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Abstract: Nano-fertilizers (NFs) significantly improve soil quality and plant growth performance
and enhance crop production with quality fruits/grains. The management of macro-micronutrients
is a big task globally, as it relies predominantly on synthetic chemical fertilizers which may not be
environmentally friendly for human beings and may be expensive for farmers. NFs may enhance
nutrient uptake and plant production by regulating the availability of fertilizers in the rhizosphere;
extend stress resistance by improving nutritional capacity; and increase plant defense mechanisms.
They may also substitute for synthetic fertilizers for sustainable agriculture, being found more suitable
for stimulation of plant development. They are associated with mitigating environmental stresses and
enhancing tolerance abilities under adverse atmospheric eco-variables. Recent trends in NFs explored
relevant agri-technology to fill the gaps and assure long-term beneficial agriculture strategies to
safeguard food security globally. Accordingly, nanoparticles are emerging as a cutting-edge agri-
technology for agri-improvement in the near future. Interestingly, they do confer stress resistance
capabilities to crop plants. The effective and appropriate mechanisms are revealed in this article to
update researchers widely.

Keywords: antioxidant enzymes; nano-fertilizers; photosynthetic capacity; plant nutrition; sustainable
agriculture; stress resistance

1. Introduction

Agriculture is the economic backbone of developing countries and also provides food
for better living globally [1,2]. Climate change in ecosystems operates through biotic and
abiotic stresses [3,4] which impair the delicate balance of environment linked with food
production and may cause crop failure [2]. Our global food demand is anticipated to
climb by approx. 70% in 2050 as a result of the increasing population [5,6]. It is necessary
to ratify innovative and futuristic agri-technologies to achieve global food security with
improved plant productivity [6], because environmental difficulties may arise primarily
due to the inefficiency of various farming operations based on conventional fertilization
practices [7]. The nutrient utilization efficiency (NUE) seems to be an important metric for
assessing agricultural production and nutrient bioavailability in plants [8,9]. Fertilizers
offer nutrients to optimize crop productivity, usually being applied through soil surface
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broadcasting or mixed with irrigation, which may cause damage to the atmosphere, water
bodies, and the ecosystem [10–14]. Hydroponic techniques are used to grow some crops
under greenhouse conditions, at the expense of about 10 times greater water and energy
consumption, found to be neither economical nor sustainable [7,15,16]; the addition of
fertilizers can cause eutrophication and ground water contamination, which may badly
impact public health [17,18].

In such a scenario, newer agricultural interventions need to be implemented to fulfill
the desire of our global food system [7] along with the safety of ecosystems, biodiversity,
and the climate [12,13], as fertilizer use is proposed to be nearly 20% less by 2030 [19]
through best farming practices to ensure approx. 85% of global agricultural production
in the next 10 years [20,21]. Future agriculture may be based on the use of nano-enabled
fertilizers in various ways, as nanotechnologies are becoming widely accepted in agricul-
ture to enhance crop yields with a healthy agro-ecosystem under environmental adversi-
ties [22–26]. We examined recent trends in deploying engineered nanomaterials (ENMs)
in agriculture, emphasizing nanotechnology-enabled fertilizers called “nano-fertilizers”
and nano-pesticides with their improved delivery systems. The efficacies of the ENMs
used are scrutinized, upgraded, and pooled herein (Figures 1–3 and Table 1) to enrich
researchers’ understanding.

Figure 1. An overview of nano-fertilizer application in agriculture. NPs = nano-particles; NFs =
nano-fertilizers.
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Figure 2. Uptake of NFs via various channels and their translocation paths across multiple plant
sections are depicted schematically. (A) NF traits affect absorption and translocation in plants: (a) T.S.
of maize leaf; (b) T.S. of maize roots (both images were taken from public databases and are freely
accessible). (B) NFs may use apoplastic-symplastic pathways for moving up and down. (C) Various
strategies were proposed for the internal distribution of NFs inside the cells through endocytosis and
pore formation mediated by carrier proteins via plasmodesmata.
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Figure 3. NFs with a variety of defense mechanisms in plants under stress. Early prevalence of 
stress sensing via receptors/sensors cascades the downstream stress response by ROS, CaBP (Ca+2 
binding proteins), and plant hormones. Signal extension and transduction is carried out by sec-
ondary messengers, i.e., MAPKs (mitogen-activated protein kinases), PKs (ROS-modulated pro-
tein kinases), PPs (protein phosphatases), CDPKs (calcium-dependent protein kinases), etc. Sig-
naling causes various regulation of transcription factors (TFs) and stress-responsive genes. Con-
trol of TFs and genes linked with physiological, biochemical, and molecular responses may ad-
just to fine-tune enhanced stress resistance capacity. 

Figure 3. NFs with a variety of defense mechanisms in plants under stress. Early prevalence of
stress sensing via receptors/sensors cascades the downstream stress response by ROS, CaBP (Ca2+

binding proteins), and plant hormones. Signal extension and transduction is carried out by secondary
messengers, i.e., MAPKs (mitogen-activated protein kinases), PKs (ROS-modulated protein kinases),
PPs (protein phosphatases), CDPKs (calcium-dependent protein kinases), etc. Signaling causes
various regulation of transcription factors (TFs) and stress-responsive genes. Control of TFs and
genes linked with physiological, biochemical, and molecular responses may adjust to fine-tune
enhanced stress resistance capacity.
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2. Agriculture and Nano-Fertilizers

Nano-fertilizers are important in modern agriculture, having appropriate formula-
tions and delivery mechanisms to ensure optimal uptake/usage in plants [2,12,27]. These
nanoscale fertilizers reduce nutrient losses due to leaching, and chemical alterations can
be avoided—to enhance nutrient use efficiency and environmental quality [14,28] by ex-
ploring NPs based on various metals and metal oxides for application in agriculture. The
nanoscale particles are smaller in size and may be absorbed with different dynamics from
those in bulk particles or ionic salts, which has significant benefits [29–41], as shown in
Table 1. The usage of nano-enabled fertilizers may improve nutrient delivery efficiency
in plants [37], as nano-fertilizers have demonstrated a boost in productivity by ensuring
targeted delivery/gradual release of nutrients and reducing fertilizer application with
an increase in NUE [42]. The reduced size of nano-fertilizers through physical/chemical
means enhances their surface–mass ratio in order to allow an increase in absorption of
nutrients by roots, as shown in Figure 1.

