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A B S T R A C T

Object: This study aims to evaluate the value of super resolution (SR) technology in augmenting 
the quality of digestive endoscopic images.
Methods: In the retrospective study, we employed two advanced SR models, i.e., SwimIR and 
ESRGAN. Two discrete datasets were utilized, with training conducted using the dataset of the 
First Affiliated Hospital of Soochow University (12,212 high-resolution images) and evaluation 
conducted using the HyperKvasir dataset (2,566 low-resolution images). Furthermore, an 
assessment of the impact of enhanced low-resolution images was conducted using a 5-point Likert 
scale from the perspectives of endoscopists. Finally, two endoscopic image classification tasks 
were employed to evaluate the effect of SR technology on computer vision (CV).
Results: SwinIR demonstrated superior performance, which achieved a PSNR of 32.60, an SSIM of 
0.90, and a VIF of 0.47 in test set. 90 % of endoscopists supported that SR preprocessing 
moderately ameliorated the readability of endoscopic images. For CV, enhanced images bolstered 
the performance of convolutional neural networks, whether in the classification task of Barrett’s 
esophagus (improved F1-score: 0.04) or Mayo Endoscopy Score (improved F1-score: 0.04).
Conclusions: SR technology demonstrates the capacity to produce high-resolution endoscopic 
images. The approach enhanced clinical readability and CV models’ performance of low- 
resolution endoscopic images.

1. Introduction

Since 1983, with the advent of electronic endoscopes based on charge-coupled device (CCD) technology superseding conventional 
flexible fibre-optical endoscopes, the resolution of endoscopy has greatly improved [1]. High-resolution electronic endoscopy has 
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facilitated a clearer visualization of gastrointestinal lesion images for endoscopists, thereby augmenting the efficacy of disease 
diagnosis and treatment. Evidence from a randomized controlled trial has demonstrated the value of high-resolution endoscopes in 
diagnostic procedures for colorectal neoplasia [2]. Additionally, a previous study concluded that the enhancement of endoscopic 
resolution increased the detection rate of colon polyps by 3.8 % [3]. Currently, a limited number of electronic endoscopes employ 
high-definition (HD, mainly 1920 × 1080 pixels) resolution (Fuji ELUXEO VP-7000, Olympus CV-1500, and etc.), while a substantial 
proportion of endoscopes still utilize standard-definition (SD, for example 720 × 480 pixels) resolution, particularly in economically 
disadvantaged regions [4]. The considerable hardware costs associated with high-resolution electronic endoscopy hinder its wide
spread adoption.

Nowadays, for the widespread use of artificial intelligence (AI) and deep learning in the field of endoscopy, such as cancer diagnosis 
and polyp detection, a vast amount of endoscopic images are required as training samples for AI algorithms[5–8]. A recent study 
indicated that the use of low-resolution endoscopic images as training samples considerably diminishes the performance of AI algo
rithms [9]. Notwithstanding, there is a dearth of publicly available large databases containing HD endoscopic images for algorithm 
development [10]. Consequently, there is an evident need for methods capable of generating high-resolution endoscopic images from 
low-resolution counterparts without necessitating hardware upgrades.

Super resolution (SR) models, which are designed to generate high-resolution images from lower-resolution imaging systems, offer 
potential solutions for enhancing the resolution of endoscopic images. Such SR models are commonly based on three methods: 
reconstruction, interpolation and learning [11]. Currently, learning-based SR models, particularly those utilizing deep learning, are 
the most prevalently used due to their superior performance when compared to the other techniques [12]. Two widely used deep 
learning-based SR architectures, Swin Image Resolution (SwinIR) and Enhanced Super-Resolution Generative Adversarial Networks 
(ESRGAN), have played significant roles in the medical image processing field. Previous research has shown that SwinIR can signif
icantly enhance the quality of dental panoramic radiographs and improve the detection of microaneurysms [13,14]. Similarly, the 
group led by Jianshe Shi found that ESRGAN can improve the reconstruction of pneumocystis carinii pneumonia images, making the 
texture details of the reconstructed images clearer and the brightness information more accurate [15]. However, there is a notable 
dearth of research concerning the implementation of these deep learning-based SR structures in the context of endoscopic images.

In this study, we trained aforementioned two advanced deep learning-based SR models for digestive endoscopic images and 
evaluated their applicability from multiple perspectives, including SR metrics, endoscopist evaluation, and computer vision (CV) tasks.

