conversely, if positive signals surpass 
an intrinsic threshold, T cells will undergo proliferation, differen-
tiate and acquire effector functions. Immature DCs display great 
phagocytic functions, relatively poor antigen-presenting capacity 
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levels of CD205 and the DC immunoreceptor (DCIR).63 Both 
DCIR and CD205 are associated with antigen uptake and induc-
tion of antigen-specific T-cell responses.64 LCs express mRNA 
coding for TLR1, TLR2, TLR5, TLR6 and TLR9 (but not for 
TLR4, TLR7 and TLR8).65 The number of dDCs populations 
described in humans has recently been expanded. The major 
dDC population is BDCA-1+, and most of these cells express 
CD11c while only about 50% of the BDCA-1+ population 
express CD1a.66 CD1c−BDCA-3+ dDCs represent about 10% of 
all CD11c+ dDCs and demonstrate superior cross-presentation of 
soluble antigens as compared with other DC populations.66 Most 
dDCs express mRNA coding for TLR1, TLR2, TLR4, TLR8 
and TLR10 but the exact distribution of these TLRs among spe-
cific DC subsets needs further delineation.63

Human melanoma TIDCs. Melanoma-infiltrating DCs 
have been found in primary and metastatic lesions and encom-
pass a broad spectrum of DC-like cells, including CD207+ LCs, 
pDCs and CD1a+ DCs (Table 1).27,28,31,67–69 Due to differences in 
patient material, the relatively low frequency of TIDCs, the use 
of ambiguous analytical markers, and approaches that limit the 
number of available analytical markers, there is little consensus 
on the exact composition of the TIDC population.32 However, 
there is a general agreement on the fact that the frequency of 
TIDCs is higher in the peritumoral area than within neoplas-
tic lesions and that TIDCs with the most mature phenotype 
(DC-LAMP+CD83+fascin+) tend to reside in the peritumoral 
area.27,31,67,68 It is thought that immature DCs enter tumors via the 
vasculature and—following further differentiation and activa-
tion—migrate toward the tumor edge. There, DCs either locally 
form T-cell clusters or continue to migrate toward the draining 
lymph node, where they interact with T cells. The relationship 
between the presence and location of different TIDC subsets 
and clinical outcome remains a puzzle, as it not only depends 
on the type of TIDCs, but also on their activity as well as on 
functional interactions with other cells, all aspects that remain 
poorly understood.

Mouse melanoma TIDCs. While mouse models have the 
advantage of providing abundant tumor material, which allows 
for an easy selection of tumors at different developmental stages, 
there is surprisingly little consensus in the field about mouse 
TIDC frequency, composition and function. Some of these 
discrepancies result from the use of different model systems or 
genetic backgrounds. When we compared two xenograft models, 
3 syngenic transplantation models and 2 GEMMs, we observed 
significant differences in TIDC frequency (data not shown) and 
composition between models (Fig. 1A). The highest frequency of 
TIDCs was seen in syngenic transplant models, while GEMMs 
exhibited significantly less TIDCs. However, GEMMs showed 
a greater diversity of TIDCs, with marked infiltration by pDCs, 
LCs and dDCs. Xenografts showed the least diverse variety, 
completely lacking LCs and dDCs, while in syngenic transplant 
models an occasional dDC (CD207+EpCAM−) subset was found. 
Although a full comparison is hard to make as not all studies 
used the same set of markers, a review of the current literature 
on mouse melanoma revealed similar findings in different model 
systems (Table 2).70–75

poor.45 cDCs can be further subdivided into blood-derived resi-
dent cDCs and migratory cDCs.

Blood-derived resident cDCs are present in lymphoid tissues and 
encompass: (1) Cd11chighMHCII+Cd8α+CD205+Sirpα−Cd11b− 
(Cd8α DCs), which express Xcl1, Clec9A and often Cd103. Cd8α 
DCs express mRNAs coding for most TLRs except Tlr5 and Tlr7, 
and are characterized by high Tlr3 expression.44 These DCs have the 
greatest potential to prime CTLs against cell-associated antigens 
via cross-presentation, but have relatively low CD4+ T-cell activa-
tion potential;46 (2) Cd11chighMHCII+Cd8α−33D1+Sirpα+Cd11b+ 
(Cd11b DCs), which predominantly activate CD4+ T cells, have 
poor cross-presentation capacity and express most TLRs except 
Tlr3; (3) Cd11chighMHCII+ cells that lack Cd8α, Cd4 and Cd11b 
(generally termed “double” or “triple” negative DCs), which may 
or may not express Xcl1, Clec9A, Tlr3 and Cd103. DC subsets in 
this population have been shown to potently prime both CD4+ 
and CD8+ T cells against cell-associated antigens.47–49