3. Nano-Fertilizers Mitigate Abiotic Stresses

ENMs have dramatically extended an increase in the functionality of biological systems
due to their nanoscale size and vast surface area, which support plant growth and develop-
ment [12,43–45] under biotic and abiotic stresses [13,46], viz., drought, salinity, alkalinity,
temperature, minerals and metal toxicity [47]. Photosynthesis is a critical metabolic activity
in plants and is found to be the most vulnerable to stress, viz., nutritional deprivation,
salinity, drought, and heat, as photosystem II (PS II), rubisco, and ATP synthase become the
primary targets [12]. Plant defense responses to abiotic stress have been established with
SiO2 NPs to improve transpiration/ water-use efficiency (WUE), photosynthetic pigments,
and carbonic anhydrase activities in pumpkin plants [13,48]. TiO2 has been discovered to
alter photoreduction activity and block linolenic acid in the electron transport chain (ETC)
located in chloroplasts for oxygen evolution [49]. Cell organelles produce reactive oxygen
species (ROS) in stressful situations as the primary symptom of abiotic stress. Plants have
the enzymatic machinery to deal with the oxidative stress they are subjected to by the
environment. On the other hand, plants suffer the effects of such a situation when the
defense system fails. By activating specific genes, collecting osmolytes, and supplying
free nutrients and amino acids, NMs serve to alleviate stress, as shown in Figures 1–3 and
Table 1.

3.1. Uptake and Accumulation Mechanisms of Nano-Fertilizers from Soil to Plants

The dispersion, aggregation, stability, immobilization, bioavailability, and transport of
NPs are influenced by the physicochemical properties of the soil, i.e., texture, structure, clay
minerals, pH, cation exchange capacity, soil organic matter, and microbial population [50].
Due to the surface charge effect, dissolved organic matter impacts the aggregation, mobility,
stability, and binding nature of NPs [51]. Nano-fertilizers may be applied to soil or foliage
directly. The foliar entry comes first, followed by the root entry. In foliar application,
provided by spraying the green canopies/leaves, uptake occurs mainly via the cuticle,
stomata, and hydathodes, whereas root application acquires access via root tips, lateral
roots, root hairs, and rhizodermis. NF foliar application is preferred during poor soil and
weather conditions [2] (Figures 1 and 2; Table 1). The flow of water and solutes through the
soil is described by the Richards equation, and the convection–dispersion equation with
different empirical models using the Michaelis–Menten equation [52,53].

Absorption increases in a nonlinear pattern as the nutrient concentration rises, ap-
proaching the highest uptake. The kinetic parameters of the Michaelis–Menten equation
change depending on plant type, duration, soil heat, and related factors. The first nutrient
transport model for plant tissues was the steady-state source–sink model with flow driven
by an osmotically created pressure gradient [54,55] influenced by diffusive transport fac-
tors [56]; still, efforts are needed to acquire a perfect uptake model/mechanism for NPs
in plants.
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3.2. The Role of Nano-Fertilizers on Uptake of Water with Minerals

It is essential to assess the accumulation and translocation of NFs from the soil to plants.
This information may help to explore the most appropriate ways and means for plants, as
NFs/NPs prefer to enter via xylem uploading and may also be administered exogenously
via phloem loading [57]. The uptake and distribution mechanism of nutrients through NFs
in plants may be affected by the composition of NFs/NPs, their particle size, the dynamics
of physiological processes, and pore diameter (5–20 nm) of the cell wall [57–59], while
uptake, absorption, and trafficking of NPs inside plants occur with tremendous freedom
(Table 1). Surface receptors, transporters, and membrane proteins were found to regulate
their energy levels and surface charge [60,61]; in addition, regulated trafficking occurs
through the cell wall and plasma membrane, as shown in Figures 2 and 3 [62,63]. Plant cell
walls are negatively charged and act as a surface for ion exchange, perhaps promoting the
penetration of cationic rather than anionic NPs [64]. Thus, negatively charged NPs have
higher transport efficiency, with improved rate of internalization and translocation [65].
In this scenario, positively charged CeO NPs strongly adsorbed onto the root surfaces
(negatively charged), whereas negatively charged CeO2 NPs demonstrated limited root
accumulation but increased shoot internalization, mostly by overcoming electrostatic
resistance [66].

3.3. Impact of Nano-Fertilizer on Photosynthetic Leaf Gas Exchange Capacity

Upon use of nano-fertilizers, a considerable increase was achieved in the physiological
and biochemical indices of crop plants. A biocompatible magnetic nano-fluid (MNF)
enhanced the favorable effect on total chlorophyll content in sunflower leaves [67]. The
foliar spray of nTiO2 enhanced photosynthetic pigments in Zea mays found to be associated
with improved crop yield [68]. Jan Mohammadi et al. [69] found that the foliar application
of nTiO2 barley boosted anthocyanin and photosynthetic pigments, rubisco activity, and
photosynthetic efficiency. The use of nTiO2 in spinach boosted plant performance and
enhanced nitrogen metabolism, protein levels, and green pigments up to 17-fold and the
photosynthetic rate by approx. 29% [70,71]. The application of nano-Zn fertilizer decreased
the peroxidase (POD), catalase (CAT), and oxidase enzyme activities in cotton and soybean
crops but increased polyphenol content [72,73]. An increase in photosynthetic pigments,
total soluble leaf protein, and dry mass of the plants was observed after foliar use of Zn
NF in Pennisetum glaucum [74]. In savory plants, nano-Zn treatment-induced chlorophyll,
essential oil, and P content [75] were observed, as an increase in the antioxidant capacity
of rice [73]. Antioxidants are secondary metabolites produced by plants under adverse
situations, i.e., drought, salt, and nutritional deficiency. The NFs supply enough nutrients
to improve antioxidant activity in plant cells [76] due to an enhancement in photosynthetic
responses generated by nTiO2 foliar use [77], with enhanced capacity of photo assimilation
by leaves and grain yield [69]. The application of nTiO2 increased plant fresh and dry mass
by enhancing photosynthetic capacity and nitrogen metabolism [74] through enhancing
pigment formation and conversion of light energy into biochemical energy via improved
photophosphorylation, which also upregulated biological carbon sequestration through the
Calvin cycle in more than 95% of plants. The photocatalytic activity of nTiO2 in nanoform
enhanced Zea mays biomass and productivity [68], as shown in Table 1. Si NPs increased
photosynthetic efficiency by enhancements in the photosynthetic efficiency of PS II and in
the performance index and photosynthetic pigments [78].