Fig. 1. The framework of super resolution models. The bule part illustrated the structures of SwinIR, while the green part illustrated the 
structures of ESRGAN. Three main components (shallow feature extraction, deep feature extraction, and SR image reconstruction) constituted 
SwinIR. Two components (generator and discriminator) constituted ESRGAN. STL: Swim transformer layers.
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2. Materials and methods

2.1. Endoscopic image datasets

In this retrospective study, the raw endoscopic images were extracted independently from the following two datasets: 1) Soochow 
dataset. The Soochow dataset was derived from the digestive endoscopy centre, The First Affiliated Hospital of Soochow University, 
one of the largest endoscopy centers on China’s east coast. The endoscopic imaging system in the centre was Fuji ELUXEO VP-7000, 
which could natively provide high-resolution (1920 × 1080 pixels) images. The Soochow dataset was incorporated by images taken 
from high-resolution videos of upper- and lower-gastrointestinal endoscopic examination or treatment. 2) HyperKvasir dataset. The 
HyperKvasir dataset is a comprehensive multiclass image and video dataset for gastrointestinal endoscopy developed by Bærum 
Hospital in Norway [16]. The image and video data in the dataset were collected using standard endoscopy equipment from Olympus 
(Olympus Europe, Germany) and Pentax (Pentax Medical Europe, Germany). We extracted the labelled images of the upper and lower 
gastrointestinal tract from the HyperKvasir dataset. The resolution of endoscopic images varies from 352 × 332 pixels to 989 × 873 
pixels.

In this study, the Soochow dataset served as the training data, whereas the HyperKvasir dataset was employed for test purposes. 
Datasets used for training and testing are mutually exclusive.

2.2. Endoscopic image preprocessing

Endoscopic images were initially subjected to a manual review process. All endoscopic images derived from the previously 
mentioned datasets were meticulously reviewed by two senior endoscopists. The endoscopic images that were severely blurred, out of 
focus or subject to significant lighting changes due to violent camera movements were systematically excluded. To generate the low- 
resolution images required for training, the reviewed endoscopic images were downsampled using 4X (i.e., quadruple magnification) 
bicubic interpolation. All images were standardized to the JPG format.

2.3. SR model development

Two SR models, Swin Image Resolution (SwinIR) and Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) 
based on different structures, were trained. The framework illustrating the two SR models is shown in Fig. 1. The scale factors for both 
models were 4X.

SwinIR: SwinIR, proposed by ETH Zurich in 2021, marked a significant achievement in the application of transformer structures 
within the realm of image restoration [17]. The novelty of SwinIR is its incorporation of the Swin transformer [18]. During the training 
procedure, we employed the transfer learning approach, which could facilitate the utilization of prior knowledge. Different config
urations were used for the image reconstruction module of SwinIR when training. Three distinct sets of pretrained weights (classical 
weight, lightweight weight and real-world weight) were applied. Concurrently, a variety of upsampling methods, such as pixelshuffle 
and nearest + conv, were adopted to explore the potential impact of different upsampling methods on model performance. Table S1
shows the details of the pretrained weights and upsampling methods.

ESRGAN: ESRGAN is relevant in the application of generative adversarial networks (GANs) within the domain of image restoration 
[19]. ESRGAN comprises two primary components: a generator and a discriminator. The objective of the generator was to deceive the 
discriminator by fabricating images that appear authentic, whereas the discriminator’s role was to differentiate between these arti
ficially produced images and real ones.

2.4. SR models’ evaluation

To conduct a comprehensive evaluation of SR models’ performance, we approached the assessment from three dimensions: 
objective metrics, endoscopists’ perspectives and CV tasks.

1. Objective metrics: We utilized three widely accepted metrics for SR model evaluation: peak signal-to-noise ratio (PSNR), structure 
similarity index measure (SSIM), and visual information fidelity (VIF). The details of these metrics are summarized in Table S2.

2. Endoscopists’ perspective: The perspectives of endoscopists observing SR endoscopic images were utilized to assess the clinical 
applicability of the models. Unprocessed, low-resolution images of three typical lesions, including ulcers, polyps, and early cancer, 
were extracted from the Soochow dataset and HyperKvasir dataset, with each lesion represented by a set of 10 images. All images 
were SR processed before being compared. A total of 10 endoscopists (4 senior and 6 junior endoscopists) were incorporated into 
the evaluation phase. Their perspectives were quantitatively assessed using a 5-point Likert scale, a well-established tool for 
gauging opinions [20]. The scale was structured to encapsulate five levels of agreement: ‘Strongly disagree’ (1 point), ‘Disagree’ (2 
points), ‘Neutral’ (3 points), ‘Agree’ (4 points), and ‘Strongly agree’ (5 points). The details of the Likert scales are provided in 
Table S3. The cronbach’s alpha is calculated to assess the reliability of each item in the Likert scales.