Migratory DCs can be found in many organs and migrate 
upon activation into draining lymphoid areas.22,50,51 As this 
review focuses on melanoma we will limit our description to 
skin-resident DCs. Various populations of DCs have been 
described in non-inflamed mouse skin. Langerhans cells (LCs), 
Cd11b+Cd207+Cd103− DCs reside in the epidermis and express 
Tlr2, Tlr4 and Tlr9 but not Tlr7.52 The cross-presentation of cell-
associated antigens by LCs has not been demonstrated, but LCs 
have the capacity to cross-present antigen associated with TLR 
ligands.53,54 In the dermis Cd11b+Cd207− dermal DC (dDCs) 
represent the major DC subset, whereas Cd207+Cd103+ dDCs 
and Cd207−Cd11b− dDCs represent ~20% of the entire dDC 
population. dDCs express most TLRs and the Cd103+ dDC 
population has been associated with the cross-presentation of 
cell-associated antigens.52,55,56

The fact that distinct DC subsets share several surface mark-
ers and that their expression levels change upon activation com-
plicate the identification of DC subsets. Environmental cues 
associated with inflammation or tumors can change the surface 
characteristics of DCs as well as their functional properties, add-
ing another layer of complexity to identification of DCs.

Human DC populations. Like mouse DCs, human DCs are 
generally divided into pDCs and cDCs. pDCs are lineage nega-
tive (lin−) CD11c−HLA-DR+CD123+BDCA2/4+ and express 
high levels of TLR7 and TLR9.57,58 In contrast to mouse pDCs, 
human pDCs have been shown to cross-present cell-associated 
antigens.45,59 Human cDCs can be further divided based on 
their expression of BDCA-1 (CD1c) and BDCA-3 (CD141). 
On one hand, BDCA-1+ DCs are similar to mouse Cd11b DCs 
as they express SIRPα and CD11b,39 strongly respond to TLR1 
and TLR6 agonists and promote CD4+ T-cell responses. On 
the other hand, BDCA-3+ DCs exhibit strong similarities with 
mouse Cd8α DCs and express CLEC9A, XCR1 and high lev-
els of TLR3.60,61 It has recently been shown that BDCA-3 DCs 
have the greatest capacity for cross-presentation of all human 
DC subsets.60–62

LCs are the only DCs found in healthy human epidermis and 
comprise 2–8% of all epidermal cells. LCs express high levels of 
CD1a, MHC Class II molecules, CD207 and EpCAM, and low 
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CD11c-diphtheria toxin receptor (DTR) transgenic mice has 
been shown to significantly reduce the tumor mass of intraperi-
toneally injected B16/F10 melanoma cells.78 While other mod-
els suggest a role for an endothelial-like differentiation of DC 
precursors, VEGFA, β defensin, basic fibroblast growth factor 
(bFGF) and transformin growth factor β1 (TGFβ1) in this pro-
cess, the mechanism underpinning DC-supported vasculogen-
esis in melanoma has not been clearly established.79,80

Mouse TIDC functionality. In order to operate as bona 
fide APCs, DCs need to acquire antigens through one of the 
phagocytic pathways, process and present them and communi-
cate with T cells locally or upon migration to draining areas. 
Studies injecting beads into tumors revealed that a sizable frac-
tion of TIDCs acquire one or more beads, indicating that that 
particulate uptake mechanisms is relatively intact.71,73 However, 
Gerner et al. showed that TIDCs manifest a defect in the uptake 
of intratumorally injected proteins as compared with dDCs 
from healthy tissue.73 Separating peritumoral and intratumoral 
TIDCs, we found that the in vitro uptake of proteins and apop-
totic cell material was higher for peritumoral, as compared with 
intratumoral, TIDCs (Fig. 2A). Similar observations were made 
when peritumoral and intratumoral TIDCs were analyzed 4 h 
after the intratumoral injection of proteins in vivo. Interestingly, 
the co-administration of lipopolysaccharide (LPS) appears to 
decrease the phagocytic uptake by peritumoral TIDCs, but not 
by their intratumoral counterparts (Fig. 2B).