3.4. The Interactive Role of Nano-Fertilizers and Plant Growth—Biomass and Productivity

Morphological characteristics of nanocarriers may influence nutrient transport through
the surface of the membranes, which is crucial in order to demonstrate the application
and usefulness of nano-fertilizers, as shown in Table 1. It was found that nCHT has a
good effect on morphological and physiological features in both germinating seed and
foliar treatment to boost the growth of seedlings, biomass, germination capacity, and seed
vigor index in chickpea, maize, and tomato seedlings [28,79,80]. Plant physiology and
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performance was found to be improved by increasing the density of certain nanoparticle
surfaces [3]; application of nano-Zn resulted in significant modifications in rice biomass,
relative water content [81], sunflower biomass [82], wheat grain yield under stress [83],
and maize yield under drought [84] by increasing NUE [85] through alteration in physio-
logical characteristics [86], including cell division, cell wall extension, and aquaporin in
tobacco [87], shown in Table 1 and Figures 1–3. NMs were also associated with developing
seed vigor, as they may penetrate the seeds’ hard coating to allow water for the germination
process. Thus, seed priming appears to be a promising procedure for high-yield value
crops prior to sowing [88,89]. NPs, once delivered inside the cytosol, may interact with
cellular machinery such as chloroplasts. Mesoporous silica nanoparticles (MSNs) enhance
photosynthesis by acquiring adequate light-harvesting chlorophyll–protein complexes [13]
and also do not cause stress in plants, indicating that they may be safe in such a type of
smart delivery [90]. Silica is important for plant nutrition, as its deficiency makes plants
weaker and more vulnerable to environmental stresses [12,91].

Depending upon their additive concentration and size, NPs might have a favorable
or negative effect on plants by acquiring larger particles of TiO2 NPs [92]. These NPs
may influence miRNA levels, triggering plant growth-promoting pathways [93]. At lower
concentrations, Fe NPs had a favorable effect in Capsicum annum, promoting performance
by increasing the number of chloroplasts and grana stacking to acquire stable and func-
tional PS IIand ensure photo-bioenergetics [94]. Seed germination in Vigna mungo and
Hordeum sativum distichum is affected by other metal oxides associated with ZnO and Cu
NPs [95,96], and polyvinylpyrrolidone (PVP) protects Pisum sativum [97]. Chitosan, another
important and biocompatible NP, influences germination percentage and morphology in
wheat plants by increasing levels of IAA even at low concentrations [98]. The nano-nitrogen,
phosphorus and potassium (nNPK) formulation may easily permeate the leaves through
stomata, improving wheat gas exchange and leaf growth [99]. Jaberzadeh et al. [100] discov-
ered that the foliar treatment of nFe (2%) boosted grain production. Similarly, manganese
(Mn) NPs were used to boost output and yield components in Vigna radiata [101], followed
by improved crop yield in peanut upon application of nFe, nMn, and nZn [102–104]. The
foliar use of nano-chelated molybdenum (Mo) boosted morphological and physiological
traits along with productivity in Arachis hypogaea [105,106], as shown in Table 1.

3.5. Influence of Nano-Fertilizer on the Regulation of Plant Hormones

Plant hormones are important in times of external stress and help plants to adapt
under changing environmental conditions [107,108]. Thus, they play a crucial role in
plant responses to unfavorable environmental conditions, viz., water deficit, shade, wa-
terlogging, and cold temperature, mostly by slowing plant performance and refocusing
its attention on surviving the stress response [109]. Phytohormones may also be deliv-
ered in A. thaliana with drought resistance ability [12,110]. The loss in auxins, cytokinins,
and salicylic acid is caused by NPs, implying a hormonal imbalance in plants that affects
general metabolism [111,112]. Zinc may stimulate important enzymes associated with
biochemical processes, such as glucose and protein growth regulator metabolism, pollen
production, and membrane integrity [113,114], and also terminal oxidase in mitochondria
in order to face environmental adversities for survival, as nZn fertilizer may enhance
plantgrowth-promoting hormones [46], as shown in Table 1.

3.6. Defense Mechanisms

When compared to Zn alone, ZnNPs enhanced Zn concentration and protein and
carbohydrate metabolism but decreased the P content in wheat grains [115]. According
to Burman et al. [116], the favorable response of nano-ZnO in chickpea may be related to
low ROS (reactive oxygen species) levels for lowering lipid peroxidation and the activities
of prominent antioxidative enzymes. In addition, Zn supplementation improves auxin
production, promoting mineral absorption, cell division, and plant growth [114,117]. It also
allows plants to retain the integrity of the plasma membrane [118] and the operation of
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the mitochondrial electron transport chain for liberating energy through oxidative phos-
phorylation linked with ATP synthase. Inadequate Zn may decrease IAA concentration in
tomato plants [119]. Rezaei and Abbasi [72] found that applying nano-chelate Zn to cotton
plants improves physiological processes by increasing chlorophyll content and antioxidant
activities of CAT, POD, and polyphenol oxidase. The engineered TiO2 NPs could achieve
improved photosynthesis as well as seed germination, plant development, and plant pest
control in Lettuce [120–124], Lemna minor [125], Solanum lycopersicum [30], Triticum aes-
tivum [126], Citrullus lanatus [127], Phaseolus vulgaris [128], and Panicum miliaceum [129,130],
with increased nitrogen metabolism and ribulose-1,5-bisphosphate carboxylase/ oxygenase
(rubisco)—encoded by the rbcL and rbcS genes located on cpGenome and nGenome and
associated for contributing the LSU and SSU subunits of the proteins, biologically operating
as enzyme biomolecules to ensure CO2 assimilation/Calvin cycle—perhaps the major cause
of enhanced photosynthesis and plant productivity [12,49,70,71,124,131].