3. Computer vision tasks: The influence of endoscopic images after SR processing on CV was assessed. Two CV classification tasks 
pertaining to the upper- and lower-gastrointestinal tract (namely, Barrett’s esophagus classification task and Mayo Endoscopy 
Score (MES) for Ulcerative colitis classification task) were employed [21]. Detailed descriptions of these two tasks are provided in 
Table S4. Two classical CNN structures (DenseNet121 and DenseNet169), with DenseNet as the backbone, were utilized for the CV 
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tasks [22]. Data from both tasks were randomly partitioned into a CV-training set and a CV-validation set at a ratio of 8:2 for model 
development and performance comparison. The data in the CV-validation set were not enhanced to ensure fairness of the com
parison. The flowchart of the two tasks is shown in Fig. 2. Evaluation indicators included F1-score, accuracy, precision, and recall.

3. Results

3.1. Endoscopic image datasets

A total of 12,212 endoscopic images, comprising 5,762 upper gastrointestinal images and 6,450 lower gastrointestinal images, 
were extracted from the endoscopy videos of 17 patients in the Soochow dataset to form the training set. Conversely, 2,566 images, 
including 1,455 upper gastrointestinal images and 1,111 lower gastrointestinal images, were extracted from the HyperKvasir dataset to 
serve as the testing set. The details of the incorporated endoscopic images in the training set are presented in Table S5.

4. SR metrics

Table 1 presents the performance of SR models. Within the training set, the SwinIR model, utilizing the ‘classical pretrained weight’ 
and ‘pixelshuffle sampling method’, demonstrated superior performance compared to other models, as evidenced by the following SR 
metrics: PSNR (36.84), SSIM (0.97), and VIF (0.69). Similarly, in the test set, the SwinIR model continued to outperform other models, 
achieving notable SR metrics: PSNR (32.60), SSIM (0.90), and VIF (0.47). Subsequent model evaluations are based on this model, 
which exhibits optimal SR metrics. The comparison between SR images and original images is shown in Fig. 3.

4.1. Endoscopists’ evaluation

The primary endoscopists’ opinions are summarized in Table S6. The visualization of the 5-point Likert scale of endoscopists is 
illustrated in Fig. 4. A substantial majority, 90 %, of the endoscopists affirmed the efficacy of SR technology in augmenting the clarity 
of endoscopic images and enhancing diagnostic precision. When evaluating three distinct disease types, 90 % of endoscopists 
concurred that SR technology noticeably improved the visibility of polyps. Conversely, the technology’s effectiveness in enhancing the 
image quality of early-stage cancer was endorsed by a significantly smaller fraction of endoscopists, standing at 40 %. Cronbach’s 
alpha for each item is summarized in Table S7, which demonstrates that most of the items have acceptable reliability.

Fig. 2. The flowchart of two deep learning computer vision tasks.
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4.2. Computer vision tasks

Table 2 shows the results of two CV tasks in the CV-validation. The endoscopic images after 4X SR improve the performance of both 
models. For the classification task of Barrett’s esophagus, DenseNet121 with SR images outperformed with metrics: F1-score (0.85), 
accuracy (0.86), precision (0.89), and recall (0.82). For the Mayo endoscopy score classification task, DenseNet169 with SR images 
showed superior performance compared to the other models.

Table 1 
The performance of super resolution models in the training and test sets.

Model Pre-trained weight Sampling method Training set Test set

PSNR SSIM VIF PSNR SSIM VIF

SwinIR Realworld nearest + conv 32.87 0.93 0.55 29.76 0.82 0.41
SwinIR Realworld pixelshuffle 35.90 0.97 0.68 32.44 0.89 0.45
SwinIR lightweight pixelshuffle 35.68 0.97 0.68 32.43 0.89 0.45
SwinIR classical nearest + conv 36.28 0.97 0.69 32.46 0.89 0.45
SwinIR classical pixelshuffle 36.84 0.97 0.69 32.60 0.90 0.47
ESRGAN SRx4_official – 36.55 0.96 0.61 31.29 0.85 0.39

Footnotes: PSNR: peak signal-to-noise ratio. SSIM: structure similarity index measure. VIF: visual information fidelity.

Fig. 3. Comparison between super resolution images and original images.

Fig. 4. Visualization of the 5-point Likert scale of endoscopists. SR: Super resolution.
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5. Discussion

In this study, we evaluated the application of SR approach in digestive endoscopic images. Two advanced SR models were 
developed, and SR technology was thoroughly evaluated from the perspectives of clinical value and potential application in CV. Our 
findings support that SR enhances the endoscopist’s experience of interpreting endoscopic images and can improve diagnostic ac
curacy to a certain degree. Moreover, it demonstrated that the performance of CV models could be enhanced by employing SR without 
the need to increase the training sample size.