Most studies reveal a decreased CD4+ and CD8+ T-cell acti-
vating capacity of TIDCs isolated from antigen-expressing 
tumors or upon antigen pulsing in vivo.70,73,74 However, other 
studies indicate potent T-cell priming capacity of TIDCs, both 
in vitro or in vivo.71,77,81 This discrepancy can be partly explained 

The differences in the composition of TIDCs across mod-
els and species highlight the importance of model validation for 
each type of study. While all models have significantly contrib-
uted to the current understanding of melanoma immunology, 
pre-clinical DC targeting studies would benefit from models 
that more accurately resemble the TIDC composition seen in 
patients.

Mouse TIDC activation status. As in human melanoma, 
mature mouse TIDCs tend to reside in the peritumoral areas 
and total TIDCs seem to increase upon disease progression 
(Fig. 1B and C).72 Most studies assessing mouse TIDC activa-
tion and maturation status were based on the flowcytometric 
analysis of CD11c+ cells from the entire tumor. Consequently, 
most reports show a biphasic distribution of the maturation 
markers CD40/CD80 and CD86.70,71,73,74 The differential 
analysis of the peritumoral and intratumoral zones of B16/F10 
melanomas replicate histological observations, showing signifi-
cantly more mature TIDCs in the peritumoral area as compared 
with the intratumoral one (Fig. 1D). It is thought that the 
tumor environment promotes the recruitment of DC precur-
sors and immature DCs, but little is known on the ability of 
melanomas to support in situ DC differentiation.76 Diao, et al. 
showed that adoptively transferred immediate cDC precursors 
(Lin−CD11c+MHCII− cells) are recruited to B16/F10 tumors, 
where they proliferate and differentiate into cells with T-cell 
priming capacity in vitro, suggesting at least a partial acquisi-
tion of DC-like functions.77 On the other hand, in vivo data 
from Fainaru, et al. demonstrate that the recruitment of imma-
ture DCs promotes angiogenesis and tumor growth by enhanc-
ing endothelial cell migration and the subsequent formation of 
vascular networks.78 Moreover, the depletion of CD11c+ cells in 

Table 1. Human melanoma TiDC

Study DC marker DC specifics

Garcia-Plata69 S100, CD1a, HLA-Dr
S100+CD1a+ (LC) increased in peritumoral infiltrate compared with overlying epidermis.  

HLA-Dr levels variable.

Movassagh28 CD123, DC-LAMP, fascin, 
CD1a, CD207

CD1a+ and CD207+ cells in epidermis of regressing lesion infiltration; fascin+/DC-LAMP+ cells  
accumulation around microvessels within tumor area (tumor regression)

Salio102 CD123, BDCA2, CLA
Observed in majority of melanomas; numbers higher in infiltrating and metastatic samples.  

Numbers increase with severity of disease

vermi68 CD1a, CD123, CD207, 
DC-Sign DC-LAMP, Mr

increase in dermal myeloid and pDC compared with healthy skin.

Intratumoral immature: Mr+/DC-SiGN+/CD1a- and CD1a+/CD207- cells

Peritumoral immature: CD1a+/CD207+LC; Mr+/DC-SiGN+/CD1a-; CD1a+/CD207-; CD123+/BDCA-2+; 
Peritumoral mature: CD83+DC-LAMP+

Ladanyi27 CD1a, DC-LAMP
CD1a+ in melanoma cell nests and stroma, DC-LAMP+ in peritumoral area: inverse correlation CD1a+ 

and DC-LAMP+ cells with melanoma thickness

Simonetti67 CD83, CD207 inverse correlation langerin+ cells with tumor depth; lower density of CD83(+) DC in thick melanomas

Charles103 BDCA-2
Observed in 37% of cases. Located close to the tumor within the peritumoral leukocyte infiltrate, rep-

resenting 2–5% of these cells

Jensen31 CD123, DC-LAMP
CD123 infiltration: tumor stroma (~30%), tumor nest (~15%) of samples

DC-LAMP+ infiltration: tumor stroma (~30%), peritumoral (~50%) of samples

erdag30 DC-LAMP, CD163neg
> 1% of CD45 cells: Metastasis to LN contain higher number of LAMP+ cells compared with metastasis 

to skin/soft tissue peritoneum, small intestine

Martinet104 DC-LAMP, fascin
DC-LAMP+ cells frequently associated with tumor Hev; Density of DC-LAMP+ cells correlates  

with density of tumor Hev
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predominantly from reduced antigen uptake as they found anti-
gen processing and presentation to be unaltered.73 To further 
dissect the antigen presenting and T-cell priming/activating 
potential of TIDCs, we isolated peritumoral and intratumoral 
TIDCs from ovalbumin (OVA)-expressing B16 tumor-bearing 
mice and cultured them with an OVA