Plants create ROS mostly as a result of metabolic processes [132]. During metabolic
processes, i.e., respiration and photosynthesis, plants regularly produce ROS in chloroplasts,
mitochondria, peroxisomes, and other cell locations [132]. ROS are signaling molecules
associated with plant development and defense at low levels and may also cause damage
to cell membranes, DNA, protein, and other cell functions to impair plant growth [132,133]
(Figures 1 and 3; Table 1). Increasing the functional and structural protectants, such
as suitable solutes (osmolytes) and antioxidative enzymes, may extend stress resistance
capacity [134]. Antioxidative enzymes, i.e., SOD, CAT, APX, GR, GPX, and POD, and
nonenzymatic low-molecular-weight metabolites primarily scavenge ROS in plants. In-
creased antioxidants may allow the formation of ascorbic acid and polyphenols, which may
neutralize ROS to reduce oxidative stress. During stress, metabolic processes associated
with ROS scavenging, i.e., shikimate-phenylpropanoid biosynthesis and ascorbate and al-
donate metabolism, were found to be stimulated [135] to induce plants’ ability to scavenge
ROS; by applying NMs with antioxidative enzymes, this may extend tolerance towards
environmental stresses [133] with better plant performance and productivity (Figure 3).

3.7. Stimulation of Enzymatic and Non-Enzymatic Activities

NPs have some harmful effects on plants along with their beneficial aspects and may
be used to bring health advantages to plants (Table 1). Because of their potential interac-
tion at the nano–bio interface, these NPs have the potential to improve plant tolerance
to various abiotic stresses [136] (Figure 3), as abiotic stress may cause generation of ROS,
which lowers photosynthetic capacity and may lead to oxidation of biomolecules and per-
oxidation of biological membranes [137]. CeO NP mimics SOD activity and creates H2O2,
but it also mimics CAT activity and demonstrates the scavenging action at a minimum
ratio of Ce3+/Ce4+ [9,138–140]. Nano-TiO2 may upgrade plant hydration by boosting the
nitrate reductase (NR) activity, leading to increased osmolyte accumulation. Increased NR
enzyme activity leads to the generation of nitric oxide (NO), which triggers the synthesis of
proline and glycine betaine [141]. In plants, TiO2 NPs tend to demonstrate enzymatic and
non-enzymatic stress protection. TiO2 NPs may also regulate enzymes such as glutamate
hydrogenase, glutamine synthase, and others, allowing the accumulation of additional
nutrients and the generation of essential oils [142]. ROS generation seems to be the toxic
mechanism of NPs, and various forms of NPs may produce various types of ROS by de-
creasing oxygen molecules. Reactive oxygen species are the byproducts of oxidative cellular
metabolism, the bulk of which is carried outby mitochondria and which may give four
types, the hydroxyl radical (OH–), the superoxide anion radical (O2−), hydrogen peroxide
(H2O2), and singlet oxygen (1O2) [143,144]. The chemical composition of ENMs determines
the quantity of ROS they produce [145]. ROS are produced due to NP accumulation and
are responsible for cellular oxidative stress and the genesis of nanotoxicity, including DNA
injury, manipulation of cell signaling, cell mortality, apoptosis, and cytotoxicity [146,147].

So far, studies have revealed that ROS regulate the physiology of cells and mechanisms
by altering numerous signal transduction pathways in different cell types and systems [148].
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Under normal circumstances, the generation of ROS in microbial cells was found to be bal-
anced. This unbalanced environment causes oxidative stress, which destroys the different
components of microbial cells. The redox balance of the cell favors oxidation with more
ROS. It has been established that oxidative stress has a role in changing the permeability
of cell membranes and generating microbial cell membrane injury [143,149]. ROS have
also been proven to have a crucial interactive function between DNA and microbial cells,
boosted oxidative protein gene expression being an important factor in microbial cell death.
It may degrade proteins and impair the periplasmic enzymes necessary for microbial cells
to balance their morphological and physiological functions [150], as shown in Figures 1–3.
One of the most effective ways to reduce the negative consequences of these pressures may
be the use of NMs [151], because they may mimic enzymes such as POD, SOD, and CAT,
which constantly scavenge ROS [81]. Si NPs stimulate the antioxidative system in stressed
plants [12,152]. NPs may enhance enzymatic activities correlated to stress resistance, be-
cause they have more specific reactive surface areas. The loss in MDA accumulation in
Si NP-applied plants was found to be significantly correlated to their membrane stability
index [78] (Figure 3; Table 1).

3.8. Role of Nano-Fertilizers on the Expression of Stress-Responsive Genes

For DNA tagging and cleavage, interactions of NMs with nucleic acids have been
employed. In contrast to the favorable applications of DNA–nanomaterial conjugation,
fullerenes have been discovered to bind DNA and produce strand deformation, which may
negatively influence molecule functionality and stability. Some NPs may indirectly damage
DNA by generating ROS, resulting in cross-linking and DNA strand breakage [153]. The
cells taking up nano-ions expressed continuous DNA alterations, identified during gene
polymerization in vivo by the polymerase chain reaction (PCR) [154]. The oxygen radicals
in TiO2 NPs, employed in sunscreen, may nick supercoiled DNA. Photosensitive fullerenes
may cleave ds-DNA when exposed to light, with potential mutagenic functions [155].
Nanoparticles and their ions may interfere with DNA replication and expression of genes,
as Ag ions are found to prevent DNA replication [153]. AgNPs bind to DNA in the
cytoplasm of E. coli, impairing DNA replication [154]. In Pseudomonas stutzeri, Azotobacter
vinelandii, and Nitrosomonas europaea, sublethal doses of Ag NPs caused no effect on N2-
fixing or N2-denitrifying genes; nevertheless, other nitrification-related genes, such as
amoA1 and amoC2, increased in N. europaea [156].

