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Porcine epidemic diarrhea virus (PEDV), a coronavirus pathogen of the pig intestinal
tract, can cause fatal watery diarrhea in piglets, thereby causing huge economic losses
to swine industries around the world. The pathogenesis of PEDV has intensively been
studied; however, the viral proteins of PEDV and the host factors in target cells, as
well as their interactions, which are the foundation of the molecular mechanisms of
viral infection, remain to be summarized and updated. PEDV has multiple important
structural and functional proteins, which play various roles in the process of virus
infection. Among them, the S and N proteins play vital roles in biological processes
related to PEDV survival via interacting with the host cell proteins. Meanwhile, a number
of host factors including receptors are required for the infection of PEDV via interacting
with the viral proteins, thereby affecting the reproduction of PEDV and contributing to
its life cycle. In this review, we provide an updated understanding of viral proteins and
host factors, as well as their interactions in terms of PEDV infection. Additionally, the
effects of cellular factors, events, and signaling pathways on PEDV infection are also
discussed. Thus, these comprehensive and profound insights should facilitate for the
further investigations, control, and prevention of PEDV infection.

Keywords: porcine epidemic diarrhea virus (PEDV), host factors, viral proteins, viral infection, interaction

INTRODUCTION

Porcine epidemic diarrhea (PED) is an acute and highly contagious intestinal infectious disease
caused by porcine epidemic diarrhea virus (PEDV) (Sergeev, 2009). PEDV can cause morbidity
in all age groups of pigs, with that in piglets being the highest. Clinically, it is characterized
by vomiting, diarrhea, and dehydration of piglets, with a mortality rate even reaching to 100%
(Hou et al., 2007). During the devastating 2013–2015 PEDV epidemics, the United States pig
industry suffered serious economic losses, with a loss of approximately 7 million pigs (Antas and
Woźniakowski, 2019). Due to strict biosecurity measures and feeding, the prevalence of PEDV in
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North America exhibited a declined trend, while the outbreaks of
PEDV in Asia presented highly complex variability mainly due to
the continuous occurrence and emergence of recombination or
new isolates in recent years (Sun et al., 2019).

As a member of the Nidovirales order and Coronaviridae
family, PEDV has a typically corolla-shaped, mostly spherical
morphology, with a diameter ranging from 95 to 190 nm
(including spikes) and an average of 130 nm. The sequences
located at the 3′ side of the PEDV genome encode four structural
proteins, namely, the spike protein (S, 150–220 kDa), membrane
protein (M, 20–30 kDa), envelop protein (E, 7 kDa), and
nucleocapsid protein (N, 58 kDa) (Kocherhans et al., 2001).

Similar to other coronaviruses (CoVs) (Weiss and Navas-
Martin, 2005), the infection or replication processes of PEDV
consist of several major steps, such as attachment and entry,
viral replication enzyme translation, genome transcription and
replication, structural protein translation, and virion assembly
and release. Besides viral protein, viruses can interact/hijack
various host factors to accomplish these processes. Therefore, a
deeper understanding of these viral proteins, host factors, and
their interactions will facilitate the elucidation of the pathogenic
mechanisms of PEDV and accelerate the developmental pace
of drugs or vaccines against PEDV. In this review, we firstly
characterized PEDV viral proteins and host factors documented
in the literatures, followed by the discussion of cellular events or
signaling pathways involved during the viral pathogenesis, as well
as the interactions among them; finally, we suggest the directions
for future efforts.

THE VIRAL PROTEINS INVOLVED IN
PORCINE EPIDEMIC DIARRHEA VIRUS
INFECTION

5′UTR and 3′UTR
Coronaviruses’ 5′UTRs vary in length, ranging from 209 to 528
nucleotides. The 5′UTR of coronaviruses has a short ORF starting
with AUG at a similar location that encodes 3–11 amino acids
(Morris and Geballe, 2000). The role of this ORF is unclear,
while many scholars believe that it may regulate viral replication
by enhancing the translation of downstream ORF (Senanayake
and Brian, 1999). The 5′UTR of PEDV contains 296 nucleotides,
which encodes 10 amino acids (Chen et al., 2012). The 3′UTR of
coronaviruses contains 288–506 nucleotides with a poly A tail at
its C terminal, and GGAAGAGC sequences at 73–80 nucleotides
upstream of the poly A tail (Goebel et al., 2007; Züst et al., 2008).
The 3′UTR length of PEDV is 334 bp; it is the first binding site
of replicase and participates in regulating the replication process
of PEDV (Chen et al., 2012). The genome of PEDV and its main
genes or proteins are indicated in Figure 1.

The S Protein of Porcine Epidemic
Diarrhea Virus
This spike (S) protein is a type I glycoprotein, and three S proteins
of PEDV forming a rod-shaped functional spike trimer located in
the outermost layer of virus particles are the foundation for its

multifunction, such as the binding of PEDV to other molecules
and the entry of virus into target cells (Liu et al., 2015; Fu et al.,
2017). Based on the homology analysis of its counterparts of other
coronaviruses, the S protein of PEDV can be divided into two
parts: S1 (1–789 aa) and S2 (790–1383 aa) (Li, 2012, 2015; Wrapp
and McLellan, 2019). Previous studies have confirmed that the
interaction of the S protein with the target cell surface receptor(s)
is mediated by the S1 N-terminal domain (NTD) (Liu et al., 2015;
Deng et al., 2016). Besides this, the involvement of the S protein in
trypsin-dependent PEDV propagation in cultured cells has been
suggested (Li et al., 2016). This effect mediated by proteolytic
activation of trypsin or other proteases when the S protein binds
to its receptor(s) (Wicht et al., 2014; Liu C. et al., 2016) is
necessary for the membrane fusion, formation of syncytium, and
cell entry of the virus, thereby enhancing the infectivity of PEDV
(Li et al., 2015; Kim et al., 2017). This is also supported by the
S protein mutations influencing its proteolytic cleave (Park J. E.
et al., 2011). In addition, co-infection of PEDV variants with
214 amino acid deletion in the S protein and PEDVs with an
intact S protein in the lungs of naturally infected pigs has been
found recently, thereby suggesting that PEDV targets epithelial
cells and submucosal glands of the airway tract, epithelial cells
of the bile duct, and monocytes/macrophages (Van Diep et al.,
2020). It becomes evident that the receptor binding capability
and the role in viral entry allow the S protein to determine
PEDV invasion and release, tissue tropism, host range, and cross-
species transmission, even to affect trypsin-dependent PEDV
proliferation (Wicht et al., 2014; Li et al., 2015; Liu C. et al., 2016).
These findings demonstrate the multiple roles of the S protein in
the PEDV infection, which should be the research emphasis on
the relationship of this viral protein’s structure and functions.

