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Abstract

APC mutations drive human colorectal cancer (CRC) development. A major contributing

factor is colonic stem cell (SC) overpopulation. But, the mechanism has not been fully identi-

fied. A possible mechanism is the dysregulation of neuroendocrine cell (NEC) maturation by

APC mutations because SCs and NECs both reside together in the colonic crypt SC niche

where SCs mature into NECs. So, we hypothesized that sequential inactivation of APC

alleles in human colonic crypts leads to progressively delayed maturation of SCs into NECs

and overpopulation of SCs. Accordingly, we used quantitative immunohistochemical map-

ping to measure indices and proportions of SCs and NECs in human colon tissues (normal,

adenomatous, malignant), which have different APC-zygosity states. In normal crypts,

many cells staining for the colonic SC marker ALDH1 co-stained for chromogranin-A (CGA)

and other NEC markers. In contrast, in APC-mutant tissues from familial adenomatous pol-

yposis (FAP) patients, the proportion of ALDH+ SCs progressively increased while NECs

markedly decreased. To explain how these cell populations change in FAP tissues, we used

mathematical modelling to identify kinetic mechanisms. Computational analyses indicated

that APC mutations lead to: 1) decreased maturation of ALDH+ SCs into progenitor NECs

(not progenitor NECs into mature NECs); 2) diminished feedback signaling by mature

NECs. Biological experiments using human CRC cell lines to test model predictions showed

that mature GLP-2R+ and SSTR1+ NECs produce, via their signaling peptides, opposing

effects on rates of NEC maturation via feedback regulation of progenitor NECs. However,

decrease in this feedback signaling wouldn’t explain the delayed maturation because both
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progenitor and mature NECs are depleted in CRCs. So the mechanism for delayed matura-

tion must explain how APC mutation causes the ALDH+ SCs to remain immature. Given

that ALDH is a key component of the retinoic acid (RA) signaling pathway, that other compo-

nents of the RA pathway are selectively expressed in ALDH+ SCs, and that exogenous RA

ligands can induce ALDH+ cancer SCs to mature into NECs, RA signaling must be attenu-

ated in ALDH+ SCs in CRC. Thus, attenuation of RA signaling explains why ALDH+ SCs

remain immature in APC mutant tissues. Since APC mutation causes increased WNT sig-

naling in FAP and we found that sequential inactivation of APC in FAP patient tissues leads

to progressively delayed maturation of colonic ALDH+ SCs, the hypothesis is developed

that human CRC evolves due to an imbalance between WNT and RA signaling.

Introduction

Our goal was to determine how mutations in APC drive colorectal cancer (CRC) development

in humans by causing colonic stem cell (SC) overpopulation. To investigate this mechanism,

we used ALDH1 as a marker for normal and malignant human colonic SCs. Specifically, we

used ALDH1 to track increases in SC population size in colonic crypts from familial adenoma-

tous polyposis (FAP) patients. We chose FAP because it is an ideal human model for heredi-

tary CRC development due to APC mutations. Because SCs and neuroendocrine cells (NECs)

both reside together in the SC niche of the colonic crypt, and NECs are known to regulate

crypt cell proliferation, we investigated the possibility that dysregulation of NECs by APC
mutations is key to the SC overpopulation.

APC mutations drive CRC development

Several independent lines of evidence demonstrate that APC mutation is the primary driving

mechanism in human CRC: (i) WNT signalling is altered in ~95% of human CRCs, primarily

due to biallelic mutation of the APC gene [1]. (ii) APC mutation alone is sufficient for early

CRC development [2]. (iii) Those CRCs that develop because of an APC mutation are associ-

ated with a worse prognosis than those CRCs that develop because of DNA mismatch repair

mutations [3]. (iv) The extent of APC mutation (most mutations lead to truncation of the pro-

tein product) correlates with the severity of the tumor [4]. (v) The characteristics of the second

APC hit depend on the nature of the 1st APC hit in the two hit mechanism for CRC [5, 6]. (vi)

APC mutations are required for the maintenance of colon carcinomas [7]. (vii) Transfection of

APC into CRC cells induces cell cycle arrest and apoptosis [8, 9]. (viii) Restoring wild-type Apc
expression in CRCs leads to cellular differentiation and re-establishes crypt homeostasis [10].

(ix) APC mutations lead to increased crypt fission, which is the main mechanism in adenoma

morphogenesis [11–13].

FAP is a human genetic model for CRC development due to APC
mutations

To investigate the mechanisms underlying the ability of APC mutations to drive CRC develop-

ment in humans, we studied tissues from hereditary colon cancer patients from familial adeno-

matous polyposis (FAP) families. Indeed, investigations of FAP led to the identification,

mapping and isolation of the APC gene. FAP is an autosomal dominant trait [14] caused by

inheritance of a germline APC mutation. FAP patients develop 100s to 1000s of premalignant
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adenomas which further supports the idea that APC mutations drive tumor growth in vivo. If

FAP patients are left untreated, they have nearly a 100% risk of developing CRC. Adenomas in

FAP patients show loss of the 2nd wild type APC allele [15–17]. Two hits at the APC locus also

occur as acquired mutations in the development of most sporadic CRCs. Thus, while FAP is

relatively rare (incidence = 1.90 × 10−6; prevalence = 4.65 × 10−5); [18]), results reported here

should have wider implications for understanding mechanisms involved in the development

of commonly occurring sporadic adenomatous polyps (1 in 2 individuals) and sporadic CRC

(1 in 20 individuals) in the general population [19].

APC mutations lead to SC overpopulation in the colon

Our initial studies [20] of the proliferative abnormality [21] in crypts from FAP patients indi-

cated that an APC mutation causes SC overpopulation during initiation of colon tumorigene-

sis. We validated this finding biologically for pre-malignant and malignant colon tumors from

FAP patients. For example, using markers for crypt base cells we found that the crypt base cell

population (including SCs) increased in size during adenoma development [22]. In another

study [23], we discovered that ALDH1 is a marker for normal and malignant human colonic

SCs, and that ALDH1 can be used to track increases in SC population size in colonic crypts

from FAP patients during colon tumorigenesis. In a murine model of FAP, ApcMin/+ mice, we

found [24] further evidence that Apc mutation produces crypt SC overpopulation during intes-

tinal tumorigenesis. Studies by other investigators using different SC markers also suggest that

SC overpopulation occurs during intestinal tumorigenesis in humans as well as in mice [25–

33]. Further studies [34, 35] indicate that increased symmetric SC division is a mechanism that

explains SC overpopulation and drives growth of colonic tumors. These lines of evidence

imply that APC mutations that drive growth of intestinal tumors do so by causing SC overpop-

ulation [36, 37].

ALDH is a widely used as a marker for stem cells in humans

We have been using ALDH as a marker to identify and isolate SCs from patient tissues

because it is a reliable marker for normal and malignant human colonic SCs in our labora-

tory [23, 38–41] as well as in other laboratories [42–44]. ALDH is not only a marker for SCs,

but also ALDH+ cells have SC properties of self-renewal, cell differentiation potential, and

drug resistance. Indeed, the self-renewal property of ALDH+ cells is demonstrated by

sphere-forming ability in vitro and tumor-initiating ability in mice [23, 43–45]. The cell dif-

ferentiation property of ALDH+ cells is due to ALDH’s functional role as a key enzyme in

the retinoic acid (RA) signaling pathway [46–50]. We investigated ALDH+ cells from nor-

mal and malignant colonic tissues and found that retinoid receptors RXR and RAR are

selectively expressed in ALDH+ cells [39], which indicates that RA signalling mainly occurs

via ALDH+ SCs. That RA signalling primarily occurs in ALDH+ cells provides a mecha-

nism for selective treatment of SCs using RA analogues. Indeed, we have shown that treat-

ment of ALDH+ cancer SCs (CSCs) with all-trans retinoic acid (ATRA) inhibits cell

proliferation, decreases SC proliferation, sphere formation, and SC population size, as well

as increases SC differentiation into NECs [38, 39]. Other investigators also commonly use

ATRA as a differentiation agent in SC research [51–54]. And, ATRA is an effective drug

used clinically to treat acute promyelocytic leukemia (PML) patients because ATRA can

induce PML cells to differentiate into neutrophils [55–57]. The drug resistance property of

ALDH+ SCs comes from aldehyde dehydrogenase’s enzymatic function, which is the cell’s

natural detoxification mechanism to protect itself against various aldehydes that would oth-

erwise have harmful consequences [46–50]. These effects are seen with the use of alkylating

PLOS ONE APC mutations delay stem cell maturation in CRC

PLOS ONE | https://doi.org/10.1371/journal.pone.0239601 October 28, 2020 3 / 32

https://doi.org/10.1371/journal.pone.0239601


agents such as chemotherapeutic agents for treatment of cancers and that ALDH confers

resistance of CSCs to cytotoxic agents, particularly the alkylating agent cyclophosphamide

[42, 58, 59]. Because a strong body of scientific evidence shows that ALDH has functional

properties of SCs, it continues to be used to identify and isolate SCs from colonic tissues as

well as from most other human tissue types including breast, lung, prostate, pancreas,

hematopoietic, stomach, kidney, brain and others [46, 60–66].

Similarly, ALDH has been used to identify SCs in mouse tissues, including intestine [67.