Microarray research of E. coli and Ag NPs reveals that NPs may greatly impact the
bacterial transcriptome. Other molecular abnormalities are suggested by the stimulation
of stress-related genes as well as genes for S, Cu, and Fe balance. The activation of nitri-
fication genes without stimulation of denitrification genes (transformation of NO3 to N2)
could affect the availability of N2 and the buildup of NO3 for later fixation. Ag NPs also
alter other metal-regulated genes, suggesting that they have an impact on cellular metal
homeostasis [157]. CuO NPs also reduced the output of luminous pyoverdine siderophores
in P. chlororaphis by inhibiting the gene expression associated with their periplasmic matu-
ration and secretion [158]. Ag NPs may alter other proteins related to metal detoxification,
oxidative stress resistance, elongation and processes of transcription, cytoskeleton remodel-
ing, protein loss, and cell division [159].

4. Long-Term Application of Nano-Fertilizers and Its Responses in Agriculture

Agriculture may experience environmental adversities in times to come, impairing
our food security for a rapidly growing global population. Modifying current fertigation
procedures [160], we may explore one of the possibilities for increasing plant performance,
biomass, plant productivity, and eventually grain yield as well. The excessive use of chemi-
cal fertilizers may be harmful to the health of mankind, animals, the health of plants/crops,
and the environment. The inclusion of nano-fertilizers could be a promising, fruitful solu-
tion to these issues. The use of NFs was found to be one of the most effective methods for
increasing resource efficiency, plant production, and lowering pollution levels [161]. Thus,
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NFs may replace the application of regular fertilizers by providing a suitable approach to
improving the agricultural products [162], as shown in Table 1.

Table 1. Impact of nanoparticles/nano-fertilizers on crops under unfavorable environmental variables.

NPs Plant Application
Type

Concentration
Range Impacts Source

nCeO2
Barley

(Hordeum vulgare L.) Soil 0–500 mg kg−1 soil

Improved plant performance,
enhanced Ce accumulation in grains,
and P, K, Ca, Mg, S, Cu, Fe, Zn, Mn,

Al, amino acids, fatty acids,
methionine, aspartic acid, threonine,
tyrosine, arginine, and linolenic acid.

[163]

Wheat
(Triticum aestivum L.) Soil 0–500 mg kg−1 soil

Enhanced overall plant fitness and
productivity as compared to normal
plants—increased Ce uptake in roots

but no change in leaves, hull,
and seeds.

[164]

Wheat
(Triticum aestivum L.) Soil 0–400 mg kg−1 soil

Reduced photosynthetic pigments
and seed protein, antioxidant enzyme
activities upregulated. No significant

effects on plant biomass
and productivity.

[165]

Cucumber
(Cucumis sativus L.) Soil 400 mg kg−1 soil

No change in starch level but
changed carbohydrate pattern.

Enhanced globulin and reduced
glutelin content.

[166]

Cilantro
(Coriandrum sativum L.) Soil 0–500 mg kg−1 soil

Higher content was found in Ce, CAT
in the stem, and APx in roots. [167]

nCuO Tomato
(Solanum lycopersicum L.) Foliar

50–500 ppm
(particle size

50 nm)

Enhanced vitamin C, lycopene, ABTS,
CAT, and SOD and reduced the APX

and GPX activities. Increased Cu
accumulation in tomato fruits.

[168]

Tomato
(Solanum lycopersicum L.) Soil 0.02–10 ppm

Improved plant growth,
development, productivity, and fruit
quality. Enhanced the lycopene and

antioxidant capacity.

[169]

Cucumber
(Cucumis sativus L.) Hydroponic 10–20 ppm

Increased ROS, phenolic components,
amino acids, antioxidant enzymatic

systems, and decreased citric
acid level.

[170]

Cucumber
(Cucumis sativus L.) Soil 40 nm

(particle size)

Fruit metabolites were changed as
compared to control plants. Sugars
and organic, amino, and fatty acids

were enhanced.

[171]

Tomato
(Solanum lycopersicum Mill.) Soil 10–100 mM

Enhanced plant biomass and growth
characteristics. Upregulated

photosynthetic pigments, leaf gas
exchange responses, and

enzymatic activities.

[172]

nCuO,
nAl2O3,
nTiO2

Onion
(Allium cepa L.) Petriplate 0–2000 µg mL−1

Significantly affected the mitotic
index. ROS activities enhanced in
onion roots. Enzymatic activities

increased, i.e., CAT and SOD in all
applied NPs.

[173]

nCu/
kinetin

Kidney bean
(Phaseolus vulgaris L.) Soil 50, 100 mg kg−1

soil

The chlorophyll content and nutrient
elements, Ca, Mn, and P, were

reduced and root Cu
accumulation enhanced.

[174]
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Table 1. Cont.

NPs Plant Application
Type

Concentration
Range Impacts Source

nCu–
chitosan

Tomato
(Solanum lycopersicum L.) Soil 0.3–0.015 M

Increased plant performance,
productivity, stomatal conductance,

and leaf CAT and fruit lycopene level.
[175]

nCu, nFe,
nCo

(Metal
NPs)

Maize
(Zea mays L.)

Soil
irrigation 3–5 ppm

Positively enhanced the seed
germination frequency, time, and
early growth, enzymatic activities,
and metabolism of SOD in plant

leaves to stress resistance capacity.