The M Protein of Porcine Epidemic
Diarrhea Virus
The M protein encoded by PEDV is an essential membrane
glycoprotein in the envelope. Growing evidence indicates that
the M protein has multiple functions. Firstly, it can be utilized
as an important antigen for developing diagnostic reagents.
Indirect enzyme-linked immunosorbent assay (ELISA) using
the recombinant PEDV M protein as antigen displays high
sensitivity and specificity in detecting the PEDV antibody (Fan
et al., 2015). Secondly, the M protein of PEDV, combined
with other viral proteins, participates in the process of viral
replication. For instance, the M protein, along with the N
protein and other membrane proteins, takes part in viral
particle assembly. Likewise, this protein, together with the E
protein, participates in viral envelope assembly. Importantly,
the PEDV S, E, and truncated ORF3 proteins all are confirmed
to be immunoprecipitated by the M protein, indicating an
interaction with the latter. In particular, CoV-related studies
have revealed that the M protein interacts with the E and S
proteins to participate in the CoV envelope assembly process
(Nguyen and Hogue, 1997). Similarly, the interaction between
the PEDV M and ORF3 proteins has suggested that these
two proteins are also involved in the assembly and budding
processes of PEDV (Vennema et al., 1991; de Haan et al., 1998;
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FIGURE 1 | Genomic structure of PEDV. PEDV is an enveloped virus with a single-stranded positive-sense RNA genome of 28 kb in length. 5′UTR and 3′UTR are
indicated as shortened gray boxes; ORF1a and ORF1b encode replicase 1a and 1b, respectively, which are the two polyprotein precursors of 16 non-structural
proteins. The genes encoding four structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N) are shown as orange, red, green, and dark blue
boxes, respectively. The gene encoding ORF3 is shown as a yellow box.

Wang et al., 2020). Completely dissecting the interplay of the M
with other proteins may benefit the development of effective
drugs for the control of this virus.

The N Protein of Porcine Epidemic
Diarrhea Virus
The N protein of PEDV is the only phosphorylated nucleocapsid
protein among the known structural proteins of CoVs. As a major
structural protein of PEDV, the mRNA and protein contents of
the N reach to the highest during the process of viral infection.
The multifunctional property of the N protein manifests in
several aspects: (1) its being bound by viral RNA provides a
structural basis for the helix nucleocapsid, while the resultant
product is recognized by the M protein through their interaction,
and then packaged into viral particles to form the core of CoVs
(Shi D. et al., 2017); (2) as an alkaline phosphoprotein, the N
protein is also associated with virus replication and transcription
(Tan et al., 2006); (3) it participates in the biological processes
related to PEDV survival (Shi D. et al., 2017; Kong et al.,
2019); and (4) its localization in the nucleus may be linked
to the regulation of the host cell cycle, thereby promoting
the replication of PEDV (Xu et al., 2013b). Similar to the M
protein, the N protein executes various functions, while its
action mechanisms in the latter three aspects have not been
fully elucidated.

The E Protein of Porcine Epidemic
Diarrhea Virus
The E protein is a small membrane glycoprotein, which is
distributed on the surface of the virus envelope. According to
the primary and secondary structure analysis of this protein,
it can be divided into three parts: the short amino terminal
hydrophilic region, the α helix structure with a length of about 25
aa containing the transmembrane region, and the long carboxyl
terminal region (Torres et al., 2007). So far, the functions of the
E protein have not been extensively studied. A previous study
indicated that the E protein could induce endoplasmic reticulum
stress and upregulate the expression of IL-8 and Bcl-2 through
activating the NF-κB pathway in host cells, suggesting that it

might be associated with the inflammatory response and the
persistence of PEDV infection (Xu et al., 2013a). Similarly, a
recent study showed that the E protein might facilitate to evade
host innate immunity through suppressing the RIG-I-mediated
signaling (Zheng et al., 2021). These findings suggest a role of
the E protein in triggering or affecting host immune response.
Additionally, multiple functions for the CoV E protein have been
suggested or confirmed (Ruch and Machamer, 2012); however,
these are not validated for the PEDV E protein. Therefore, an
in-depth investigation on the PEDV E protein is required.

The ORF3 of Porcine Epidemic Diarrhea
Virus
As a unique feature to other coronaviruses such as TGEV
and SeCoV, the sequence located between the PEDV S and
E genes is responsible for encoding the non-structural ORF3
protein. It contains four transmembrane regions and forms a
homologous tetramer structure (Park S. J. et al., 2011; Chen
et al., 2015). As an accessory protein, the ORF3 is generally
believed not to play a role in the reproduction process of
PEDV. However, a series of investigations on ORF3 reveal
that this may not be the case. Firstly, bioinformatic analysis
demonstrated that the complete ORF3 protein can form ion
channels. Moreover, silencing the ORF3 gene would lead to a
decrease of virus titer, thereby suggesting that it might play
a regulatory role in the process of PEDV infection (Wang
et al., 2012). Secondly, the ORF3 gene of PEDV was confirmed
to be able to promote the formation of the vesicle structure,
prolong the S phase of target cells, and enhance the proliferation
of the attenuated strain expressing a truncated ORF3, further
indicating its implication in the replication process of PEDV (Ye
et al., 2015). Additionally, the interaction of the PEDV ORF3
with the cellular VPS36 was found to inhibit virus replication
(Kaewborisuth et al., 2019). Furthermore, ORF3 was observed to
inhibit the production of IL-6 and IL-8 through affecting NF-κB
signaling, thereby promoting viruses to escape from host innate
immunity (Wu et al., 2020). Altogether, these studies highlight
the important roles of the ORF3 gene/protein in the PEDV
infection. In spite of these, further investigation on the role of
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the ORF3 accessory protein, especially in terms of host–virus
interaction, is demanded.