68], prostate [69], breast [70, 71], hematopoietic [67, 68, 72], and neural [73]. In fact, in the

early 1990s, researchers reported that murine intestinal epithelium has high levels of ALDH

activity and intestinal crypt SCs displayed high levels of cytosolic ALDH [67, 68]. Still, ALDH

was never extensively studied as a marker for mouse intestinal SCs, possibly because there are

multiple ALDH isoforms that makes it difficult to do lineage tracing studies. Indeed, there are

19 ALDH isoforms encoded by 19 different genes in humans with as many orthologs in the

mouse plus several alternatively-spliced transcriptional variants [46–50, 74, 75]. Consequently,

it is not known if ALDH that marks colonic SCs in humans corresponds to any of the many

SC markers in murine intestine that have been the focus of intense study in mouse research for

many years [76–78]. Indeed, there are many distinct differences between intestine and colon,

including differences between mouse colon and human colon [78–83]. However, we have

been studying ALDH as a human colonic SC marker (for the reasons cited above) to gain

insight into SC-based mechanisms that lead to CRC development in the colon. Perhaps, identi-

fying differences between mechanisms that regulate intestinal SCs versus colonic SCs may help

explain why cancer is common in human colon, but rare in small intestine. Indeed, FAP

patients who carry APC germline mutations develop multiple polyposis and cancers in the

colon but few tumors in the small intestine.

The role of NECs in the SC niche of the colonic crypt

To gain further insight into the role of SCs in CRC development, we investigated NECs

because two of the main cell populations in the SC niche in human colonic crypts are SCs and

NECs [23, 82–85]. Neuroendocrine cells of the gut are the most abundant endocrine cells in

the body [86–88]. And, at least 15 different cell types of neuroendocrine cells are found in the

GI tract, which comprise about 1% of the total GI epithelial cell population [89–91]. While the

majority of different NEC types are found in small intestine which produce many neurotrans-

mitters, there are just three neuropeptide types produced by neuroendocrine cells in the

human colon: glucagon, somatostatin, and bovine pancreatic peptide (BPP), as well as the cate-

cholamine 5-hydroxytryptamine (5-HT). Paneth cells are another specialized secretory cell

type found in the SC niche of small intestine but not in colon. But a unique cell type, Reg4

+ deep crypt secretory, was recently identified in the colon that is functionally equivalent to

Paneth cells that support Lgr5+ SCs [92]. These Reg4+ cells have a NEC phenotype in mouse

intestine, but not in the colon. Although there are differences in NEC types between small

intestine and colon, in both cases, several lines of evidence indicate that NECs might regulate

SCs in the crypt SC niche: (i) NECs secrete factors that can modulate rates of crypt cell prolif-

eration [85, 93–97]; (ii) We previously reported that NEC signaling via the somatostatin path-

way contributes to the quiescence of human colon cancer SCs [38]; (iii) In mouse organoid

cultures, induced quiescence of LGR5+ SCs by combined blockade of MEK/WNT/NOTCH

signaling leads to NEC differentiation [98]; (iv) We also discovered that treatment of human

ALDH+ SCs with all-trans retinoic acid (ATRA) induces SC differentiation along the NEC

lineage and decreases sphere formation as well as the ALDH+ SC population size [39]. Thus,

we surmised that changes occurring in NEC populations during colon tumorigenesis might
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lead to dysregulation of crypt SCs which could provide a mechanism that explains how SC

overpopulation leads to CRC development.

Results

To investigate the effect of APC mutations on mature NEC, progenitor neuroendocrine cell

(PNC), and SC populations during colon tumorigenesis, we addressed the following questions:

(i) Do SCs mature along the NE lineage within the SC niche of human colonic crypts? (ii)

With sequential mutational inactivation of APC in neoplastic crypts, does SC maturation

along the NE lineage becomes progressively delayed? Accordingly, we quantified, using immu-

nohistochemical mapping and immunofluorescence co-staining, SCs, PNCs, and NECs in

normal, pre-malignant, and malignant human colon tissues, which are known to have differ-

ent APC-zygosity states that represent the stepwise development of CRC. Mathematical model-

ling was then done to discover kinetic mechanisms that explain how SC, PNC and NEC cell

populations change in FAP tissues during CRC development. Finally, we performed in vitro
biological experiments CRC cell lines to test the predictions from mathematical modelling.

Quantitative immunohistochemical mapping shows that the proportion of

ALDH+ cells progressively increases while CGA+ cells markedly decreases

in APC-mutant colon tissues from FAP patients

Normal crypts (homozygous wildtype APC). To evaluate the number and distribution

of NECs in normal colonic crypts, we first examined the expression of CGA, a marker that

labels most types of NECs in most tissues, including colon. Fig 1A and 1B show that cells stain-

ing positively for CGA and for ALDH were mostly restricted to the lower crypt. Indeed, stain-

ing indices (Fig 1C) show that the crypt distribution of CGA+ cells and ALDH+ cells was

similar with the maximum proportion of cells that stained positively for CGA and for ALDH1

occurring at the crypt bottom. The majority of the ALDH1+ and CGA+ cells (~65%) were

located in the SC niche (crypt levels 1–20; [99]). The index curve for CGA significantly over-

lapped the index curve for ALDH1 (Fig 1C). In fact, the two curves were almost superimpos-

able. Calculation of the AUC for the CGA staining index indicated that 5.3% of crypt cells

were CGA+. Only slightly more crypt cells, 5.6%, were ALDH+ cells.

FAP patient tissues (APC mutant crypts). To evaluate changes in NEC populations dur-

ing the stepwise pathologic progression to colon cancer, we examined the above markers (Fig

1A and 1B) in neoplastic colon tissues with varying APC genotypes: normal-appearing FAP

crypts (heterozygous mutant APC); adenomatous FAP crypts (homozygous mutant APC);

colon carcinomas (homozygous mutant APC & other mutations). In normal-appearing FAP

crypts, cells staining positively for CGA were still sparse (Fig 1A), but their location extended

up into the crypt middle, away from the SC niche (SC niche = crypt levels 1–20). Among ade-

nomas, fewer than one-half of tumors showed any CGA staining. Nevertheless, in those adeno-

mas that did show CGA staining, the population of stained cells within crypts extended even

farther up the crypt (Fig 1A). Colon carcinomas showed few CGA+ cells.

Staining indices were also done to quantify the changes in crypt cell distribution of CGA

+ and ALDH+ cells in FAP tissues. The staining index for normal-appearing FAP crypts (Fig

1D) showed that the maximum proportion of cells that stained positively for CGA occurred at

the crypt bottom, as for normal crypts, but CGA+ cells extended farther up the FAP crypt. For

normal-appearing FAP crypts, the index curve for CGA no longer overlapped with the index

curve for ALDH (Fig 1D). Rather, the ALDH curve was shifted upwards, indicating that there

were more ALDH+ cells than CGA+ cells (a ratio of 1.6/1 compared to 1/1 for normal colon).
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The staining index for adenomatous crypts (Fig 1E) also showed a maximum at the crypt

bottom, but in adenomas, the population of CGA+ cells extended even farther up the crypt

than they did in FAP crypts. For adenomatous crypts, there was even greater separation of the

two curves, with the ALDH curve shifted even higher relative to FAP crypts (Fig 1E). This was

paralleled by a greater number of ALDH+ cells compared to CGA+ cells (a ratio of 3.25/1).

Indices for carcinomas could not be constructed because carcinomas lack crypt structures.

Immunofluorescence co-staining analysis shows that the frequency of co-

expression of ALDH and CGA progressively decreases during colon

tumorigenesis in FAP patients

Normal crypts (homozygous wildtype APC). To determine whether or not CGA and

ALDH are expressed in the same cells, we used immunofluorescence to do co-staining (Fig 2).

Fig 1. The proportion of ALDH+ cells progressively increases while CGA+ cells markedly decreases in APC-mutant colon tissues from FAP patients.

Representative IHC stains of normal, normal-appearing FAP, and FAP adenomatous colonic crypts are shown for the expression of the: (A) NEC marker

chromogranin-A (CGA). (B) SC marker ALDH1. Indices for CGA based on IHC mapping were plotted from staining of: normal crypts (C), normal-appearing FAP

crypts (D), and FAP adenomatous crypts (E). Quantitative IHC mapping was done on 24 full-length crypts for each index by scoring the number of positively stained

cells as a function of crypt level. Indices for CGA are juxtaposed with ALDH1 indexes (from [23]). Results show that, in normal crypts, the distribution and proportion

of cells staining for ALDH1 and CGA are very similar. In contrast, in APC-mutant tissues from FAP patients, the proportion of ALDH+ cells progressively increases

while CGA+ cells markedly decreases. Crypt cell levels are indicated that range from crypt bottom (level 1) to crypt top (level ~82). Scale bars = 50 um.

https://doi.org/10.1371/journal.pone.0239601.g001
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We found that most CGA+ cells also stained positively for ALDH1 (Fig 2A). Among those

cells that stained positively for CGA or ALDH or both, about 77% co-stained for both markers.

Among CGA+ cells, 95% co-stained for ALDH1. Among ALDH+ cells, ~80% stained posi-

tively for CGA.