[176]

nSiO2
Maize

(Zea mays L.) Hydroponic 20–40 nm
Enhanced germination (%) rate,

biomass, Si uptake, and
nutrient uptake

[177]

Soybean
(Glycine max L.) Soil 30–50 nm

(particle size)

Reduced the toxic effects on plant
performance and reduced Hg uptake
in the epidermis and pericycle of the
plant roots and leaves. Increase leaf

gas exchange and
enzymatic responses.

[178]

Peregrina
(Jatropha integerrima) Foliar 1–2 mM

Increased growth characteristics,
biochemical profile, meanwhile
reduced uptake of Na, Cl, total

phenolics, and flavonoid contents in
the plant leaves.

[179]

Tomato
(Solanum lycopersicum L.) Petriplate 0.05–2.5 ppm

The germination rate, root
morphology, and biomass were

significantly enhanced after NPs.
Gene expression was upregulated,

i.e., in AREB, TAS14, NCED3, CRK1,
and RBOH1, APX2, MAPK2, ERF5,
MAPK3, and DDF2 decreased. The
genes are significantly associated to
nSi in plant’s response to enhance

stress resistance capacity.

[180]

Mahaleb
(Prunus mahaleb L.)

Soil
irrigation 10–100 ppm

Improved photosynthetic
performance less impacted by stress
when plants were pretreated with

NPs at maximum treatment
concentrations and upgraded
nutritional level, i.e.,N, P, and

K content.

[181]

Faba bean
(Vicia faba L.) Soil 1–3 mM

Improved seed germination rate and
duration, plant length, leaf RWC

biomass, seed quality, and
productivity and nutritional element

status, i.e., N, P, K, Ca, and Na.

[182]

Cucumber
(Cucumis sativus L.) Foliar 15–120 ppm

An enhancement in plant length, leaf
number, areaexpansion, biomass,

fruit weights, and quality as relative
to control plants.

[183]

Strawberry
(Fragaria × ananassa)

Foliar and
soil

irrigation
20–80 ppm

Significantly enhanced the nutritional
content, such as K, Ca, Mg, Fe, Mn,

and Si, in plant stem but no changes
in Zn and Cu content.

[184]

Sugarcane (Saccharum
officinarum L.) Foliar 300 ppm

Enhanced photosynthetic efficiency,
Fv/Fm variables, chlorophyll content,

and PS II apparatus during cold
stress conditions.

[185]
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Table 1. Cont.

NPs Plant Application
Type

Concentration
Range Impacts Source

Barley
(Hordeum vulgare L.) Soil 12–250 ppm

Significantly enhanced plant growth
performance, chlorophyll content,

leaf gas exchange, osmolytes,
antioxidative enzyme activities, cell

membrane efficiency, and profile
of metabolites.

[186]

Wheat
(Triticum aestivum L.) Hydroponic 10 µM Alleviates harmful effects of UV

radiation on plants. [187]

Marigold
(Tagetes erecta L.)

Soil and
foliar 100–600 ppm

Enhanced biometrics, physiological,
biochemical, and flower traits, i.e.,

fresh and dry mass of flower,
flowering duration, and days taken to

first bud initiation, etc.

[188]

Biogenic
amor-
phous
silica

(bASi)

- Soil 1–15%

Increases soil water holding capacity
(SWHC). Soil management can be

modified to increase bASI level,
increasing available water content in

soils, and to reduce water stress
capacity for plant growth

and development.

[189]

nFe2O3
Soybean

(Glycine max L.) Foliar 0.25–1 M
Enhanced leaf biomass with seed

weight in comparison to
normal plants.

[190]

Peanut
(Arachis hypogaea L.) Soil 2–1000 ppm

Improved plant growth
characteristics, root morphology, and

productivity. Enhanced
photosynthetic pigments, Chl index,
plant hormones, enzymatic activities,

and Fe uptake.

[191]

Tomato
(Solanum lycopersicum L.) Hydroponic 50–800 ppm

Improved germination of seeds,
morphological traits, dry weight, and

Fe uptake as compared to
normal plants

[192]

nFeS Mustard
(Brassica juncea L.) Foliar 2–10 ppm

Enhanced agronomic traits,
photosynthetic pigments, membrane
injury, nutrient assimilation, MDA,
proline, and enzymatic activities
versuswithout NP application.

Activation of genes, i.e., rubiscosmall
subunit (rubisco S), rubiscolarge
subunit (rubisco L), glutamine
synthetase (gs), and glutamate

synthase (gogat).

[45]

nTiO2
Cucumber

(Cucumis sativus L.) Soil 0–750 mg kg−1 soil
Enhanced leaf greenness, CAT, and
APx activity were reduced. Applied

TiO2 increased Kand Plevels.
[193]

Barley
(Hordeum vulgare L.) Soil 500–1000 mg kg−1

soil

Applied NPs found tostimulate plant
performance by enhancing

germination (%) as compared to
normal and treated plants.

[39]

Rice
(Oryza sativa L.) Soil 0–750 mg kg−1 soil

Enhanced plant performance, P level
in roots to grains. Upregulated the

level of metabolites, i.e., amino acids,
palmitic acids, and glycerol level in

rice seeds.

[194]

Tomato
(Solanum lycopersicum L.) Soil 0–1000 mg kg−1

soil
Improved plant development uptake

and accumulation of minerals. [195]
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Table 1. Cont.

NPs Plant Application
Type

Concentration
Range Impacts Source

Tomato
(Solanum lycopersicumL.) Hydroponic 0.5–4 M

nTiO2 improved plant growth and
development (approx. 50%) and

significantly enhanced the leaf gas
exchange, i.e., quantum yield,

performance index, photosynthetic
pigments, and expression

ofPSIgene compared to normal
plant growth conditions. Enhanced
expressions of glutathione synthase

and glutathioneS-transferase in
roots and leaves. Antioxidant

activities increased in a
dose-dependent method.

Nutritional element significantly
affected (P, S, Mg, and Fe content).