The Non-structural Proteins of Porcine
Epidemic Diarrhea Virus
The translated products of poly-proteins pp1a and pp1ab
from the ORF1a and ORF1b transcripts are cleaved into 16
mature replicase proteins nsp1-nsp16 (Snijder et al., 2003; Thiel
et al., 2003). A previous study indicated that the nsp1 protein
has the most pronounced effect on the host innate immune
response among all encoded proteins of PEDV (Zhang et al.,
2016). Moreover, nsp1 is regarded as an essential virulence
determinant and a target for vaccine development since it can
disrupt host gene expression and stimulate antiviral response,
thereby blunting the innate immune response of the host to the
coronavirus pathogens. This notion was supported by several
facts that as an effective IFN antagonist, nsp1 was found to
interfere with the IRF- and NF-κB-mediated induction of type I
and type III IFNs (Zhang et al., 2017, 2018), and as an inhibitor, it
was demonstrated to regulate the biological functions related to
host proliferation and immune escape, thus creating a favorable
environment for viruses (Shen et al., 2020). Further studies on
the structure and biochemical characteristics of the PEDV nsp1
revealed that the residues 67∼71, 78∼85, and 103∼110 of it
constituting functional regions are responsible for the inhibition
of host protein synthesis (Narayanan et al., 2015; Shen et al., 2018,
2019). Similarly, other nsp molecules of PEDV were confirmed
to play a role in regulating immune response, thus affecting
viral infection. For instance, nsp2 was found to target FBXW7
degradation through their interaction, thus bypassing the innate
immune response of the host and promoting the replication of
PEDV (Li et al., 2021). The nsp3-mediated de-ubiquitination of
RIG-I and STING resulted in downstream signal interruption
and type I IFN expression inhibition (Liu Y. et al., 2016).
nsp4 could induce the expression of pro-inflammatory cytokines
and chemokines such as IL-1α, IL-1β, TNF-α, CCL2, CCL5,
and CXCL8 via targeting the NF-κB pathway during the viral
infection (Yu et al., 2019). The nsp5 protein, also called 3CLpro,
was observed to split proproteins between nsp5 and nsp16, thus
turning them into mature proteins which participate in various
stages of virus replication (Tomar et al., 2015). Moreover, the
functional experiments on nsp5 also revealed that it plays an
antagonistic role of interferon through shearing Gln231 in the
NEMO (NF-κB essential modulator) protein (Wang et al., 2016).
Interestingly, the PLpro domain of nsp3 and the 3CLpro domain
of nsp5 were validated to have a viral replication-promoting
effect, which is related to its function of processing pp1a and
pp1ab polyprotein precursors into nsps (Richard and Tulasne,
2012). Recent evidence indicated that nsp6 induces autophagy
through the PI3K/Akt/mTOR signaling pathway to promote
PEDV replication (Lin et al., 2020). The vital role of nsp9
in viral replication has also been suggested by several studies
(Sutton et al., 2004). Current evidence revealed that nsp12 is
an RNA-dependent RNA polymerase and nsp13 is a helicase
(Xu et al., 2011; Ren et al., 2021); therefore, their effect on viral
replication can be expected. Although both nsp14 and nsp16

have been considered as the antagonists of innate immunity, the
latter was a more effective modulator of immune-related genes
(Shi et al., 2019). Moreover, nsp16 relied on the KDKE tetrad,
which can effectively reduce PEDV-induced IFN-β production
and promote virus proliferation (Shi et al., 2019). Intriguingly,
nsp10 was found to enhance the inhibitory effect of nsp16 on
IFN-β production (Shi et al., 2019). Additionally, nsp15 and
nsp16 were also verified to be effective interferon antagonists,
since inactivation of them and nsp1 produced a highly attenuated
virus which does not cause diarrhea in pigs and induces a
neutralizing antibody response in virus-infected animals (Deng
et al., 2020). Among all the 16 nsps of PEDV, nsp1, nsp3, nsp7,
nsp14, nsp15, and nsp16 could inhibit IFN-β and IRF3 promoter
activity (Zhang et al., 2016), while nsp1, nsp3, nsp5, nsp8, nsp14,
nsp15, and nsp16 were found to suppress the activity of type III
IFN, which is mediated by the IRF1 signaling pathway (Zhang
et al., 2018). Collectively, the available studies demonstrate the
importance of the PEDV non-structural proteins in terms of viral
infection; thus, it is reasonable to speculate that these proteins
may promote the effect of vaccines and the signaling pathways
affected by them can be targets for the development of druggable
agents, if related issues are further addressed.

HOST FACTORS INVOLVED IN THE
PORCINE EPIDEMIC DIARRHEA VIRUS
INFECTION

It is well known that viral infection is a multistep process
including adsorption, cell entry, dehulling, biosynthesis,
assembly, and release. Besides the viral proteins of PEDV, the
implication of numerous host factors including receptors in
these processes has been confirmed, which is described as the
following in accordance with the infection stages.

Attachment and Entry
Adsorption of viruses to host cells is the first and decisive
step for determining the virus tropism, namely, the ability of
different viruses to infect various cell types. Correspondingly,
virus-specific receptors on the host cell surface are strongly
related to the tissue tropism and host range and mediate the
entrance of viruses including PEDV into host cells. In this
regard, the S protein of PEDV plays a major role in this process
by interacting with the corresponding host factors, thereby
achieving the adsorption and entry into target cells (Li et al., 2016;
Li C. et al., 2017).