257–264
-specific reporter cell 

line (B3Z) and CFSE-labeled OVA
257–264

-specific OT-1 T cells. 
We included brefeldin A in the isolation procedure to prevent 
the turnover of MHC-I-peptide complexes while preserving the 
TIDC maturation state.82 Importantly, significant antigen pre-
sentation was observed only when brefeldin A was present during 

by the fact that these studies differed relative to TIDC composi-
tion, TIDC localization, TIDC maturation state, TIDC isola-
tion methods and in vitro functional assessment protocols. By 
separating TIDCs based on GR1 expression, Diao et al. showed 
that GR1+ expressing TIDCs produce more interleukin (IL-
10) and exhibit lower CD8+ and CD4+ T-cell priming capac-
ity than GR1− TIDCs when loaded with antigens in vitro.75 In 
addition, CD8+ T cells primed by GR1+ TIDCs demonstrated 
significantly reduced cytokine production compared with CD8+ 
T cells primed by GR1− TIDCs. Gerner, et al. suggested that 
the decreased TIDC capacity for CD4+ T-cell activation results 

Figure 1. Composition, location and maturation of tumor-infiltrating dendritic cells. (A) Composition of CD45+Lin−CD11c+MHCii+ tumor-infiltrating den-
dritic cells (TiDCs) in different melanoma models. Tumors (400–600mm2) were harvested from Nu/J nude mice (Mv3, A375; n = 6 mice per group), BDA/2 
mice (CloudmanS91; n = 5 mice per group) and C57BL/6 mice (B16F1 and B16/F10; n = 9 mice per group), digested according to standard protocols,106,107 
and analyzed by multicolor flow cytometry. β-actin::LSL-KRAS mice crossed onto a Tyr::CreERT2 background108 were repeatedly treated with tamoxifen 
between 1 and 2 mo of age. Tumors were harvested 4–6 mo later (1–2 melanomas per mouse, n = 3 mice). MT::Ret transgenic mice109 were aged and 
spontaneous melanomas were harvested when their surface reached 200–300 mm2 (1–3 melanomas per mouse, n = 4 mice). (B) representative localiza-
tion of TiDCs in a snap-frozen B16/F10 tumor seven days after the subcutaneous injection of 2 × 106 tumor cells in C57Bl/6 mice, as observed by confocal 
microscopy. red, CD11c; Green, CD11b; Blue, nuclei (4',6-diamidino-2-phenylindole, DAPi). (C) relationship between the frequency of TiDCs among 
tumor-infiltrating lymphocytes (TiLs) and the size of B16/F10 melanomas growing in C57Bl/6 mice, as determined by flow cytometry. (D) Differential 
expression of maturation markers on peritumoral and intratumoral TiDCs. B16/F10 tumors (≈600 mg, n = 4–5 tumors per group) were harvested and 
the peritumoral area was collected using ophthalmic blades, followed by the processing of peritumoral and intratumoral tissues according to standard 
protocols.106,107 CD40, CD80 and CD86 expression were determined among live CD45+Lin−CD11c+MHCii+ cells by multicolor flow cytometry.
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While many studies indicate a decrease in the maturation 
and functionality of melanoma TIDCs, the mechanisms that 
underpin such changes in APC functions are still unclear. 
Increased expression of immunosuppressive cytokines and 
membrane-associated molecules by TIDCs has been impli-
cated in TIDC dysfunction.72,83 Other models suggest that 
tumor-derived cytokines or a reduction in the sensitivity of 
TIDCs to innate signals prevents maturation, migration and 
thereby impair TIDC function.84–88 However, prolonged TIDC 
retention and the maintenance of an immature phenotype has 
recently been linked to lipid accumulation following increased 
scavenger receptor A expression89 and LXRα mediated CCR7 
downregulation.90 Norian et al. have linked TIDC dysfunction 
to increased l-arginine metabolism in a spontaneous model of 
mammary carcinoma.91 More importantly, Zhang, et al. have 
correlated the reduced functionality of B16 melanoma TIDCs 
to a decreased metabolic proficiency, resulting from increased 
SOCS3-pyruvate kinase M2 interactions.92 These observa-
tions clearly exemplify that the focus on basic immunological 
assays and parameters has become too restricted to determine 
the mechanisms of TIDC dysfunction. For a full appreciation 
of the developmental and functional defects in TIDC, research 

the isolation period, illustrating the importance of optimizing 
and standardizing TIDC isolation protocols. The total TIDC 
fraction poorly activated B3Z cells (Fig. 2C), suggesting a low 
frequency of OVA