[196]

Spinach
(Spinacia oleracea L.) - 0.25%

Enhanced electron transport rate
(ETR) and the oxygen-evolving rate
(OER) of PS II, enzymatic responses,

reduced ROS level.

[197]

Tomato
(Solanum lycopersicum L.) Foliar 0.05–0.2 M

Increased photosynthetic
performance by regulating PS II
energy dissipation and slightly
reduced the Fv/Fm and electron
transport rate in plant leaves.

[198]

Wheat
(Triticum vulgare L.) Hydroponic 5–40 ppm

No significant effects on plant
performance. Leaf photosynthetic

pigments were reduced with
increasing NP levels. Increased

nutrient uptake and accumulation
except for K level.

[199]

nTiO2-
Activated

carbon
composite

Tomato (Solanum
lycopersicum L.) and

mungbean
(Vigna radiates L.)

Foliar 0–500 ppm

Appropriate NP concentrations can
enhance the rate of seed

germination and minimize the
germination period in tomato

and mungbean.

[200]

nFe3O4
Cucumber

(Cucumis sativus L.) Hydroponic 50–2000 ppm

Improved plant growth,
development, yield, and enzymatic

responses, i.e., SOD and POD.
Applied NPs enhance/balance the

proper nutrient management to
overcome food security and safety.

[201]

Barley
(Hordeum vulgare L.) Hydroponic 125–1000 ppm

Increase plant growth, biomass
traits, photosynthetic pigments,

total soluble protein, and
chloroplasts frequency. No toxic

effects were found during the
excess dose of NPs. Excess NP

application reduced the CAT and
H2O2 activities, and alteration was
found in the photosynthetic genes

of plant leaves.

[202]
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Table 1. Cont.

NPs Plant Application
Type

Concentration
Range Impacts Source

nFe Chili
(Capsicum annuum L.) Foliar 0.002–2 mM L−1

Low dose of nFe was noted to play
positive role in plant growth and

development. Enhanced chloroplast
functional capacity and grana

stacking. High dose of FeNPs found
to have harmful effects on plants and
can potentially stop the distribution

of Fe nutrient.

[94]

nAg Tomato
(Solanum lycopersicum L.) Seed 0.05–2.5 ppm

Enhanced the rate of germination (%),
root morphology, and plant output.

The expression of genes was found to
be upregulated (AREB, MAPK2,
P5CS, and CRK1), and few genes

were noted as downregulated (TAS14,
DDF2, and ZFHD1).

[203]

Tomato
(Solanum lycopersicum Mill.)

Soil
irrigation 10–40 ppm

Applied NPs enhanced the fruit
characteristics and
plant performance.

[204]

Soybean
(Glycine max (L.) Mell.) Soil 31.2–62.5 mg kg−1

soil
Negatively affected plant

development and fixation of N. [205]

nZnO Maize
(Zea mays L.) Foliar 150–300 ppm

Enhanced maximum growth
characteristics, physiological and
biochemical activities during high

pH treatment.

[206]

Mungbean
(Vigna radiate L.) Petriplate 10–100 ppm

Enhanced germination rate, growth
development, and

nutritional elements.
[207]

Tomato
(Solanum lycopersicum Mill.)

Tissue
culture 15–30 ppm

ZnO NPs alleviated the adverse
effects of plants. Lower dose was
more appropriate than the higher.
Various cultivars found different

tolerance capacity for stress.

[208]

Maize
(Zea mays L.) Foliar 50–2000 ppm

Enhanced seed germination rate,
seedling vigor index, biomass,

productivity, and accumulation of Zn
in grains.

[32]

Peanut
(Arachis hypogaea L.)

Soil
irrigation 0–1000 ppm

Increased vegetation growth rate,
morphological traits, photosynthetic

content, crop productivity, and
overall plant performance.

[209]

Sweet basil
(Ocimum basilicumL.) Foliar 1000 ppm

Improved vegetative growth,
development, essential oil
productivity, biomass, and

accumulation of Zn content.

[210]

Peanut
(Arachis hypogaea L.) Soil 100–500 ppm

Morphological, yield, and
biochemical traits, such as plant

length, biomass, and pod
numbers/weight. Photosynthetic

pigments, total phenols, reducing and
total soluble sugar were positively

affected by the NP treatment.

[211]

Sorghum
(Sorghum bicolor L.)

Soil and
foliar 6 mg kg−1 soil

Enhanced plant performance and
yield component, uptake of N and K
elements, improved grain nutrient
profile and NUE as compared to

normal plants.

[212]
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Table 1. Cont.

NPs Plant Application
Type

Concentration
Range Impacts Source

nZn–
chitosan

Wheat
(Triticum durum)

Soil and
foliar

20 mg g−1 soil
(w/w)

Increased Zn accumulation in the
plants cultivated under Zn-deficient

arable land.
[213]

nChitosan Barley
(Hordeum vulgareL.)

Soil and
foliar 10–100 ppm

Significantly enhanced the leaf
areaexpansion, leaf greenness (Chl

index), number of seeds/spikes,
productivity, and harvest index

relative to normal plants. nChitosan
enhanced the LRWC, grain weight,
grain protein, proline, and CAT and

SOD activity.

[214]

nChitosan-
NPK

Wheat
(Triticum aestivum L.) Foliar

500, 60,
and 400 ppm (N, P,

and K), 10, 25,
and 100%

Enhanced growth, yield, and
nutritional status as compared to

normal plants.
[215]

nChitosan Barley
(Hordeum vulgare L.)

Soil and
foliar 30–90 ppm

Positively enhanced the growth
parameters, leaf chlorophyll index,

RWC, yield, and
biochemical activities.

[214]

nZ (Zein
NPs)

Sugarcane
(Saccharum spp.) Hydroponic 0.88–1.75 mg mL−1

Uptake of significant amount of
ZNPs in cane roots and the presence
of Z particles in the epidermis and

endodermis in the roots system of the
sugarcane plant. Increased nutrient

uptake in the plant system.