Porcine Aminopeptidase N
Porcine aminopeptidase N (pAPN) is widely distributed in the
small intestine and kidney of pigs (Li et al., 2007). The functions
of pAPN in the pathogenic mechanisms of PEDV infection have
extensively been studied in recent years. Although the conclusion
of the receptor role for pAPN in PEDV infection remains elusive,
this view is indeed supported by partial facts. pAPN was able to
bind to the S1 region of the PEDV S protein (Li et al., 2007),
while ST cells efficiently expressing exogenous pAPN facilitated
the PEDV infection and proliferation; furthermore, this action
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was closely associated with the distributed density of pAPN
(Nam and Lee, 2010). However, other studies indicated that the
presence of pAPN does not render Vero cells susceptible to PEDV
infection (Oh et al., 2003) and the capability of pAPN to enhance
the infectivity of PEDV is related to its aminopeptidase activity
rather than its receptor role (Shirato et al., 2016). Whether this
discrepancy is only due to various cell lines used in these studies,
because the results obtained in ST cells cannot be replicated
in HeLa cells, or whether the existence of other routes of
PEDV infection results in variable consequences, remains to be
further classified.

Sialic Acid
It is recognized that a large number of the main receptors for
many viruses belong to glycoprotein or glycolipid, with sialic
acid or sialic acid derivatives at the end (Sun et al., 2016). In
this regard, the ability of PEDV binding to sialic acid, such as
carbohydrates (Neu5Ac) and proteins especially glycoproteins or
glycolipid molecules located at the cell surface, has also been
confirmed in previous studies (Künkel and Herrler, 1993; Peng
et al., 2012). Moreover, using glycoproteins as receptors is an
important strategy for viral intestinal pathogenicity because the
properties of glycoproteins facilitate viral binding to mucin on
the surface of epithelial cells in animal viscera (Wang, 2002). The
effort of Wrapp et al. to parse the perfusion conformation of the
PEDV S protein using cryo-electron microscopy at a resolution
of 3.1 Å revealed the presence of the sialic acid-binding domain
at the N terminal of the S1 subunit (Wrapp and McLellan, 2019).
The recognition of sugars as co-receptors for PEDV seems to be
a strategy for adapting organisms to this class of diarrhea-causing
viruses (Isa et al., 2006), suggesting that the binding of PEDV to
sialic acid may favor to survive in adverse intestinal conditions
(Deng et al., 2016). These observations suggest that sialic acid is
an adsorption factor that promotes PEDV infection and provides
a basis for understanding the molecular mechanisms that drive
the earliest stages of PEDV infection.

Heparan Sulfate
Heparan sulfate (HS) is known for its role as an attachment factor
by many viruses to enter cells (Barth et al., 2003). Its similar
function in mediating the attachment/absorption of PEDV to its
host cells has been suggested (Huan et al., 2015), as confirmed
by a series of observations. First, HS is a complex polysaccharide
located on the cell surface and extracellular matrix (Sarrazin et al.,
2011). Second, glycosaminoglycans (GAGs), composed of several
covalently attached HS chains, can provide sites for the binding
of various viruses to eukaryotic cells (Barth et al., 2003). Third,
it has been demonstrated that PEDV utilizes HS to attach to
Vero cells, while pretreatment with heparan can inhibit PEDV
infection. Moreover, both the N- and O-linked sulfate groups
within the HS carbohydrate structure are functionally important
for the binding of PEDV to target cells (Huan et al., 2015). Last,
the binding ability of PEDV to Vero cells is reduced following
the enzymatic removal of cell-surface HS or the inhibition of HS
biosynthesis by treatment with chlorate (Huan et al., 2015). These
results robustly suggest that HS is at least an adsorbing factor for
the infection of PEDV in studied Vero cells.

Epidermal Growth Factor Receptor
Epidermal growth factor receptor (EGFR) is widely distributed
on the membrane surface of mammalian epithelial cells and
fibroblasts (Singh and Harris, 2004). Importantly, the EGFR-
mediated signaling pathway plays an important role in cell
proliferation, differentiation, and apoptosis, even viral infection.
In this regard, the activation of EGFR occurring in the early stage
of PEDV infection has been found in a recent study. Furthermore,
this EGFR activation by PEDV infection might be mediated
by the direct interaction between EGFR and the S protein,
which in turn enhanced PEDV infectivity. Mechanistically,
the effect could be associated with the suppression of type
I interferon antiviral activity following PEDV-induced EGFR-
STAT3 signaling pathway activation (Yang et al., 2018),
suggesting that PEDV can effectively utilize EGFR to inhibit
cellular antiviral defense. Despite these, more details about these
signaling-related events remain to be further elucidated.

DC-SIGN (CD209)
DC-SIGN (also called CD209), specifically expressed on the
surface of dendritic cells (DCs), is a C-type lectin-like cell-
surface receptor with multiple functions. Its expression is also
found in gastric and intestinal mucosa and other epithelial cells.
Initially, DC-SIGN was proved only to be a pattern recognition
receptor (PRR) and adhesion molecule for dendritic cells to
recognize pathogenic infections and participate in the innate
immunity of organisms. Accumulating evidence has indicated
that DC-SIGN also acts as the receptor of many viruses for
infecting hosts and the mediator of virus immune escape.
Importantly, DC-SIGN, together with other PRRs, can identify
and capture viruses, further swallowing and storing them to evade
lysosome degradation, then participate in antigen presentation,
thereby achieving the mediation of virus infection and in vivo
dissemination (Halary et al., 2002). Studies have shown that the
mannose carbohydrate residues on the surface of the coronavirus
spike protein can bind to the DC-SIGN receptor and play an
important role in the process of coronavirus infection (Zhang
et al., 2012). Human aminopeptidase N (hAPN) has been
confirmed to be a cell receptor of HCoV-229E, which is a
common coronavirus of the upper respiratory tract. Furthermore,
a series of experiments have also validated that HCoV-229E can
use CD209L as one of its receptors (Jeffers et al., 2006). Based on
the similarity of the sequence of HCoV-229E with that of PEDV,
CD209L may be a receptor of PEDV as well. However, substantial
evidence is required to verify this concept in the future.