In a separate analysis, we evaluated the crypt position of immuno-stained cells that were

positive for both CGA and ALDH1, and cells positive for CGA alone or for ALDH1 alone. In

this analysis, we mapped crypt level position of positively stained cells using only full-length

crypts to determine the crypt cell location. In normal colonic tissue, most ALDH1+ cells were

located in the bottom third of the crypt (Fig 2C–double-staining scatterplot). Cells that stained

for both ALDH1 and CGA had a distribution similar to that of cells that stained for ALDH1

alone. We also analyzed 12 other markers for NECs (Table 1). Crypt cells staining positively

for most of these other NEC markers were also located in the lower part of the colonic crypt.

Fig 2. The frequency of co-expression of ALDH and CGA progressively decreases during colon tumorigenesis in FAP patients. Immunofluorescence co-staining

studies were done to determine if CGA and ALDH are expressed in the same cells in normal and FAP colonic tissues. (A) Immunofluorescence microscopy images

showing normal crypt cells staining for DAPI nuclear stain, CGA alone, for ALDH1 alone and merged for co-staining of both CGA and ALDH1. Crypt shape is outlined

by the dashed line. (B) Immunofluorescence microscopy images showing staining of CRC tissues for DAPI nuclear stain, CGA alone, for ALDH1 alone, and merged for

both CGA and ALDH1. Fig 2B shows that CGA and ALDH1 stains don’t overlap in CRC. S1 Fig in S1 File shows representative images of co-staining for ALDH and

CGA in colonic tissues with different APC-zygosity states. Staining of full-length crypts was also done to quantify the crypt location and proportion of cells staining

positively for both CGA and ALDH1 and cells positive for CGA alone or ALDH1 alone. The crypt location of stained cells was analyzed in (C) normal, (D) normal-

appearing FAP, and (E) adenomatous crypts. The proportions of ALDH+/CGA–, ALDH–/CGA+, and ALDH+/CGA+ cells is given in the stacked bar graph (F). The

number of positively stained cells counted in each case included, normal crypts (n = 95), normal appearing FAP crypts (n = 90), FAP adenomatous crypts (n = 103),

FAP colon carcinomas (n = 126). Fig 2F shows that in normal crypts, many cells staining for the colonic SC marker ALDH1 co-stained for chromogranin-A (CGA) and

other NEC markers. In contrast, in APC-mutant tissues from familial-adenomatous-polyposis (FAP) patients, the proportion of ALDH+/CGA+ SCs progressively

increased while ALDH+/CGA–PNCs, and ALDH+/CGA–NECs progressively decreased. Crypt cell levels are indicated that range from crypt bottom (level 1) to the

crypt top (level ~82). Scale bars = 50 um.

https://doi.org/10.1371/journal.pone.0239601.g002
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The crypt distribution of these other NEC types (noted in Table 1) was similar to that of CGA

+ cells (shown in Fig 1C).

FAP patient tissues (APC mutant crypts). We then determined, using immunofluores-

cence microscopy (evaluating only full-length crypts), the crypt location of cells positive for

both CGA and ALDH1 and for cells positive only for ALDH1 or only for CGA in normal ver-

sus FAP colon tissues (Fig 2C–2E). For example, compared to normal tissue, where most

ALDH1+/CGA–cells were located in the bottom third of the crypt, in adenomas the distribu-

tion of ALDH1+/CGA–cells extended farther up the crypt (Fig 2E). In all three tissues (nor-

mal, FAP, and adenomatous crypts) ALDH1+/CGA+ cells had a similar distribution as

ALDH1+/CGA–cells. From normal to FAP to adenomatous crypts, the distribution of

ALDH1+/CGA+ cells extended progressively farther up the crypt.

To further evaluate changes in NEC populations during the progression to colon cancer, we

examined the expression of the other 12 NEC markers (Table 1). In adenomas and carcinomas,

the number of cells staining positively for these NE markers decreased, paralleling the decrease

in CGA staining.

We also evaluated the proportion of CGA/ALDH double-stained cells in FAP neoplastic tis-

sues (Fig 2F). While double-staining of FAP tissues, including CRCs (Fig 2B), showed that

some CGA+ cells co-stained for the SC marker ALDH1, and vice versa, there was a substantial

decrease in the frequency of co-staining (normal> FAP> adenoma> carcinoma). Compared

to normal tissue, where 77% of cells surveyed co-stained for CGA and ALDH1, in normal-

appearing FAP crypts, the proportion was only 51%; in adenomatous crypts it was 19%; in car-

cinomas it was 13% (Fig 2F). The number of cells that stained for ALDH1, but not CGA,

showed a trend in the opposite direction with proportions being, respectively, 19%, 22%, 72%,

and 81%.

Table 1. Immunohistochemical analysis of normal colonic crypts for neuroendocrine markers.

Markers Symbol Crypt region showing the greatest number of positive cells Proportion of crypt cells

Chromogranin A CHGA Bottom 1/3 Few (~5%)

Syntaxin STX Bottom 1/3 Few

Glucagon-like peptide 1 GLP1 Bottom 1/3 Very few (<CGA)

Glucagon-like peptide 2 GLP2 Bottom 1/3 Very few (<CGA)

Somatostatin SST Bottom 1/2 Very few (<CGA)

Peptide YY PYY Bottom and middle 1/3 Very few (<CGA)

Serotonin 5-HT Bottom 1/3 Few

Neurotensin NTS no staining of crypts, only of stromal or neural cells Scattered or nested

Synaptophysin SYP bottom 1/10 Few

Glucagon GCG bottom 1/3 of the crypt (upper part) Few

Neuron Specific Enolase Γ-enolase bottom (but not very bottom) Few

Glucagon Receptor CGCR bottom 1/3 of the crypt (upper part) Very few (<CGA)

Somatostatin receptor 1 SSTR1 Bottom 1/2 Few

In adenomas and carcinomas, the number of cells positive for these NE markers decreased. In adenomas and carcinomas very few cells stained for markers of NEC such

as glucagon, GLP-1 and GLP-1R, somatostatin, or serotonin. All NE markers co-stained with CGA. Antibodies were from the following sources: Santa Cruz

Biotechnology Inc, (Dallas, TX): Syntaxin 1 (1:100; #sc-73098), Glucagon-like peptide 1 (1:200; #sc-73508), Glucagon-like peptide 2 (1:200; #sc-7781), Somatostatin

(1:300; #sc-55565), Peptide YY (1:250; #sc-80499), Neurotensin (1:300; #sc-377503), Synaptophysin (1:300; #sc-17750), Glucagon (1:250; #sc-514592); Abcam

(Cambridge, MA): Chromogranin A (1:1000; #ab15160), Serotonin (1:250; #ab6336); Novus Biologicals (Centennial, CO): Neuron Specific Enolase (1:10,000; #NB-110-

58870); R&D Systems (Minneapolis, MN): GLP-2R (1:100; #MAB4285); Advanced Targeting Systems (Carlsbad, CA): Somatostatin receptor 1 (1: 100; #AB-N35); BD

Transduction Labs (San Jose, CA), ALDH1 (1:300; cat # 611195).

https://doi.org/10.1371/journal.pone.0239601.t001
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Immunofluorescence co-staining analysis shows that distinct

subpopulations of NECs having different phenotypes exist in the human

colonic SC niche

We also determined if CGA and other markers for NECs are expressed in the same cells using

co-staining analysis of normal crypts (Fig 3). Many but not all cells staining positively for CGA

co-stained for each of these other markers (and vice versa, Fig 3A). For example, cells staining

for CGA also stained for PYY, serotonin, somatostatin, GLP-1 or GLP-2 (Fig 3A). Most syn-

taxin-positive cells stained for CGA and vice versa and the number of cells that were positive

for CGA and syntaxin was greater than the number of cells staining for the other NEC markers

(Table 1). Double-staining for glucagon (a stimulator of crypt proliferation) and somatostatin

(an inhibitor of crypt proliferation) showed that cells that stain for glucagon only do not stain

for somatostatin and vice versa (Fig 3A, lower right panel).

We also did immunostaining of cells for neuropeptides and their respective receptors

including glucagon and glucagon receptors and somatostatin and the somatostatin receptor

SSTR-2. The results (Fig 3B) show that expression of these neuropeptides and their respective

receptors are co-localized.

Mathematical modeling of crypt cell kinetics in normal and neoplastic

colon indicate APC mutations lead to decreased maturation of ALDH+ SCs

into progenitor NECs (not progenitor NECs into mature NECs)

To identify kinetic mechanisms that underlie how the proportion of SCs, PNCs, and mature

NECs change from normal to FAP to adenoma to CRC tissues, we used mathematical model-

ing. Modeling output indicated a significant increase occurred in the renewal probability of

SCs as tumorigenesis progressed (Fig 4A). Specifically, in modeling cell dynamics in CRC, the

probability that a cancer SC will self-renew was calculated to be 91.8% compared to 60% for a

normal SC. Our modeling results also showed that the division rate of SCs decreased in the

colonic epithelium during the progression from normal to cancer. In CRC, cancer SCs were

calculated to divide at half the rate of normal SCs (Fig 4B). We also observed that the com-

puted death rate for NECs in a normal crypt was more than 10 fold greater than that for neo-

plastic tissues (Fig 4C). This was attributed to the high PNC number relative to the low NEC

number for normal crypts.