The concept of SR was initially proposed by Gerchberg [23] to interpret the enhancement of an optical system’s resolution beyond 
the diffraction limit. Over recent years, this concept has evolved into a method capable of generating high-resolution images from 
low-resolution counterparts. SR has been applied in various fields, including computer graphics, surveillance, and, notably, medical 
images[24–26]. Several studies have explored the impact of SR technology on computed tomography (CT) and magnetic resonance 
imaging, including improving the temporal resolution of cine cardiac MRI sequences, augmenting low-dose 18F-FDG PET data, and 
improving the accuracy of CT tumour staging[27–29]. However, in the realm of endoscopic imagery, a review of previous studies 
reveals a dearth of related research and a lack of clinician involvement. For instance, Chen W et al. [30]proposed a dynamic 
depth-aware network for endoscopy SR using the Kvasir dataset and the EndoScene dataset, while Lin J et al. [31]developed a 
quaternion attention multiscale widening network for SR endoscopic image using the CVC ClinicDB and Kvasir datasets. In comparison 
to these studies, our model demonstrated superior SR metrics when adopting the same scale factors (4X). The PSNR in our model was 
36.84, which was higher than that of Lin J’s model (34.50). This improved performance may be attributed to our utilization of a 
self-constructed large sample HD dataset and the application of the state-of-the-art SR model based on the Swin transformer archi
tecture. Furthermore, our study incorporated evaluations from frontline clinical endoscopists to analyse the value of the SR technique 
in identifying tumours, ulcers, and polyps.

Prior studies have demonstrated that the resolution of training images significantly impacts the performance of AI algorithms, 
regardless of whether they are X-ray or endoscopic images [9,32]. Insufficient image resolution often leads to suboptimal model 
performance. Previous studies have ascertained that enhancing image resolution using SR technology bolsters AI-based detection and 
localization of colonic polyps [33]. Nonetheless, there is a paucity of research concerning endoscopic image classification tasks. In our 
investigation, we focused on two tasks: the classification of Barrett’s esophagus and the Mayo score for ulcerative colitis. We 
discovered that the SR technique enhances the classification performance of CV models in both binary and multiclassification tasks. 
This improvement in performance may be attributed to the fact that SR not only augments image resolution but also incorporates 
external data for reconstruction, yielding images with superior detail. Consequently, our study substantiates the potential of SR 
technology as an efficacious image preprocessing method for endoscopic AI algorithms.

Clinically, SR technology marginally enhances the readability of endoscopic images. Our study revealed that endoscopists found SR 
to be most effective for bulging lesions (polyps) and to be less effective for flat lesions (early cancer). This distinction may be a 
consequence of the inherent SR technology characteristic that accentuates high-frequency detail, enabling the efficient differentiation 
of bulging polyps from the surrounding mucosa [34]. However, SR is less adept at highlighting low-frequency details, such as mucous 
membranes where early cancers closely resemble normal tissue under white light endoscopy.

Despite our study showing the potential clinical value and applicability of CV using SR models, it also has several limitations. First, 
the retrospective nature of the study leads to potential selection bias. More external test sets based on a prospective design are 
necessary to further verify the generalization capabilities of the model. Implementing standardized data collection protocols will help 
minimize selection bias and ensure consistency across participating centers. Second, the assessment of the clinical application of the SR 
model encompassed a limited number of diseases. As such, a more comprehensive evaluation is warranted in future research. Finally, 
our SR models were designed for white-light endoscopic images, leaving a gap regarding the potential use of SR technology for other 
endoscopy modalities, such as narrow band imaging and flexible spectral imaging colour enhancement.

6. Conclusions

In this study, we evaluated the feasibility of SR technology in the domain of digestive endoscopic imaging. We established that SR 

Table 2 
The performance of convolutional neural networks with super resolution endoscopic images in the CV-validation set.

Model Dataset F1-score Accuracy Precision Recall

Densenet121 Barrett-LR 0.81 0.81 0.80 0.81
Barrett-HR 0.85 0.86 0.89 0.82
Mayo-LR 0.72 0.73 0.73 0.72
Mayo-HR 0.76 0.76 0.79 0.75

Densenet169 Barrett-LR 0.82 0.82 0.84 0.80
Barrett-HR 0.84 0.85 0.89 0.80
Mayo-LR 0.73 0.75 0.75 0.73
Mayo-HR 0.77 0.76 0.77 0.76

Footnotes: Barrett-LR: The Barrett’s esophagus dataset included low-resolution images. Barrett-HR: The Barrett’s esophagus dataset included high- 
resolution images. Mayo-LR: The Mayo Endoscopy Score dataset included low-resolution images. Mayo-HR: The Mayo Endoscopy Score dataset 
included high-resolution images.
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models incorporating SwinIR possessed the capacity to drive high-resolution endoscopic images from their low-resolution counter
parts. For endoscopists, SR technology could moderately ameliorate the legibility of endoscopic images and is most effective for 
bulging lesions. In terms of deep learning CV tasks, SR technology could improve CV models’ performance by functioning as an image 
preprocessing approach.
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