Type II Transmembrane Serine Proteases
Type II transmembrane serine proteases (TTSPs), being a
family with more than 20 members, can be mainly divided
into four subgroups: HAT/DESC, hepsin/TMPRSS, matriptase,
and corin (Szabo and Bugge, 2008). TTSPs consist of several
functional domains expressed in many tissues and cell mucosal
epithelia; moreover, their localization in the respiratory mucosal
epithelium often facilitates respiratory virus infection (Böttcher-
Friebertshäuser et al., 2010). This role of TTSPs is closely
associated with their protease activity. Intriguingly, the serine
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protease inhibitor ABESF-HCl could significantly inhibit the
replication of PEDV in Vero cells (Park et al., 2014). Furthermore,
the culture of PEDV could be achieved in transmembrane
protease serine 2 (TMPRSS2), stably expressing Vero cells even in
the absence of trypsin. Meanwhile, indirect immunofluorescence
revealed TMPRSS2-induced cell fusion in virus-infected cells
(Shirato et al., 2011). Likewise, a similar role for mosaic
serine protease large-form (MSPL) in enhancing the in vitro
proliferation of PEDV has been described (Shi W. et al., 2017).
These suggest that like trypsin, the promoting effect of TMPRSS2
and MSPL on PEDV proliferation may be ascribed to their
ability of catalyzing the cleavage of the S protein, thus enhancing
the entry and release of viral particles during PEDV infection.
Additionally, DPP4, with the activity of protease and the wide
distribution in many tissues and cells, is very conserved among
various species and plays an important role in the infection of
MERS-CoV and other emerging human coronaviruses (Ohnuma
et al., 2013). Although robust evidence remains to be provided,
CRISPR/Cas9 technology-mediated ablation of CD26/DPP4 gene
in target cells should help to illustrate this issue.

Tight-Junction Proteins
Tight-junction proteins widely present between the epithelial
cells and endothelial cells are responsible for closing the cell
gap and preventing the free entry and exit of substances
inside and outside the epithelial layer (Guttman and Finlay,
2009). Tight-junction proteins composed of transmembrane
proteins and cytoplasmic proteins are complex structures formed
by the interaction of various proteins. They are linked to
microfilaments by cytoplasmic binding proteins, which can
be divided into transmembrane proteins (e.g., occludin and
claudin) and cytoplasmic proteins (e.g., ZO-1, ZO-2, and ZO-
3) (González-Mariscal et al., 2008). Importantly, several tightly
linked proteins including occludin, claudin, CAR, and JAM
were validated to act as receptors for viruses (Mateo et al.,
2015; Torres-Flores and Arias, 2015). Moreover, viruses were
found to invade the epithelium by binding and destroying
these tight-junction proteins. Similarly, claudin-6/9 was also
identified to be an invasive co-receptor in endothelial cells
(Evans et al., 2007; Ploss et al., 2009). Notably, PEDV was
found to cause structural alterations in the barrier integrity
both in vitro and in vivo through modulating related proteins
of the tight junction and adhesion junction in the early stage
of infection (Zhao et al., 2014). Furthermore, this effect of
PEDV on the cell junction was achieved by affecting the
MAPK pathway, since inhibition of the MAPK pathway could
regulate the changes in the tight junction of cells (Zhao et al.,
2014). In particular, the essential role of the tight-junction
protein occludin in PEDV infection during late-entry events has
been suggested and characterized (Luo et al., 2017). The tight
junctional distribution of occludin was pronouncedly affected by
PEDV infection. Furthermore, overexpression or downregulation
of occludin promoted or reduced the susceptibility of target
cells to PEDV infection, respectively (Luo et al., 2017).
On the other hand, the micropinocytosis-mediated occludin
internalization process was promoted by the PEDV entry; this
protein might serve as a scaffold in the vicinity of PEDV entry

(Luo et al., 2017). Interestingly, although PEDV and occludin are
mutually influenced by each other, the evidence of their direct
interaction is absent. Additionally, it remains undetermined
whether other tight-junction proteins play similar or various
roles in the infection of PEDV. Future works are warranted to
elucidate these issues.

Integrin
Integrin is a cell membrane receptor family composed of α

subunits and β subunits. Currently, 18 α subunits and 8 β

subunits have been identified. They can form 24 heterodimer
molecules by non-covalent bonding (Hynes, 2002). Integrins are
found in almost all plants and animals, but there are a lot of
variations between different species. They are mainly involved
in cell–cell and cell–extracellular matrix (ECM) interactions
and mediate the process of cell proliferation, differentiation,
migration, and adhesion (Moser et al., 2009). Previous studies
have shown that integrins act as receptors or co-receptors
for viral infection (Kotecha et al., 2017; Nestić et al., 2019).
Furthermore, the presence of integrins α3, αv, β1, β3, β4, and
β6 rendered Vero cells susceptible to PEDV infection (Guo et al.,
2014). Importantly, a series of evidence has proved that integrin
plays a role in PEDV’s entry into cells by interacting with the
S protein. Firstly, overexpression of integrin αvβ3 enhanced
the PEDV infection to Vero E6 cells and IECs. Secondly,
inhibition of integrin αvβ3 by siRNA or anti-integrin αvβ3
antibodies or arginine–glycine–aspartate (RGD) peptides could
inhibit PEDV infection. Moreover, integrin αVβ3 and pAPN
were found to synergistically enhance PEDV replication. These
results demonstrate that integrin αvβ3 may be a co-receptor but
not a functional entry receptor of PEDV (Li et al., 2019) and also
suggest that the entry of PEDV into host cells may depend on a
variety of cellular receptors.

Genome Replication and Transcription
When PEDV enters the cytoplasmic exfoliation, the RNA
genome in the virion is released. Infected cells generally contain
seven to nine virus-specific mRNAs, which carry the same
3′ mRNA, whereas the longest one is viral genomic RNA.
The PEDV replicase synthesizes full-length negative stranded
RNAs using genomic RNA as a template, and then these
newly synthesized RNAs function as a template for further
synthesis of new genomic RNA (Masters, 2006). Although
genome replication/transcription is regarded to be mediated
primarily by viral replicating enzymes, multiple host factors are
also involved in this process. Moreover, the N protein of PEDV, as
an RNA companion, has an important role in PEDV replication
and transcription, while the interaction between host factors and
the N protein plays a regulatory action.