We also investigated the number of SCs coming in via self-renewal minus the number of

SCs going out via cell division from the SC compartment (defined as the reproduction num-

ber). Based on our modeling, SC reproduction increased 1.4 fold in FAP, 2.5 fold in adenomas,

and 2.2 fold in CRCs compared to normal colon (Fig 4D). Overall, these computational analy-

ses indicate that: 1) FAP tissues display a progressive decrease in the maturation of immature

SCs (ALDH+/CGA–cells) into PNCs (ALDH+/CGA+ cells), but not decreased maturation of

PNCs (ALDH+/CGA+ cells) into mature NECs (ALDH–/CGA+ cells); 2) feedback signaling

from mature NECs (ALDH+/CGA–cells) is diminished (Fig 4E).

Biological experiments on effects of NEC signaling on ALDH+ cells in CRC

cell lines show feedback regulation of progenitor NECs occurs via mature

GLP-2R+ and SSTR1+ NECs

To test model predictions, we determined if NECs regulate maturation of SCs along the NEC

lineage by analyzing how SSTR1+ and GLP-2R+ cells affect the proliferation and sphere-form-

ing ability of isolated ALDEFLUOR+ cells from CRC cell lines. Because our immunostaining

results showed that colonic cells do not co-stain for SSTR1 and GLP-2R (Fig 3G–3J),
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Fig 3. Co-staining shows SSTR1+ and GLP-2R+ cells are distinct NEC sub-types that selectively express SST and GLP-2, respectively. Co-staining

was done for expression of NEC markers in normal crypts. The following co-staining patterns in normal crypts are shown in Fig 3A panels: (upper

right) PYY/CGA; (upper middle) 5-HT/CGA; (upper right) SST/CGA; (lower left) GLP-1/CGA; (lower middle) GLP-2/CGA; (lower right) GLP-2/SST.

Results in Fig 3A show that: (i) many, but not all cells, staining positively for CGA co-stained for each of these other NEC markers (and vice versa); (ii)

cells staining for GLP-2 do not stain for SST and vice versa. The following co-staining patterns in normal crypts and colon carcinomas are also shown in
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indicating that these cells represent different NEC types, we first screened different CRC cell

lines (n = 5) and characterized them in terms of proportion of ALDEFLUOR+, SSTR1+ and

GLP-2R+ cells. Results showed that all CRC lines analyzed had sub-populations of ALDE-

FLUOR+, SSTR1+ and GLP-2R+ cells (Fig 5A).

To elucidate the effect of exogenous SST and GLP-2 on ALDEFLUOR+ sub-population

size, HT29 cells and SW480 cells were treated with the IC50 dose of GLP-2 (500 nM) or of SST

(500nM) for 24 hours. Results showed that treatment with exogenous GLP-2, but not SST, sig-

nificantly decreased the proportion of ALDH+ cells in both cell lines as determined by ALDE-

FLUOR assay (Fig 5B and 5C).

We then investigated whether paracrine signaling from NECs might regulate ALDH+ cells

isolated from the HT29 CRC cell line. Accordingly, conditioned medium (CM) was collected

from GLP-2R+ or from SSTR1+ cell cultures and ALDEFLUOR+ cells were then grown in this

CM for one week. We found that GLP-2R+ CM, but not SSTR1+ CM, significantly decreased

the ALDEFLUOR+ population size as compared to the mock-sorted control medium (Fig

5D).

To evaluate for juxtacrine signaling, co-culture experiments were then done to study the

effect of direct cell-cell contact between NECs and ALDH+ cells isolated from the HT29 cell

line. Because we observed that co-cultures of ALDEFLUOR+ cells with GLP-2R+ cells, but not

with SSTR1+ cells, increased the total number of cells in culture after 1 week, we determined

the effect of the co-culturing on the proportion of ALDH+ cells. We found that co-cultures of

ALDEFLUOR+ cells with SSTR1+ cells, but not with GLP-2R+ cells, showed an increased per-

centage of ALDEFLUOR+ cells (Fig 5E).

To study the effect of SST signaling on the maturation of ALDH+ cells into different cell

types, we evaluated the cell sub-populations in spheres that were generated from ALDE-

FLUOR+ cells isolated from the HT29 line. Accordingly, ALDEFLUOR+ cells isolated from

the HT29 line were grown in presence of SST or SST inhibitor (cycloSST) under ultra-low

attachment sphere-forming conditions for 10 days. We found the proportion of ALDEFLUOR

+ cells was high in spheres formed in presence of SST and low in presence of cycloSST (Fig

5F). Both SST and cycloSST decreased the proportion of SSTR1+ cells (Fig 5G). We also found

that expression of the MCM2 proliferative cell marker in spheres was decreased in presence of

SST and increased in presence of cycloSST (Fig 5H).

Discussion

A key finding of our study using quantitative immunohistochemical mapping of human

colonic tissues is that for normal crypts, staining indices for CGA and ALDH1 are virtually

superimposable (Fig 1). This indicates that CGA+ and ALDH1+ cells share the same niche (at

the crypt bottom) and account for similar proportions of cells in that niche. An even more

striking finding that the superimposition suggested was that the two markers were labelling

many of the same cells. Indeed, co-staining experiments showed that ~80% of ALDH1+ cells

co-stain for CGA and vice versa. Thus, many ALDH1+ cells in the normal colon express a

NEC phenotype and even ALDH1+/CGA+ co-staining cells are likely to be cells with high

stemness (see [99] for a discussion of stemness). A plausible explanation for why ALDH1

+ cells have a NEC phenotype is that the cells that express only ALDH1 (i.e., ALDH1+/CGA–

cells) are the true immature SCs. While cells that express both ALDH1 and NE markers

Fig 3B: GLP-2/ GLP-2R and SST/SSTR1 (see Table 1 for abbreviations). Results in Fig 3B show that in both normal crypts and colon carcinomas, SSTR1

+ and GLP-2R+ cells are distinct NEC sub-types that selectively express their own neuropeptides SST and GLP-2. Crypt cell levels are indicated that

range from crypt bottom (level 1) to the crypt top (level ~82). Scale bars = 50 um.

https://doi.org/10.1371/journal.pone.0239601.g003
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(ALDH1+/CGA+ cells) are the PNCs maturing along the NEC lineage, which retain some

degree of stemness. In this view, ALDH–/CGA+ cells would be fully mature NECs, which is

the final stage of SC maturation along the NEC lineage.

A second key finding is that not only do PNCs co-express SC and NEC markers, but also,

they are found in the same location (levels 1–20) as are immature SCs (Fig 2C). This suggests

that both cell types reside in the SC niche. Thus, these data support our first hypothesis: that

within the SC niche of normal human colonic crypts, SCs mature along the NEC lineage.

Third, our results show that in neoplastic colonic epithelium, the frequency of co-staining

monotonically decreases with tumor progression: 32% less (than normal) in FAP crypts; 74%

less in adenomatous FAP crypts; 83% less in carcinomas (Fig 2F). Similarly, in CRC cell lines,

the proportion of ALDH+ cells that co-stain for NEC is negligible and the proportion of

ALDH+ cells is greater than that of NECs (GLP-2R+ and SSTR1+ cells; Fig 5A). These data

provide evidence for our second hypothesis: that with sequential mutational inactivation of

APC genes in neoplastic crypts, SC maturation along the NEC lineage becomes progressively

delayed.

Fourth, our results show that ALDH1+/CGA+ and ALDH1+/CGA–cells are anatomically

co-localized in mutant crypts as they were in normal crypts (Fig 2D and 2E). This co-localiza-

tion provides further evidence that both normal and APC mutant colonic SCs mature along

the NEC lineage. Moreover, when the distribution of ALDH+/CGA–cells expanded upward

toward the crypt top in mutant crypts, the distribution of ALDH+/CGA+ cells also expanded

upward toward the crypt top. This upward expansion, in neoplastic crypts, of the populations

of both ALDH1+/CGA+ and ALDH1+/CGA–cell types is precisely what one would predict if

there is delayed maturation of SCs along the NEC lineage due to APC mutations. This provides

further support for our second hypothesis.

A fifth finding is that the number of ALDH1+/CGA–cells increases during colon tumori-

genesis, which is based on two observations. First, staining indices showed that, during colon

tumorigenesis, there was a progressive increase in the size of the ALDH+ cell population rela-

tive to the size of the CGA+ population (Fig 1C–1E). Second, double-staining (Fig 2F, bar

graphs) showed a monotonic decrease, with tumor progression, in the proportion of ALDH1

+ cells that co-stain for CGA, and a roughly equal and opposite change, a monotonic increase,

in the proportion of ALDH1+ cells lacking CGA staining. Taken together, the indices and dou-

ble-staining data indicate that there is an increase in the absolute number of ALDH+/CGA–

cells during colon tumorigenesis. This increase is tantamount to SC overpopulation and is

consistent with evidence from our previous mathematical modelling [20] and biological stud-

ies [22, 23] indicating that SC overpopulation occurs during colon tumorigenesis. Other stud-

ies using various SC markers also suggest that SC overpopulation occurs during intestinal

Fig 4. Mathematical modelling indicates that APC mutations cause decreased maturation of ALDH+ SCs into

progenitor NECs. Mathematical modeling results provide an explanation for neuroendocrine cell kinetics in normal and

neoplastic colon. Model output indicated the following: (A) A significant increase (61.8% to 91.8%) in SC self-renewal

probability as tumorigenesis progressed from normal to FAP to adenoma to cancer. (B) The division rate of SCs declined

(from 14 to 7.3). (C) The rate of death (apoptosis) of mature cells in a normal crypt was an order of magnitude greater than in

neoplastic tissues. (D) The stem cell reproduction number (Rw) is increased in APC-mutant tissues. The modeling results also

indicated that the division rate of SCs decreased in colonic crypts during the progression from normal to cancer as described

in the S1 File. The diagram in (E) depicts the relative size (normal vs. tumor) of SC (red), PNC (yellow), and NEC (green)

compartments, which illustrates how altered reactions involved in maturation of SCs along the NEC lineage give rise to

changes in the size of the SC, PNC, and NEC populations in FAP crypts. Modelling results showing a lower rate of SC

division (B) in neoplastic tissues indicates that there is diminished feedback regulation of PNCs by mature NECs, and a delay

in maturation along the NEC lineage (E vs F). Model output showing increased probability of SC self-renewal (A) and

increased SC reproduction number (D) is consistent with progressive SC overpopulation occurring during colon

tumorigenesis in FAP patients.

https://doi.org/10.1371/journal.pone.0239601.g004
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Fig 5. Biological experiments using human CRC cell lines show feedback regulation of progenitor NECs occurs via mature GLP-2R+ and SSTR1+ NECs.