[216]

nAu Thale cress
(Arabidopsis thaliana L.) Foliar 10–80 µg mL−1

Increased seed germination (%),
growth, free radical scavenging
responses. Potential approach to

increase the seed productivity
of plants.

[217]

Brown mustard
(Brassica juncea L.) Foliar 0–100 ppm

Significantly enhanced the growth,
biomass parameters, and total sugar

level. Leafarea expansion was
increased, but the mean area

not affected.

[218]

Mn3O4
Cucumber

(Cucumis sativus L.) Foliar 1–5 mg plant−1

Significantly enhanced plant
development, chlorophyll content,

photosynthetic responses, and plant
biomass. Increased endogenous

antioxidative defense mechanisms.

[219]

nUrea
modified

with
hydroxyapatite

Almond
(Prunus dulcis L.)

Soil
irrigation 25–100%

Applied NPs enhanced seed
germination rate, plant height,

perimeter, elongation of secondary
and primary roots/plant, and the

number of secondary roots,
increasing seed moisture status.

[220]

Ironoxide nanoparticles may have a long history of use in a variety of fields, in-
cluding catalysis and medicine [221]. Iron NPs applied to plants by irrigation of soil
or spraying are absorbed and accumulated in Zea mays [222], Cucurbita pepo [223], and
Citrullus lanatus [127,224]. Fundamental demonstrations of the effects of FeO NPs on a
variety of plants, such as Lactuca sativa [121], Triticum aestivum [101], Trifolium repens [225],
Glycine max [101,226], Oryza sativa [227], and Arachis hypogaea [191], reflected an idea that
Fe NPs may improve a variety of morphological, physiological, biochemical, and yield
attributes, as shown in Table 1. Plants may absorb FeO NPs as intact particles, and they
eventually dissolve with positive effect on development. Thus, Fe NPs could be a good
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addition as a standard chelator for iron fertilizer. However, several aspects, such assoil
properties, soil biogeochemistry, plant cultivars, plant growth stage/duration, NP exposure
level, and physicochemical features, may limit these results, necessitating further validation
with a variety of crops and soils, including subsequent effects on the food chain [12,46].
Notably, silica NPs also stimulate antioxidant enzymes to support improved seedling
growth and tolerance under biotic and abiotic stresses [12,13,78,178,228]. They also inhibit
Na uptake and its distribution while enhancing K uptake and accumulation [229,230]. As a
result, the favorable effects of Si and Si NPs on plant growth and development may confer
an ability to mitigate adverse impacts of climate change in years to come, for example,
inconsistent rainfall, elevated or cold temperatures, and excess evaporation from the soil
surface [78]. Si NPs may interact with plants directly or indirectly, causing morphological
and physiological changes for upregulating stress resistance, which may sustain plant
growth, development, performance, suitable canopy architecture, and rhizosphere and
biosphere physiological acts assisting stress acclimatization [13,231], as shown in Table 1.

The potential of Si to influence the availability of P and boost the NUE, expressed as
biomass produced per unit of a specific essential nutrient accumulated concerning N, has
been shown [232,233]. As a result, Si supplementation in agricultural soils may eliminate
the requirement of P and N fertilizer for crop plant production [234]. The wheat plants
rapidly absorbed silicon, which was supplied to the substrate in the form of ENMs made
up of amorphous pyrogenic hydrophilic SiO2 [233]. The maximum concentration of Si was
found in vegetative tissue, i.e., leaf blades > leaf sheaths > culm and the lowest in grain
followed by roots, increasing stomata density in the tissues. Wheat plants were shown to
transfer around 90% of absorbed Si to the shoots, while root content remained low [233,235].
The addition of Si greatly boosts Pmobility by mobilizing Fe(II)-P phases from mineral
surfaces. In phosphorus-deficient soils, it also stimulates soil respiration. It isa major factor
for mobilizing phosphorus in Arctic soils, suggesting that this may also be important for
sustainable management of phosphorus availability in soils [233,236].

Environmental protection, financial stability, and biological sustainability are more
notable consequences of nano-goods supporting plant crops (Table 1). According to Ti-
wari et al. [237], NMs may boost plant stress tolerance, whereas nano-fertilizers may
improve overall plant health. The specific biosensors may be associated with NFs to
manage the delivery and bioavailability of nutrients based on plant types, growth stage,
and agro-climatic zones. Above all, huge industrial set-up and vast transport using large
quantities of energy may also be compressed in the event of global acceptance of NFs, as
these are required in modest quantities compared to synthetic fertilizers for crop produc-
tion [160,238].

5. Conclusions and Future Perspective

Plenty of ENMs have extended genuine promise in agriculture and plant/crop pro-
ductivity. However, much more seems to be unestablished to reinforce scientific knowledge
in order to produce another green revolution in years to come for the welfare of global food
security under the era of climate change, associated with adverse environmental variables
and increasing population in developing countries. As agricultural produce is essential
to support and sustain life on planet Earth, recent advances of NFs may be explored to
achieve precision agriculture with ecological and economical viability. It must be noted
that the worldwide green revolution resulted in enhanced production of food grains at
the cost of disproportionate use of artificial/synthetic fertilizers and pesticides, which
severely impaired our ecosystem. Thus, both of these troubles associated with agricul-
ture may be substituted in an eco-friendly way by using NFs and NPs to safeguard our
ecosystem/agro-climatic zones. The fertilizers obtained from biological resources may
have numerous advantages over synthetic fertilizers in maximizing crop expansion with
nutrient utilization efficiency and mitigation of climate change. Interestingly, NFs have
shown considerable promise as an innovative approach and may confer in vivo enhanced
agri-potential by maintaining the physiological fitness of crop plants holistically to max-
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imize their metabolic processes, viz., WUE, NUE, LUE, and CUE, integrated with plant
performance and plant productivity/carbon economy, found to be essential for the explo-
ration of another green/grain revolution to feed the population globally with a healthy
ecosystem under climate change in the future.
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