257–264
-MHC complexes. Consequently, total 

TIDC-mediated OT-1 T-cell activation and proliferation, as 
determined by CD69 upregulation and CFSE dilution assays, was 
relatively poor (Fig. 2D and E). However, peritumoral TIDCs 
displayed a comparatively higher frequency of OVA

257–264
-MHC 

complexes and activated (while inducing the proliferation) of 
a sizable fraction of OT-1 T cells (Fig. 2C–E). Intratumoral 
TIDCs exhibited less OVA

257–264
-MHC complexes and activated 

OT-1 T cells without inducing proliferation. This lack of prolif-
eration could be restored by the addition of IL-2 but not upon the 
blockade of IL-10 or TGFβ, suggesting the induction of T-cell 
non-responsiveness. Importantly, the treatment of peritumoral 
TIDCs with TLR4 or TLR9 ligands significantly increased their 
potential to induce T-cell proliferation, while the same treatment 
did not improve the functionality of intratumoral TIDCs (data 
not shown). Altogether, these observations show that differences 
in isolation protocols, TIDC subsets, and functional assays sig-
nificantly complicate the comparison between studies and the 
extrapolative value of their findings.

Table 2. Mouse melanoma TiDC characteristics

Model DC marker Frequency DC subpopulation Characteristics

Scid-Mv3 xenograft105 BSA-i binding
~35/5 high power 

fields
- -

B16/F10. s.c.73 CD11c+, MHCii+ -
All CD11b+; further 

negative for epCAM, 
PDCA-1, CD4, CD8α

Partially activated; reduced capacity for protein uptake 
and subsequent MHC ii presentation;  

less sensitive to TLr stim

B16/F10. s.c.75 CD11c+, MHCii+ -
All CD11b+; most F4/80+

~23.5%, Gr1+; few pDC

Gr1+ less mature populations, fails to stimulate MLr, 
produce more iL-10; protein pulsed Gr1+ DC poorly 

activate OvA-specific CD4 and CD8 T cells in vivo

B16/F10 sec.c.77
CD11c+, MHCii+ Pre-DC (Lin-CD11c+MHCii-Flt3+) cells are recruited  

in the tumor, differentiate and activated CD8 T cells  
in vitro upon peptide pulsing

B16/F10 sec.c.92
CD11c+

- -
TiDC express high levels of SOCS3  
and have reduced M2-PK activity.

B16-OvA s.c.74 CD11c+, MHCii+ ~30% of TiL
Mostly CD11b+,

~5% pDC, hardly 
CD207+

immature phenotype; fail to activate OvA-specific  
CD4 and CD8 T cells ex vivo

B16-OvA s.c.70 CD11c+ ~20% of TiL
~33% CD11b+MHCiihigh,

rest CD11b- MHCiimedium

Partially mature; no in vitro activation of OvA-specific 
CD4 and poor activation of CD8 T cells

B16/F10 sec.c71,81 CD11c+, MHCii+ 0.13 ± 0.07% of 
total cells

~3% pDC,

~2.25% CD8αDC,

> 95% non-pDC non 
CD8α

Decreased number compared with skin;  
immature phenotype, particle uptake in vivo normal;  

protective upon transfer.

K17–3571 CD11c+, MHCii+ 4.0 ± 0.22% of 
total cells

~15% pDC,

~12% CD8αDC
increased number compared with skin;  

immature phenotype; particle uptake in vivo normal

Tyr:N-rasQ61K+ DMBA/
C3H6O71 CD11c+, MHCii+ 0.02 ± 0.004 of 

total cells

~58% pDC,

~40% non pDC non 
CD8αDC

Decreased number compared with skin;  
immature phenotype

MT/ret72 CD11c+, MHCii+ 3–10% of TiL -
increasingly immature phenotype  

upon melanoma progression
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to target TIDCs or support TIDC functions, it is likely that they 
only partly activate TIDCs, as (1) some specifically targeted DC 
populations are absent or poorly represented in the tumor, and 
(2) some specifically targeted receptors are poorly expressed by 
TIDCs or rendered non-functional by the tumor microenviron-
ment. In these cases, it is more likely that other cells in the tumor 
environment are stimulated to promote a DC activating/restor-
ing microenvironment.