Fig 5 shows analysis of the effects of SST and GLP signaling on ALDH+ stem cells in CRC cell lines. (A) ALDEFLUOR+, SSTR1+, and GLP-2R+ cells in CRC
cell lines. To investigate how NECs might be involved in regulation of ALDH+ cells we analyzed the proportion of ALDEFLUOR+, SSTR1+, and GLP-2R+ cells

in CRC cell lines. Results showed that all CRC lines analyzed have sub-populations of ALDEFLUOR+, SSTR1+, and GLP-2R+ cells. (B & C) Effect of exogenous
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tumorigenesis in humans as well as in mice [25–33, 42]. Taken together, these findings indi-

cate that delayed maturation (due to APC mutations) along the NEC lineage contributes to SC

overpopulation during CRC development. Several other important points bear further

discussion.

Do mouse intestinal SCs also express a NEC phenotype?

Because we found that many cells in normal human colonic crypts staining for the colonic SC

marker ALDH1 co-stained for chromogranin-A (CGA) and other NEC markers, we asked if

mouse intestinal SCs also express a NEC phenotype. As noted in the introduction, although

early studies showed that ALDH marks murine intestinal SCs, ALDH was not extensively pur-

sued as a marker for intestinal SCs in mice. As it turns out, however, murine intestinal SCs iden-

tified by several other SC markers do show that they have a NEC phenotype. A chronology of

these investigations on mouse intestine is as follows. In 2011, Sei et al. [100] found that CCK

+ NECs in the crypt SC niche (below +4 position) were positive for the several SC markers,

including Lgr5, CD133, and doublecortin and CaM kinase-like-1, as well as for the neuroendo-

crine transcription factor neurogenin 3. In 2013, Buczacki et al. [101] observed that mouse

intestinal label-retaining cells are secretory precursors expressing Lgr5 that are committed to

mature into differentiated secretory cells of Paneth and enteroendocrine lineages. Moreover,

they found that after intestinal injury these cells were capable of extensive proliferation and gave

rise the main epithelial cell types. In 2015, Hayakawa et al. [102] identified secretory precursor

(BHLHA15+) cells in mouse intestine and colon. These BHLHA15+ cells have SC-like proper-

ties and can supply the enterocyte lineage after injury. In 2016, Sasaki et al. [92] showed that

Reg4+ deep crypt secretory cells in mouse intestine have a NEC phenotype. In 2017, Basak et al.

[98] reported that induced quiescence of Lgr5+ SCs in intestinal organoids enabled differentia-

tion of hormone-producing NECs. Also, in 2017, Yan et al. [103] observed that in murine

crypts, Bmi1+ SCs were distinct from Lgr5+ SCs. And, Bmi1+ cells, but not Lgr5+ cells, were

enriched for several NEC markers, including Prox1. Moreover, a lineage-tracing of Prox1+ cells

indicated that the NEC lineage (including mature NEC cells) comprises a reservoir of long-lived

clones during homeostasis and regeneration of intestinal SCs after radiation-induced injury. In

2019, van Es et al [104] reported that after ablation of Paneth cells in murine crypts, NECs can

replace Paneth cells to support Lgr5+ SCs. Overall, these studies show that murine intestinal

SCs have a NEC phenotype (particularly quiescent, Bmi1+ cells) which provides credence to

our conviction that human colonic ALDH+ cells that display a NEC phenotype are in fact

PNCs with high degree of stemness. Indeed, as discussed below, our biological experiments

indicate that these PNCs display the ability for self-renewal in sphere formation assays.

SST and GLP-2 on ALDH+ population size in CRC cell lines. Treatment of HT29 and SW480 cell with GLP-2, but not SST, significantly decreased the

percentage of ALDH+ cells. Error bars are ±SE; � = p<0.05. (D) Culture of ALDH+ cells in conditioned medium (CM). To investigate paracrine signaling

influence of NECs on ALDH+ cells, we studied the effect of CM from GLP-2R+ or from SSTR1+ cells on ALDEFLOUR+ cells isolated from the HT29 cell line.

There was a significant decrease in the number of ALDEFLOUR+ cells grown in GLP-2R+ CM, but not SSTR1+ CM. Error bars are ±SE; � = p<0.05. (E) Co-
culture experiments to investigate the effect of cell-to-cell contact from SSTR1+ and GLP-2R+ NECs on ALDH+ cells. Co-culture experiments were done using

ALDEFLUOR+, SSTR1+, SSTR1−, GLP-2R+, and GLP-2R− cell subpopulations isolated from the HT29 cell line. Changes in ALDH+ cells are expressed as the

ratio of number ALDH+ when co-cultured with SSTR1+ cells versus SSTR1− cells as well as when co-cultured with GLP-2R+ cells versus GLP-2R− cells. Co-

cultures of ALDEFLUOR+ cells with SSTR1+ cells, but not with GLP-2R+ cells, showed an increased proportion of ALDH+ cells relative to co-culture with

SSTR1− and GLP-2R− cells, respectively. (F, G, H) Effect of SST on SSTR1+ cells, ALDH+ cells, and on expression of the MCM2 proliferative cell marker in
colonospheres. The effect of SST on cell subpopulations in colonospheres, was tested in colonosphere assay for 10 days using colonospheres grown from

ALDEFLUOR+ cells isolated from the HT29 cell line. (F) SST increased and cycloSST decreased the proportion of ALDEFLUOR+ cells in colonospheres. Error

bars are ±SE; � = p<0.05. (G) Both SST and cycloSST decreased the proportion of SSTR1+ cells in colonospheres. Error bars are ±SE. (H) SST decreased and

cycloSST increased expression of the MCM2 proliferative cell marker in colonospheres. The effect of SST on expression of the MCM2 proliferative cell marker

in ALDEFLOUR+ cell-generated colonospheres that formed in presence of SST or cycloSST was determined by western blotting analysis and results were

quantified by densitometry. S2A-S2C Fig in S1 File shows representative flow cytometry data from these experiments.

https://doi.org/10.1371/journal.pone.0239601.g005
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Why do SC, PNC, and NEC populations change in FAP tissues?

We conducted mathematical modelling to identify kinetic mechanisms that might explain

how the changes in SC, PNC, and NEC populations occur in FAP tissues. Our computational

analyses showed a significant increase in the renewal probability for ALDH+/CGA–cells, but

not for ALDH+/CGA+ cells in FAP tissues during CRC development. This finding indicates

that APC mutations cause decreased maturation of immature SCs into PNCs, but not the mat-

uration of PNCs into NECs. Modelling results also indicated that mature NECs (ALDH–/

CGA+) regulate the rate of cell maturation along the NEC lineage through a feedback mecha-

nism. This raised the possibility that feedback regulation, through production of neurotrans-

mitters by mature NECs, might be involved in controlling the maturation of SCs along the

NEC lineage and that diminished feedback regulation might contribute to a delay in NEC mat-

uration in FAP tissues. We then tested this possibility using biological experiments.

How might neuroendocrine signalling play a role in NEC maturation?

We conducted biological experiments using human CRC cell lines to determine if NE factors

might have a role in regulation of NEC maturation. That ALDH1+/CGA+ cells express NE fac-

tors suggests that regulation could occur through an autocrine or intracrine mechanism in

which the NEC would be regulating its own maturation as it matures [105, 106]. Indeed, our

study shows that SSTR1+ and GLP-2R+ cells produce their own corresponding ligands in nor-

mal crypts as well as in colon carcinomas (SST and GLP-2, respectively; Fig 3G–3J). Alterna-

tively, that smaller subpopulations of ALDH–/CGA+ cells exist in normal crypts, but don’t co-

stain, also suggests the possibility that paracrine or juxtacrine mechanisms may be operative.

Indeed, this prospect is supported by our finding that GLP-2R and SSTR1 ligands (Fig 5B–5E;

[38]) can modulate the growth of ALDEFLUOR+ cells. Our idea that NE mechanisms regulate

maturation of NEC populations is consonant with an earlier proposal that crypt NECs have a

role in maintaining the SC sub-populations in the SC niche [85]. Of course, NECs may be reg-

ulated by outside factors such as the enteric nervous system, autonomic nervous system, and

CNS (via the brain gut axis).