Nucleophosmin 1
The NPM1 (B23.1) protein, derived from the main transcription
form and the longest transcript of the NPM gene, is mainly
located in the granular region of the nucleolus. As a nuclear
shuttle protein, NPM1 plays multiple roles in the nucleolus
including centrosome duplication, ribosome biogenesis,
intracellular transport, apoptosis, and mRNA splicing
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(Lindström, 2011). Importantly, a series of evidence has
demonstrated the interaction of the PEDV N protein with
the NPM1 protein, as well as their contribution to PEDV
infection. Firstly, the interaction and co-localization of those
two proteins have been confirmed by both immunoprecipitation
(IP) and GST-pull-down assay, as well as confocal microscopy,
respectively. Moreover, the 147–294 aa region of PEDV N
protein and the 189–294 aa region of NPM1 were verified to
be essential for their interaction. Secondly, PEDV infection
was found to cause considerable upregulation of the NPM1
expression. In particular, the NPM1 overexpression could
promote the expression of the N protein and the proliferation of
PEDV, while its downregulation led to converse consequences.
Thirdly, mechanically the interaction between the N and NPM1
proteins could prevent the cells from being cut off, increase the
cell resistance to apoptosis, and avoid premature cell death, thus
enhancing virus replication (Shi D. et al., 2017). Therefore, the
interaction of the PEDV N protein with NPM1 and the resultant
changes in host cell survival may benefit for the development of
vaccines and therapeutics for pigs.

Heterogeneous Nuclear
Ribonucleoprotein A1
Heterogeneous nuclear ribonucleoprotein (hnRNP) is a general
term designated for the members of the RNA binding
protein family, which consists of at least twenty members.
Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), one
of the most abundant members of this family (Chang
et al., 2017), can be divided into two different parts: the
N-terminal functional region with two closely linked RNA
recognition motifs mainly responsible for binding to RNA, and
the C-terminal glycine enrichment region with RNA-binding
sites and localization sequence M9 principally involved in
RNA binding, cell localization, and protein–protein interaction
(Bekenstein and Soreq, 2013). As a multifunctional protein,
hnRNPA1 widely participates in the regulation of RNA
transcription, splicing, nuclear shuttle, and the translation
of cellular and viral proteins. The binding of hnRNPA1
to the N proteins of other coronaviruses like MHV and
SARS-CoV has been confirmed by a series of experiments
(Wang and Zhang, 1999). Likewise, the binding and co-
localization of hnRNPA1 with the N protein of PEDV have
been verified, implying the involvement of hnRNPA1 in the
formation of the PEDV replication–transcription complex (Li
et al., 2018). It remains to be determined whether the same
binding site of the PEDV N protein is used to interact
with hnRNPA1 as those of other coronaviruses such as
MHV and SARS-CoV.

Assembly and Release
Successful PEDV replication requires the coordinated
production, processing, and assembly of each protein and
nucleic acid of the virus, as well as the release of progeny viruses
capable of infecting new cells from infected cells. Initially, the
interaction of the same type M proteins provides a scaffold for
the morphogenesis of the virus, while the interaction between

the M-S and M-N facilitates the recruitment of the structural
components of the virus to the assembly site (Ye and Hogue,
2007). Finally, the newly generated viral particles are transported
in the smooth vesicles and released by the exocytic pathway of
exocytosis. In this aspect, multiple host factors also take part in
these processes of coronavirus including PEDV.

Bone Marrow Stromal Cell Antigen 2
As the first defense line against pathogenic microorganism
invasion, natural immune response plays a vital antiviral role in
the early stage of virus infection. The critical action of interferon
(IFN) in the process of virus infection and proliferation has long
been recognized. As an IFN-induced common natural immune
limiting factor (Kupzig et al., 2003; Sauter, 2014), BST2 could
suppress viral production by affecting the release of viruses
from infected cells (Van Damme et al., 2008). By analyzing the
distribution of BST2 in tissues, Kong et al. found that in spite of
its expression in almost all tissues and organs, BST2 exhibited
a high level in immune tissues and organs, large intestine,
small intestine, and lungs, hinting a key role of BST2 in early
natural immune response (Kong et al., 2019). Indeed, the BST2-
overexpressing Vero cells had much less virus content than the
control cells; similarly, the viral titer in the cell supernatant was
also pronouncedly reduced. On the contrary, PEDV proliferation
was remarkably enhanced in Vero cells when the BST2 gene
level was downregulated, suggesting that the BST2 protein could
restrain PEDV proliferation in Vero cells. Furthermore, this
function of BST2 might be achieved by binding and degrading
the N protein of PEDV (Kong et al., 2019). Accordingly, selective
autophagy as a novel antiviral mechanism was suggested for the
action of BST2 on PEDV replication.

Eukaryotic Translation Initiation Factor 3
Subunit L
Eukaryotic protein synthesis consists of three stages, namely,
initiation, elongation, and termination, each of which involves
a different set of protein factors. This event mainly occurs in
the ribosomes within the cytoplasm, with the participation of a
series of eIFs. So far, 13 translation–initiation factors have been
identified in eukaryotes, of which eIF3 has the largest molecular
weight (∼650 kDa) and is composed of 8–13 polypeptides
(Asano et al., 1997). Eukaryotic translation initiation factor 3
subunit L (eIF3L) is one of the subunits of the eukaryotic
translation initiation factor eIF3. A previous study revealed
that eIF3L could inhibit the replication of yellow fever virus
(YFV) by binding to the viral NS5 protein (Morais et al., 2013).
In particular, Wang et al. established the PEDV M protein
interaction group by immunoprecipitation (Co-IP) combined
with liquid chromatography–mass spectrometry (LC-MS/MS)
and identified 218 kinds of host cell proteins that interact with the
M protein, including eIF3L. Compared with negative controls, a
reduced eIF3L expression was strongly linked to a significantly
increased PEDV production, suggesting that this factor plays a
negative regulatory role in viral replication (Wang et al., 2020).
Therefore, identifying PEDV M interacting proteins will further
contribute to addressing the process of virus replication.
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Peptidyl-Prolyl Cis-Trans Isomerase D
and S100 Calcium-Binding Protein A11
Peptidyl-prolyl cis-trans isomerase D (PPID), also named as
CyP40, is a member of the peptidyl-prolyl cis-trans isomerase
(PPIase) family. It is conducive to protein folding, ligand
binding, and nuclear sorting of glucocorticoid, estrogen, and
progesterone receptors (Pfefferle et al., 2011). Silencing PPID
had a protective effect on the UVA-induced apoptosis of
human keratinocytes (Jandova et al., 2013). S100 calcium-
binding protein A11 (S100A11) is a member of the EF-
hand Ca2 + -binding protein S100 family. It plays a key
regulatory role in a variety of cellular processes associated with
cancer, including proliferation, apoptosis, cell cycle, migration,
invasion, and epithelial–mesenchymal transformation (EMT)
(Meng et al., 2019). Dong et al. identified 40 host cell proteins
that interact with the PEDV M protein, including PPID
and S100A11, using a proximity-labeling enzyme APEX2 (a
chimeric soybean peroxidase). Co-immunoprecipitation (Co-
IP) confirmed the interaction between the M and five proteins
(e.g., RIG-I, PPID, NHE-RF1, S100A11, and CLDN4). Moreover,
siRNA knockout of PPID and S100A11 genes significantly
increased the virus production, indicating that the proteins
encoded by these two genes interfered with or downregulated
the replication of the PEDV viruses (Dong et al., 2021).
This study further highlights the key role of the PEDV M
protein in interacting with multiple host factors in terms of
virus replication.