In order to improve the clinical relevance and translational 
potential of mouse melanoma models for the design, optimiza-
tion, and identification of novel therapeutic interventions that 
target TIDCs we will have to overcome several hurdles. An 
improved identification and characterization of human TIDCs 
will be critical to identify and validate the best mouse models for 
each type of study. Eventually, the panel of DC specific markers 
used in human and mouse studies will have to be standardized, 
even as investigators continue to discover new markers and DC 
populations.32 Furthermore, the optimization and standardiza-
tion of protocols for TIDC isolation and functional assessments 

disciplines beyond classical immunology will have to be incor-
porated into the experimental approaches.

Scientific and Therapeutic Considerations

Mouse models have been extensively used to test topical therapeu-
tic therapies. Comparable to human melanoma, the injection of 
GM-CSF, IFNα, imiquimod, or BCG has been shown to result 
in various degrees of therapeutic success in mice.5,93–96 In many of 
these approaches, either increased numbers of DCs or enhanced 
DC maturation was observed in the tumor or tumor-draining 
lymph node.93–96 In addition, other purified TLR ligands includ-
ing poly(I:C), CpG oligonucleotides, LPS, alone or coupled to 
additional immunomodulatory therapies have been used suc-
cessfully.97–99 The intratumoral administration of crude bacte-
rial products, cytokines and stimulatory molecules delivered by 
viral vectors, microspheres or nanoparticles is well established 
in mouse models but has not been translated to the human sys-
tem.5,100,101 While all these therapeutic approaches were suggested 

Figure 2. Functionality of tumor-infiltrating dendritic cells. (A) in vitro phagocytic capacity of tumor-infiltrating dendritic cells (TiDCs). Peritumoral 
and intratumoral TiDCs were isolated from B16/F10 tumors growing in C57Bl/6 mice (as described in the legend of Figure 1) and cultured for 4 h with 
CFSe-labeled apoptotic splenocytes (1:3 ratio) or 100 μg/mL fluorochrome-conjugated ovalbumin (OvA) in the presence (black bar) or absence (gray 
bar) of 0.1 μg/mL lipopolysaccharide (LPS, from Salmonella minnesota r595) (n = 4–5 tumors per group). (B) in vivo phagocytic capacity of TiDCs. 
B16/F10 tumors (≈600 mm2) were injected with 1 × 106 CFSe-labeled apoptotic cells or 200 μg fluorochrome-conjugated OvA in the presence or 
absence of 10 μg LPS. Four hours later, peritumoral and intratumoral TiDCs were isolated and analyzed by flow cytometry (n = 4–5 tumors per group). 
(C) effect of brefeldin A (BrefA) employed during TiDC isolation from B16-OvA melanomas on endogenous tumor-antigen presentation. BrefA was 
added during digestion, incubations and sorting at a concentration of 40 μg/mL.82 Peritumoral and intratumoral TiDCs from OvA-expressing B16/
F10 tumors were cultured with OvA257–264-specific B3Z hybridoma cells and hybridoma activation was determined 20 h later by chlorophenol red-
β-D-galactopyranoside (CPrG) conversion (n = 5–6 tumors per group).110 TiDC derived from B16/F10 parental tumors were used as negative control. 
(D and E) Peritumoral and intratumoral TiDCs (isolated in the presence or absence of BrefA) were co-cultured with CFSe-labeled OvA257–264-specific 
OT-1 T cells. After 24 h, activation was determined by CD69 expression in 7-AAD−CD8+vα2+vβ5+ cells. OT-1 T-cell proliferation was assessed by CFSe 
dilution after 72 h of culture with the indicated TiDCs (n = 5–6 tumors per group).
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clinical relevance of mouse models and the identification of 
novel therapeutic targets.
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will be essential for allowing study-to-study comparisons and 
the extrapolation of data across species as well as laboratories.

This said, a great gain might be made by an increased col-
laboration between different research disciplines. This could 
result, for instance, in the generation of better mouse models, 
such as humanized mice for xenograft transplantation studies 
and GEMMs with TIDC patterns that resemble human TIDC 
profiles at different stages of disease, as well as new analytical 
platforms for extended TIDC analyses.

Although it is unlikely that mouse melanoma models will 
ever completely recapitulate the complexity of human mela-
noma in clinical situations, so far we have only scratched the 
surface of the true potential of mouse models for the analysis of 
TIDC dysfunction and the development of therapeutic inter-
ventions. Combining and integrating current models, stan-
dardizing analytical methods and expanding the disciplines of 
research will be instrumental for significantly improving the 
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