While the effect of NE factors on proliferation in the gut is well defined, less is known on

how they are involved in regulation of maturation. For example, glucagon, a growth stimulator

[93–95], and somatostatin, a growth suppressor [38, 107], are known opposing regulators of

GI proliferation. Moreover, glucagon is known to be produced from type A(α) NECs and

somatostatin from D(δ) NECs [108]. That these two peptides are produced in distinct NEC

types and have opposing effects on proliferation suggests that they might have different effects

on SC or PNC maturation. The current study evaluated this possibility. For example, in our

study of colonic tissues and of CRC cell lines we found that SSTR1+ and GLP-2R+ cells repre-

sent distinct sub-populations. And, our in vitro experiments show that these two NEC factors

have opposite effects on ALDEFLUOR+ cells. For example, exogenous GLP-2, but not SST,

decreased the ALDEFLUOR+ population size (Fig 5B & 5C; [38]). Moreover, conditioned

medium from GLP-2R+ cells (that express GLP-2), but not SSTR1+ cells (that express SST),

significantly decreased the ALDEFLUOR+ population size (Fig 5D). Taken together, our

results reveal that not only are GLP-2 and SST produced in distinct NEC types, but also, these

ligands have opposite effects on ALDEFLUOR+ cells. Thus, our results reveal that SST signal-

ing reduces, and conversely, GLP-2 enhances the rate of maturation along the NEC lineage.

We performed additional experiments to evaluate the effect of NE factors on generation of

NECs and proliferative cells in colonospheres formed from ALDH+ cells in ultra-low attach-

ment cultures. We observed that spheres formed from ALDEFLUOR+ cells in the presence of

SST showed a high proportion of ALDEFLUOR+ cells and low level of expression of the
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MCM2 proliferative cell marker (Fig 5F and 5H), which indicates that SST reduces the rate of

maturation of ALDEFLUOR+ cells. The SST inhibitor, cycloSST, had the opposite effect. That

the size of the ALDEFLUOR+ population can be modulated by SST signaling might suggest

that feedback mechanisms exist between mature NECs (ALDH–/CGA+ cells) and immature

SCs (ALDH1+/CGA–cells). However, because ALDEFLUOR+ is based on ALDH enzymatic

activity, it does not distinguish between ALDH1+/CGA–cells and ALDH1+/CGA+ cells.

Moreover, based our findings showing that ALDH1+/CGA–cells do not have receptors for NE

ligands, the feedback effects of mature SSTR1+ and GLP-2R+ NECs, via SST and GLP-2, must

be on PNCs, not immature SCs (Fig 4E). That these neuropeptides modulate sphere formation

shows PNCs (ALDH1+/CGA+ cells) have a high degree of stemness and a capacity for self-

renewal.

Could dysregulation of the feedback mechanism lead to delayed NEC

maturation in CRC?

This question pertains to whether dysregulation of feedback between mature NECs and PNCs

might be the mechanism that explains how the subpopulation of immature SCs (ALDH

+/CGA–cells) selectively expands in size relative to the NECs (ALDH+/CGA+ and ALDH–/

CGA+ cells) in FAP tissues. Delayed maturation is a mechanism that is well known for some

hematopoietic cancers [109] where it is referred to as maturation arrest. Also, we reported (for

both modelling studies and biologic studies) evidence for delayed maturation in colon tumori-

genesis [20, 38, 39, 99, 110]. Thus, decreased rate of maturation of SCs along an NEC lineage

would explain the relatively smaller size of the NEC population in colon tumors with mutant

APC. Perhaps it is an alteration of feedback mechanisms that control the rate of NEC matura-

tion that creates a maturation arrest or “bottleneck” effect, which is the mechanism that leads

to SC overpopulation and contributes to the development of colon tumors. However, if this

was the case, there would be a buildup or increase in PNCs at the maturation point of the

arrest. In contrast, there is actually a decrease in the number of both ALDH+/CGA+ and

ALDH–/CGA+ cells in FAP tissues, indicating that both PNCs and NECs become depleted in

CRC development. Thus, dysregulation of a feedback loop between NECs and PNCs wouldn’t

explain the delayed maturation. This conclusion is also what our modeling predicted (Fig 4F)

as discussed above. So the mechanism for delayed maturation must be connected to how APC
mutations cause the immature ALDH+ SCs to remain immature.

In exploring this mechanism, we must also consider what it means for a SC to be ALDH

positive. The presence of ALDH in NECs (ALDH1+/CGA+) cells, particularly as seen in non-

malignant cells, suggests that ALDH plays a role in the maturation of SCs along the NEC line-

age. Indeed, ALDH is known to have a role in early maturation of SCs by catalysing the pro-

duction of retinoic acid from retinol [54–56]. And, decreased retinoic acid receptor signalling

has been reported for colon cancers [111, 112]. This information, coupled with our findings in

the current study, suggests that ALDH is required for the maturation of colonic SCs, in partic-

ular their ability to mature into NECs.

How do APC mutations lead to decreased NEC maturation?

This question is first addressed by discussing how NEC maturation is distinct from maturation

of other crypt cell types in the colon, which will help us recognize which signaling pathways

are specific to regulating NEC maturation. Much is known about the various cell lineages in

the intestinal crypt and the pathways that mediate maturation along these lineages [76, 77].

The prevailing view is that mutations in APC lead to decreased maturation across all lineages

in the intestine. But, the mechanism by which APC mutation alters the specific pathways that
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mediate maturation of each lineage is less well understood, particularly for NECs in human

colon.

The maturation of NECs is unique because NECs have morphological and functional prop-

erties of both endocrine cells and neurons. Morphologically, unlike most crypt cells that are

frustum-shaped, NECs are pyramidal-shaped, and contain neural synapse-like storage vesicles

[81, 82]. Functional features shared with neurons include uptake, synthesis, storage and release

of various neurotransmitters and neuropeptides [reviewed in 85]. Thus, the process of differ-

entiation of NECs is distinct from the overwhelming majority of other cells within the crypt

that are non-endocrine, particularly absorptive and goblet cells. Unlike these non-endocrine

cells that differentiate as they migrate upward and proliferate along the crypt axis, NECs

appear to differentiate directly from SCs located within the SC niche. Although they mostly

reside in the niche, NECs have long basal neuron axon-like processes that extend along the

basement membrane in the crypt [reviewed in 85]. Moreover, unlike absorptive and goblet

cells that have a short turnover time, kinetic studies show that NECs have an extended lifespan

[113–116]. Their prolonged lifespan is not only due to their slow proliferation rate, but also by

the fact that NECs uniquely express collagen IV [117], which allows them to avoid adhering to

and co-migrating with other cell lineages. NECs are also distinguished by their radio-resistance

and ability to repopulate other cell lineages after radiation-induced injury, indicating they are

resilient and have regenerating ability. Given these unique properties of NECs, it suggests that

differentiation mechanisms that are altered by APC mutations are different from the other dif-

ferentiated cell types in the colon.

Accordingly, we focus here on mechanisms that specifically may affect differentiation of

NECs from ALDH+ SCs. Because ALDH is an enzyme that is key to retinoid acid (RA) signal-

ing and retinoids are well known to promote differentiation of SCs [52], it follows that having

ALDH in a SC provides the capacity for it to differentiate in response to retinoids. Indeed, we

show that the key components of the retinoid signaling pathway are contained in ALDH+ SCs

and that ATRA induces their differentiation along the NEC lineage [39]. This is consistent

with the ability of retinoids to decrease proliferation of ALDH+ SCs and, conversely, that

inhibitors of ALDH increase proliferation of ALDH+ SCs [51–54]. Moreover, WNT signaling

upholds ALDH expression that may enable ALDH+ SCs to differentiate because ALDH1 is a

TCF4 target gene [61, 65, 118–128]. Although, as discussed below, a decrease in WNT signal-

ing appears necessary for the retinoid signaling to happen. Perhaps, a transient decrease in

WNT signaling provides a window for retinoid signaling to occur due to oscillations in level of

WNT signaling that occur, which we [129, 130] and others [131–133] have observed. Thus, it

appears that APC mutations may alter the ability of ALDH+ SCs to differentiate in response to

retinoids, which would lead to expansion of the ALDH+ SC population size in CRC.

Since APC mutations are known to increase WNT signaling in FAP, this raises the question:

does increased WNT signaling lead to decreased retinoid signaling? To address this question

we draw from research showing that retinoids induce differentiation of neural cells. Indeed, it

is well known that retinoids induce neural differentiation of embryonic SCs, and that retinoid

signaling is essential in the development of the central nervous system in most animal species

[134–137]. Moreover, endogenous retinoic acid signaling is critical to guide the self-organiza-

tion and pattern formation of neural tissue from mouse embryonic SCs [138, 139].