OTHER FACTORS IN THE HOST CELLS
AFFECTING PORCINE EPIDEMIC
DIARRHEA VIRUS INFECTION

Activity of Cytokines and Regulation of
Signaling Pathways
As the invaders, viruses should have the capability to adjust
the activities of cytokines and regulate intracellular signaling
pathways of the host cells after invasion, thereby facilitating
the replication and proliferation of viral particles. Indeed, the
occurrence of pronounced expression changes of numerous
proteins was identified by proteomic analysis in PEDV-
infected Vero cells. These proteins were found to participate
in various biological processes such as apoptosis, signal
transduction, and stress response (Zeng et al., 2015). For
instance, PEDV infection could activate the components of
the intracellular MAPK signaling pathway including ERK
(extracellular signaling-regulated kinase), p38 MAPK, and
JNK (c-Jun N-terminal kinase) (Kim and Lee, 2015). In
addition, PEDV infection-induced endoplasmic reticulum
(ER) stress response and the activation of NF-κB signaling
have been found and described as well (Wang et al.,
2012; Xu et al., 2013a). Therefore, it is reasonable and
logical to believe that PEDV-triggered alterations of protein
expression, cellular response, and signaling collectively
create a conducive microenvironment for its proliferation
in the host cells.

Cell Autophagy
It has been recognized that autophagy is not only a lysosome-
dependent degradation pathway but also a defense mechanism.
Growing studies have demonstrated the fundamental functions
of autophagy in the process of virus infection. On the one hand,
autophagy can induce an innate immune response to suppress the
proliferation of viruses; on the other hand, viruses evolve various
strategies to defend against and escape the destructive effects of
autophagy and even use it to promote their proliferation (Sun
et al., 2014). More relevantly, TGEV-induced autophagy in the ST
and PK-15 cell lines has been observed. Interestingly, silencing
the three main autophagic proteins could considerably increase
viral load, indicating the inhibitory role of autophagy in TGEV
replication (Guo et al., 2016). The specific role of autophagy in
PEDV proliferation has also been verified in a previous study.
The viral titer of PEDV was considerably decreased following
the inhibition of cellular autophagy with its inhibitors (i.e., 3-
MA or CQ), while increased proliferation of PEDV was observed
upon the induction of cellular autophagy by its inducer (e.g.,
rapamycin). A decreased viral titer of PEDV was similarly
achieved by silencing the expression of the key autophagy
genes Beclin 1 and ATG5. Although these observations robustly
demonstrate the implication of cell autophagy in the replication
of PEDV (Guo et al., 2017), the mechanism underlying this
cellular event remains elusive.

THE INTERACTION OF VIRAL PROTEINS
AND HOST FACTORS

As described above, intensive investigations have not only
confirmed the involvement of some structural or non-structural

TABLE 1 | Host factors and viral proteins involved in PEDV infection.

Infection stages Host
factors

Viral protein References

Attachment and
entry

Heparan
sulfate

S protein Huan et al., 2015

pAPN S protein Li et al., 2007; Nam and
Lee, 2010

Sialic acid S protein Wrapp and McLellan, 2019

EGFR S protein Yang et al., 2018

DC-SIGN

DPP4

TMPRSS2 S protein Shi W. et al., 2017

MSPL S protein Shi W. et al., 2017

Occludin S protein Luo et al., 2017

Integrin S protein Li et al., 2019

Replication and
transcription

hnRNPA1 N protein Li et al., 2018

NPM1 N protein Shi D. et al., 2017

Assembly and
release

TMPRSS2 Shirato et al., 2011

BST2 N protein Kong et al., 2019

eIF3L M protein Wang et al., 2020

PPID M protein Dong et al., 2021

S100A11 M protein Dong et al., 2021
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FIGURE 2 | The involvement of numerous host factors and viral proteins in the different processes of PEDV infection. During the process of virus attachment and
entry into cells, the host factors pAPN, HS, sialic acid, EGFR, TMPRSS2, MSPL, occludin, and integrin are found to promote PEDV infection by interacting with the S
protein. DC-SIGN and DPP4 may play a role in this process as well, while more robust evidence is needed. HnRNPA1 and NPM1 are verified to interact with the N
protein of PEDV, thus participating in the transcription and replication stages. Finally, TMPRSS2, BST2, eIF3L, PPID, and S100A11 are identified to take part in the
assembly and release of the virus. PEDV also utilizes the p38 MAPK and JNK signaling pathways for optimal replication. Similarly, PEDV infection induces
endoplasmic reticulum (ER) stress response and activation of the NF-κB signal also contributes to PEDV replication. Additionally, PEDV can facilitate its replication by
affecting autophagy. ↑, ↓ in the figure denote promotion or inhibition, respectively.