Key to our question—How does mutant APC decreases NEC differentiation?—It is impor-

tant to point out that appropriately regulated WNT signaling is necessary for RA to induce

neuronal differentiation [140]. For example, an inhibitor of the enzyme GSK3β activity that

increases WNT signaling blocks the ability of ATRA to induce neural lineage differentiation

[53]. Not only does WNT suppress retinoid signaling, but conversely, increased RA signaling

suppresses WNT’s ability to block retinoid induction of the neural differentiation of SCs. For
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example, blocking WNT signaling by the WNT inhibitor Dickkopf-1 was required for the

induction of neural markers and neural differentiation of mouse embryonic SCs in response

to retinoic acid [134, 141]. The prerequisite that WNT signaling must be downregulated for

neural differentiation to be inducible by RA treatment provides a mechanism that helps

explain how increased WNT signaling, due to APC mutation in CRC development, prevents

maturation of ALDH+ colonic SCs along the NEC lineage (Fig 6).

Summary

One of the properties that SCs have is that are multipotent and possess a mechanism for differ-

entiating. We studied ALDH which is a key component of the RA signaling mechanism that

allows SCs to differentiate into NECs. We focused on ALDH and RA signaling with regard to

differentiation of NECs, but not other differentiated cell types (e.g. absorptive and goblet

Fig 6. Our proposed schematic for the attenuation of Retinoic Acid (RA) signalling by upregulated WNT in CRC. In normal colon

with wild-type (wt) APC (A), the down-regulation of WNT signaling by wt-APC allows signaling through the retinoic acid pathway,

which maintains the PNC phenotype of ALDH+ cells. In colon cancer with APC mutations (B), the upregulation of WNT signaling due

to mutant APC causes a downregulation of RA signaling, which leads to an increase in the SC phenotype and a decrease in PNC

phenotype of ALDH+ cells. Thus, mutant APC, via constitutively activated WNT signaling, leads to decreased differentiation of ALDH

+ SCs along the NEC lineage and an increased number of ALDH+ SCs. Attenuation of retinoic acid signaling provides a mechanism

that explains why ALDH+ SCs remain immature in APC-mutant colon tissues during CRC tumorigenesis in FAP patients.

https://doi.org/10.1371/journal.pone.0239601.g006
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cells), because SCs differentiate into NECs in the SC niche. This study also investigated matu-

ration of SCs along the NEC lineage in FAP tissues because this maturation is altered by the

main mechanism that drives CRC development–APC mutations lead to SC overpopulation.

The importance of our study comes from two main effects of APC mutation in human

colonic tissues—SC overpopulation and decreased differentiation of NECs. The importance

of the SC overpopulation is readily apparent–more CSCs will produce more malignant

daughters which promotes tumor growth. The importance of the decrease in NEC numbers

is less apparent. It is well recognized by pathologists [142] that CRCs have reduced numbers

of NECs, as was quantified in our study, but other than being a pathological observation,

the underlying mechanisms and functional consequences of reduced NECs in human CRCs

have not been well understood. In the normal SC niche, NECs are the central communica-

tion hub for the crypt. There are several different types of NECs, which constitutes an entire

enteric endocrine regulatory system that has different functions and secretes different neu-

ropeptides and hormones that regulates numerous processes both locally in the colon and

elsewhere in the body. There are different types of NECs in the colon that communicate via

endocrine, paracrine and juxtacrine signals, emphasizing the complexity of the NEC endo-

crine system. NECs also constitute an enteric nervous system that is regulated by outside

neural factors as discussed above. Thus, loss of NECs can have serious functional conse-

quences in malignant colonic tissues.

Given this complexity of the NEC system, it must maintained by an intricate regulatory

mechanism with different levels of feedback regulation functioning in the colonic crypt. For

example, an important new finding herein is that GLP-2R+ and SSTR1+ PNCs are regulated

by feedback mechanisms via their respective GLP-2R+ and SSTR1+ mature NECs, which con-

trol different NECs. This regulation is important because GLP-2 and SST neuropeptides pro-

duced by NECs have opposing effects on crypt cell proliferation. Moreover, innovative

findings from the current study indicate that immature ALDH+ SCs are regulated by crosstalk

dynamics between WNT signaling and RA signaling, which likely plays an essential role in

maintaining the delicate balance between crypt regeneration and homeostasis in the normal

colonic crypt [143, 144]. In CRC tissues that have mutant APC, there will be an alteration

between WNT and RA signaling whereby WNT signaling is upregulated that leads to attenua-

tion of RA signaling. Thus, a link between WNT and RA signalling provides a plausible mech-

anism that can explain how mutant APC leads to decreased maturation of ALDH+ SCs along

the NEC lineage and an increased the number of ALDH+ SCs (Fig 6).

Conclusion

An important aspect of our research is that is we studied SCs in human colonic crypts using a

genetic model (FAP) to investigate how APC mutation drives CRC development. This research

on human colonic SCs augments the remarkable research that has been done on SCs in mouse

small intestinal crypts for many years [reviewed in 76–80, 145]. Moreover, studying the

changes that occur in NEC maturation of human colonic SCs due to APC mutation could have

important clinical relevance. For example, it has been reported [146] that rectal carcinomas

treated with radiation or radiation plus chemotherapy have a substantial number of viable

tumor NECs that survive after treatment. This finding indicates that malignant NECs are rela-

tively resistant to conventional treatments such as chemotherapy and radiation therapy and

these NECs can regenerate tumor growth that leads to cancer recurrences. Indeed, studies on

mouse small intestine show that SCs that co-stain for NEC markers can regenerate and revert

to a SC state following radiation damage [35, 36]. Based on our research, we surmise that

ALDH+/CGA+ PNCs can also regenerate SCs by reverting back to an ALDH+/CGA–SC state.
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Thus, discovering ways to target NEC maturation in vivo might lead to new more effective

treatment strategies for CRC patients.

Methods

Acquisition of tissues

In the current study, we investigated normal epithelium from healthy controls and FAP tissues

including premalignant (normal-appearing and adenomatous epithelium) and malignant (car-

cinomas) colonic tissues. Tissues were processed as we previously described [22, 23]. All tissue

sections were obtained through the Pathology Department at Thomas Jefferson University.

Our study was approved by the IRB of Thomas Jefferson University. Informed written consent

was obtained from the subjects (wherever necessary). The patient studies were conducted in

accordance with the following ethical guidelines: Declaration of Helsinki, International Ethical

Guidelines for Biomedical Research Involving Human Subjects (CIOMS), Belmont Report,

and U.S. Common Rule.

Immunohistochemical mapping

To study the relationship of crypt SCs and NECs in colonic tissues, we used quantitative

immunohistochemical mapping of the distribution and size of NE and SC populations along

the crypt axis. Immunohistochemical (IHC) and immunofluorescence (IF) methods were

done as we previously described [22, 23]. Antibodies used against NEC markers are given in

Table 1 (see table footnote). Briefly, formalin-fixed paraffin-embedded 5μm-thick sections of

normal and tumorous tissue, obtained from colonic resections of colorectal cancer (CRC)

patients. Specimens were deparaffinized using xylene and rehydrated in graded ethanols, fol-

lowed by epitope demasking by boiled in citrate buffer (Bio Genex, San Ranmon, CA, #

HK086-5K) for 15 min in a microwave oven. Endogenous peroxidase blocking with (3%)

hydrogen peroxidase buffer and incubation in 10% bovine serum albumin (BSA) was followed

by application of primary antibodies diluted in phosphate buffered saline (PBS). The Biotin-

streptavidin detection system (DAKO, Philadelphia PA, # K0675) was applied followed by

3,3-diaminobenzidine for 10 min. Counterstaining was performed with hematoxylin and sec-

tions were mounted using Fluka DPX mountant (Hauppauge, NY, #06522) and visualized

using an Olympus U-SPT microscope. In control experiments, endogenous biotin was blocked

by applying avidin for 30 min, followed by biotin for 30 min prior to the application of the bio-

tinylated detection reagent. Negative controls obtained by replacing primary antibody with

10% fetal bovine serum. For immunofluorescence microscopy, deparaffinization was followed

by incubation in 10% BSA, application of PBS-diluted 1˚ Ab, fluorophore-attached 2˚ anti-Ab

with counter-staining provided by DAPI and mounting using SlowFade Gold antifade reagent

(Biotium, Fremont, CA, #S36936). All secondary antibodies were purchased form Molecular

Probes anti-human Alexa Fluor 488 (cat # A-11013) and anti-human Alexa Fluor 594 (cat # A-

11014). A Zeiss Epi-Fluorescence microscope and software (AxioVision 4.7, Carl Zeiss, Inc.)

was used to analyze the tissue sections.

Indices

Indices (plots of the proportion of cells at each crypt level that stained for any given marker)

were constructed from IHC staining patterns as we previously described [23, 110]. Briefly,

indexes (proportion of cells at each crypt level that stained for any given marker) were devel-

oped from IHC staining patterns. For example, indices for CGA showed the proportion of

cells exhibiting this marker at each level along the crypt axis, from which curves showing the
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distribution of those cells can be plotted and the total number of CGA+ cells per crypt can be

calculated (area under the curve [AUC]). Graphical display of indices and curve fitting (using

sixth-order polynomial analysis) were done using Excel (v. 2002, Microsoft, Redmond WA).

AUC for plots of these indices was calculated using Prism, a graphical software package from

Graph Pad, Inc. (San Diego, CA). The area was used to calculate the proportion of total crypt

cells staining positive for the marker and tissue in question. We did not plot any indices for

carcinomas because they do not contain recognizable crypt structures. In addition to counting

CGA+ and ALDH+ cells as a function of total crypt cells (to develop indexes), we also evalu-

ated, using fluorescence microscopy and double staining to identify cells that were ALDH+/

CGA+, ALDH+/CGA−and ALDH–/CGA+ cells to determine the intracryptal location of each

type. For this analysis, only full-length crypts were evaluated (IHC mapping of 24 crypts for

each index was done by scoring number of positively stained cells based on crypt level). These

data were plotted as scatterplots. We did this for normal, FAP, and adenomatous crypts. In a

separate analysis, we calculated the percentage of each type as a fraction of the total number of

cells that stained for ALDH+/CGA+ or ALDH+/CGA−or ALDH–/CGA+. This latter analysis

was not limited to full-length crypts. It included carcinomas, which lack crypt structures.

These data were plotted as a stacked bar graph.

Cell culture

Cell lines were obtained from the ATCC (authenticated by cytogenetic analysis) and grown in

McCoys 5A medium (HT29, HTB-38; HCT116, CCL-247), L-15 medium (SW480, CCL-228),

RPMI-1640 medium (LoVo, CCL-229; COLO320, CCL-220.1) respectively, containing 10%

FBS and 1% Penicillin/Streptomycin and cultured at 5% CO2, 37˚C. All experiments were car-

ried out within 10 passages of being thawed. Cells were routinely tested for mycoplasma (Uni-

versal mycoplasma detection kit, ATCC Manassas, VA cat# 30-1012K).

Flow cytometry

Flow cytometry was done as described previously [38, 40]. Briefly, all cells were grown to 70–

80% confluency and lifted using an EDTA based solution called Cell Stripper (Fisher Scientific,

cat# 25-056-CI). Cells were spun for five minutes to pellet and resuspended in RPMI-1640

with either the mouse monoclonal SSTR1 antibody (Advanced Targeting System, cat #

AB-N35) at a 1:100 dilution (10 μg/ml), mouse IgM isotype control at a 10 μg/ml concentra-

tion (BioLegend, cat # 401601), mouse monoclonal GLP-2R antibody (R&D Sytems, cat #

MAB4285) at a 1:100 dilution (2.5 μg / 200 μl), and goat IgG isotype control at a 2.5 μg / 200 μl

concentration (Jackson Laboratories). Cells were incubated on ice for one hour. Following pri-

mary antibody and IgG / IgM incubation, cells were washed twice with PBS, and then incu-

bated in the appropriate secondary antibody at a dilution of 1:200 for one hour on ice. All

secondary antibodies were purchased form Molecular Probes anti-human Alexa Fluor 488 (cat

# A-11013) and anti-human Alexa Fluor 594 (cat # A-11014). Cells were washed twice and

resuspended in 500 μl of RPMI-1640 medium and passed through a BD round bottom tube

with a 50 56 μm cell strainer (BD Biosciences). Cell surface staining was analyzed using the

FACSCalibur and FACSAria II. Flow Cytometry for sorting: All cells were grown to 70–80%

confluency and lifted using an EDTA based solution called Cell Stripper (Fisher Scientific,

Hampton, NH cat# 25-056-CI). Cells were spun for five minutes to pellet and resuspended in

RPMI-1640 with either the mouse monoclonal SSTR1 antibody (Advanced Targeting System,

Carlsbad, CA cat # AB-N35) at a 1:100 dilution (10 μg/ml), mouse IgM isotype control at a

10 μg/ml concentration (BioLegend, San Diego, CA cat # 401601), mouse monoclonal GLP-2R

antibody (R&D Systems, Minneapolis, MN cat # MAB4285) at a 1:100 dilution (2.5 μg /
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200 μl), and goat IgG isotype control at a 2.5 μg / 200 μl concentration (Jackson Laboratories,

West Grove, PA).

ALDEFLUOR assay

The ALDEFLUOR assay was performed according to the manufacturer’s protocol (Stem Cell

Technologies, Inc., Vancouver, CA cat# 01700) and samples were run on a BD FACS Aria II

using the FACSDiva Software as we described [38–41]. Briefly, cells were incubated on ice for

one hour. Following primary antibody and IgG / IgM incubation, cells were washed twice with

PBS, and then incubated in the appropriate secondary antibody at a dilution of 1:200 for one

hour on ice. All secondary antibodies were purchased form Molecular Probes anti-human

Alexa Fluor 488 (Invitrogen, Carlsbad, CA cat # A-11013) and anti-human Alexa Fluor 594

(Invitrogen, Carlsbad, CA cat # A-11014). Cells were washed twice and resuspended in 500 μl

of RPMI-1640 medium and passed through a BD round bottom tube with a 50 μm cell strainer

(BD Biosciences). The BD FACS ARIAII flow cytometer was turned on and given 30 minutes

for the laser to warm up. When sorting the colon cancer cell lines, an 85-micron nozzle was

used and when sorting primary colon normal and tumor cells, a 100-micron nozzle. Before

sorting cells, an initial performance check was done on the machine for all lasers and filters by

running the Cytometer setup and Tracking (CST). Once the stream was stable, Accudrop per-

formance was checked to determine the appropriate drop delay setting. For setting up the dot

plots, histograms and gates, unstained cells were run on the machine to identify where the P1

main population of cells was on the plot. The cell cluster on the dot plots were adjusted by

moving the voltages of the forward scatter (FSC) and side scatter (SSC). Further gating on

sequential dot plots allowed for doublet discrimination to ensure single cell populations were

analyzed and set up for sorting. Once all these parameters were setup, analysis and sorting was

followed using the stained samples. If double-labeled cells were going to be sorted out, com-

pensation controls were ran for each color used in the labeling of cells.

Isolation and quantification of GLP-2R+ and SSTR1+ cells

GLP-2R+ and SSTR1+ cells were quantified and isolated from cell lines by immunostaining

and FACS sorting using anti-GLP-2R (described above) or anti-SSTR1 (described above) anti-

bodies (1:100 dilutions), respectively, and secondary anti-human Alexa-Fluor-488 and anti-

human Alexa-Fluor-594 antibodies (both from Molecular Probes, Eugene, OR). In condi-

tioned media (CM) experiments cells were first cultured for 48 hours, media then collected

every 24 hours, spun down, and frozen in 1ml aliquots for testing effects of conditioned

medium on ALDEFLUOR+ cells.

Exogenous GLP-2 and SST treatment

The effect of exogenous ligands (GLP-2 Tocris, Minneapolis, MN cat# 2258 and SST Tocris,

Minneapolis, MN cat# 1157) on HT29 cells was evaluated as described previously [38]. IC50

dose used for GLP-2 was 500nM.

Co-culture experiments

Isolated SSTR1+ or GLP-2R+ cells were co-cultured with ALDEFLUOR+ cells for 1 week. Iso-

lated SSTR1− or GLP-2R− cells co-cultured with ALDEFLUOR+ cells were used as controls.

ALDEFLUOR+, SSTR1+, SSTR1−, GLP-2R+, and GLP-2R− cell subpopulations were isolated

by FACS from the HT29 cell line. The number of cells was counted using a Countess Cell

counter (Invitrogen, Carlsbad, CA).
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Effect of SST on SSTR1+ cells & ALDEFLUOR+ cells, and on expression of

the MCM2 proliferative cell marker

The effect of SST on cell subpopulations in colonospheres was tested using the colonosphere

assay as previously described [38–41]. Briefly, ALDEFLUOR+ cells isolated from the HT29

line were grown in presence of SST or SST inhibitor (cycloSST, Tocris, Minneapolis, MN cat#

3493) under ultra-low attachment conditions for 10 days. Colonospheres were trypsinized to

dissociate single cells. ALDH+ cells were enumerated using the ALDEFLUOR assay and

SSTR1 cells quantified by immunostaining and FACS using anti-SSTR1 antibody (described

above). The effect of SST on expression of the MCM2 proliferative cell marker in colono-

spheres formed from ALDEFLOUR+ cells in presence of SST or cycloSST was determined by

western blotting analysis of pooled experimental samples (n = 6) and results were quantified

by densitometry. Western blotting was performed as previously described [38–41] using

MCM2 antibody (1:100; Abcam, Cambridge, UK cat# ab108935).

Mathematical modeling

We constructed a mathematical model (see S1 File) that was based on the biologic data from

normal and neoplastic colonic epithelium. Our model was created based on the three compart-

ment model of Nakata et al [147] in order to simulate the 3 different cell populations: SCs,

PNCs, and NECs. The model incorporates a feedback loop whereby the proportion of NECs

regulates the rate of SC division and the rate of PC division. This assumption was based on the

fact that many feedback mechanisms in growth processes in biology involve feed back stem-

ming from the products to the reactants in order to regulate the rate of generation of the prod-

uct. Thus, we assumed that the mature cells feed back either on stem cells or on progenitor

cells.

We first did iterative fitting to find model parameters that correspond to proportions of

SCs, PCs and NECs in normal, FAP, adenoma and CRC (see S1 Table in S1 File). Once we

obtained a set of values for model parameters that fit well with the biological data, we deter-

mined how the probability of SC self-renewal, the rate of SC division, the death rate for NECs,

and the SC reproduction number changed in modeling neoplastic tissue vs. normal colon.

Statistical analysis

An Unpaired t-test was used to determine significance between the treatment group and the

appropriate controls. All the values obtained with a p-value less than 0.05 were considered to

be statistically significant.
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