proteins of PEDV but also verified the important contribution
of some identified host factors in the forms of proteins,
signaling pathways or events, or physiological processes in target
cells to PEDV infection. Two major features can therefore be
deduced: different viral proteins and host factors participate in
various stages of PEDV infection, and the contribution of these
proteins/factors is mainly achieved by their mutual interactions.
To clearly illustrate these, we summarize the major functions of
PEDV viral proteins and host factors in Table 1 and provide an
overall view of their participation and interaction during PEDV
infection, as shown in Figure 2. Briefly, at the initial stage of
PEDV infection, identified host factors so far, including pAPN,
sialic acid, HS, TMPRSS2, MSPL, occludin, and integrin, are
confirmed to interact with the S protein, thereby facilitating the
attachment and entry of the PEDV viral particles into target cells.
Next, the host factors hnRNPA1 and NPM1 interact with the N
protein of PEDV to promote viral transcription and replication.
Subsequently, the host factor BST2 inhibits PEDV replication by
binding and degrading the N protein of PEDV, and the cellular
factors eIF3L, PPID, and S100A11 repress PEDV replication
by binding the M protein of PEDV, while TMPRSS2 plays a
role in the release of PEDV. Additionally, intracellular signaling
pathways of host cells are regulated to promote the replication
and proliferation of virus particles following the invasion of
PEDV. For instance, it utilizes p38 MAPK and JNK signaling
pathways for optimal replication (Lee et al., 2016), while NF-
κB may contribute to the translocation of viral nucleic acids
from the cytoplasm to the nucleus (Cao et al., 2015). Similarly,
autophagy is beneficial to PEDV replication through autophagy

regulatory factors and RNA interference (Guo et al., 2017)
(Table 1 and Figure 2).

DISCUSSION

The circulation of PEDV has caused huge economic damage to
the pig industry in the world; in particular with the emergence of
PEDV variant strains, an increased prevalence of 50.21–62.10%
for PEDV has been witnessed in those years (Sun et al.,
2012; Antas and Woźniakowski, 2019; Liu and Wang, 2021).
Although progress in the understanding of PEDV including
its genome, viral structure, has been made by the efforts of
numerous investigations during the past years, it seems that
we still stand a little far away from completely revealing the
pathogenic mechanisms of PEDV. In addition, the development
of effective and preventive measures like medicines and vaccines
remains on the way.

Relative to extensive studies and in-depth information on
other coronaviruses like SARS-CoV, host–PEDV interactions just
receive increased attention recently. One typical example is that
PEDV targets intestinal epithelial cells (IECs) in the intestinal
villi of pigs, while the most common in vitro cell culture system
used to study PEDV does not derive from IECs of pigs. The
development of new pig IEC-derived cell lines will undoubtedly
provide an alternative, more physiologically relevant model for
future studies of PEDV–host interactions.

Porcine epidemic diarrhea virus whole inactivated and
attenuated virus vaccines have played an effective role in the

Frontiers in Microbiology | www.frontiersin.org 9 December 2021 | Volume 12 | Article 762358

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-762358 December 1, 2021 Time: 13:49 # 10

Hu et al. Factors Associated With PEDV Infection

prevention and control of PED (Kweon et al., 1999; Song
et al., 2007). Besides this, PEDV genetic engineering vaccines
based on the S protein which can induce the body to produce
neutralizing antibodies also display broad prospects. As the most
ideal vaccine for oral immunization, transgenic plant vaccine
similarly has great development space (Kang et al., 2006).
The numerous properties of nanoparticle, including possessing
immunoadjuvant activity, generating natural immune response
of antigens, easily reaching antigen-presenting cells to regulate
the immune response through a variety of ways, targeting to
present antigen, and releasing slowly, allow it to be an ideal
candidate for preparing new vaccines against the occurrence of
PED (Smith et al., 2013; Tong et al., 2020). Notably, although
vaccine immunization is an effective way to prevent and control
PED, it often cannot solve all of the issues for PEDV-infected
pigs. Therefore, some therapeutic drugs are urgently needed as
well. In this regard, validly inhibitory effects of IFN-L on the
proliferation of PEDV in pig intestinal epithelial cells, together
with better action than type I interferon, empower it to receive
more attention (Li L. et al., 2017). Likewise, a PEDV-specific
yolk antibody has also been reported to increase the survival
rate of infected piglets (Lee D. H. et al., 2015). Besides these,
the prokaryotic expression of a single-stranded variable region of
the PEDV monoclonal antibody or small peptides identified by
phage screening, which is able to bind to the PEDV receptor, can
also prevent PEDV from invading host cells (Meng et al., 2014).
Additionally, the key role of proteases in virus release from the
cell surface and in PEDV infection enhancement render them
to be important drug targets. Therefore, protease inhibitors may
also be good candidates for developing anti-PEDV compounds
to fight this infectious disease (Shirato et al., 2011). Similarly,
some Chinese herbal extracts, such as quercetin and ginkgo peel
extract, can effectively suppress the infection process of PEDV
in vitro (Choi et al., 2009; Song et al., 2011; Lee J. H. et al., 2015;
Tong et al., 2020). Interestingly, the anti-PEDV effect of quercetin
was found to be independent of its HSPA1 inhibitor activity
and lacking of influence on the process of virus adsorption and
invasion while relying on its inhibition of the PEDV 3C-like
protease. Quercetin might bind to the active site of the PEDV 3C-
like protease; the binding affinity between quercetin and PEDV

3CLpro was also verified by surface plasmon resonance (SPR) (Li
et al., 2020). Likewise, the anti-PEDV effect of polysaccharides
in ginkgo biloba pericarp has also been described (Lee J. H.
et al., 2015). Additionally, some drugs were proved to have anti-
PEDV activity, while they were not tested in clinical treatment
due to the cost and safety. Therefore, further understanding
of PEDV pathogenetic mechanisms and improved production
of druggable agents would contribute to the development of
therapeutics for this virus.

Viruses are obligate intracellular parasites that are limited
by the ability of their genomes. Accordingly, all viruses evolve
the capability to hijack host factors for their own replication.
Meanwhile, host cells also develop complex signaling networks
to detect, control, and eradicate invading viruses, although
these antiviral pathways are often circumvented, suppressed,
or disrupted by various viral anti-mechanisms. Thus, virus–
host interactions represent an ongoing evolutionary arm race
to perfection at the molecular and cellular levels. Therefore, it
is of far-reaching significance to deeply study the pathogenesis
of PEDV and identify PEDV receptors and related host factors,
thereby providing more druggable targets for the prevention and
treatment of PEDV.
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