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PKC signaling has been implicated in the regulation of many
cell functions, including metabolism, cell death, proliferation,
and secretion. Activation of conventional and novel PKC iso-
forms is associated with their Ca2�- and/or diacylglycerol
(DAG)-dependent translocation to the plasma membrane. In �
cells, exocytosis of insulin granules evokes brief (<10 s) local
DAG elevations (“spiking”) at the plasma membrane because of
autocrine activation of P2Y1 purinoceptors by ATP co-released
with insulin. Using total internal reflection microscopy, fluores-
cent protein-tagged PKCs, and signaling biosensors, we investi-
gated whether DAG spiking causes membrane recruitment of
PKCs and whether different classes of PKCs show characteristic
responses. Glucose stimulation of MIN6 cells triggered DAG
spiking with concomitant repetitive translocation of the novel
isoforms PKC�, PKC�, and PKC�. The conventional PKC�,
PKC�I, and PKC�II isoforms showed a more complex pattern
with both rapid and slow translocation. K� depolarization-in-
duced PKC� translocation entirely mirrored DAG spiking,
whereas PKC�I translocation showed a sustained component,
reflecting the subplasma membrane Ca2� concentration
([Ca2�]pm), with additional effect during DAG spikes. Interfer-
ence with DAG spiking by purinoceptor inhibition prevented
intermittent translocation of PKCs and reduced insulin secre-
tion but did not affect [Ca2�]pm elevation or sustained PKC�I
translocation. The muscarinic agonist carbachol induced pro-
nounced transient PKC�I translocation and sustained recruit-
ment of PKC�. When rise of [Ca2�]pm was prevented, the carba-
chol-induced DAG and PKC� responses were somewhat
reduced, but PKC�I translocation was completely abolished.
We conclude that exocytosis-induced DAG spikes efficiently
recruit both conventional and novel PKCs to the � cell plasma
membrane. PKC signaling is thus implicated in autocrine regu-
lation of � cell function.

PKC is a serine/threonine kinase important for a broad range
of cellular processes (1, 2). The PKC family contains 10 iso-

forms that are divided into three groups depending on their
mechanism of activation. Conventional PKCs (cPKCs)2 (PKC�,
�I, �II, and �) are activated by diacylglycerol (DAG) and Ca2�.
Novel PKCs (nPKCs) (PKC�, �, �, and �) respond to DAG but
not to Ca2�. The atypical isoforms (aPKCs) (PKC	 and 
/�) are
independent of both DAG and Ca2� (1, 2). Pancreatic � cells,
which play a pivotal role in glucose homeostasis by releasing
insulin, express members of all three PKC families. There is
evidence that PKC�, �II, �, �, 	, and 
/� are expressed whereas
the � isoform is not (3–10). Conflicting results have been
reported regarding expression of the �I, �, and � isoforms (3– 6,
8 –10), perhaps reflecting differences in species, cell lines, and
methodology to examine expression.

PKCs are involved in various aspects of � cell function, like
proliferation, differentiation, and death, as well as insulin secre-
tion (11), but the precise role of various isoforms is difficult to
define because of a lack of selective pharmacological tools and
potential problems with compensatory mechanisms and func-
tional redundancy in genetic ablation studies. PKC-activating
phorbol esters were found early to stimulate insulin secretion
(12, 13), an effect mediated by sensitization of the secretory
machinery to Ca2� (14, 15). Although the involvement of PKC
in the regulation of insulin release by G protein-coupled recep-
tor stimuli is well established (11), its role in glucose-stimulated
secretion is controversial. Down-regulation of PKC activity has
little effect on the secretory response to glucose (16, 17), and
experiments with PKC inhibitors have yielded conflicting
results (18 –23). Studies with genetic ablation of different PKC
isozymes indicate that PKC� and 
/� are important for insulin
secretion either by direct effects on the exocytosis machinery
(24) or by controlling the expression of genes important for �
cell differentiation (4). However, adenoviral overexpression of
wild-type and kinase-dead forms of PKC� and � failed to affect
glucose-stimulated insulin secretion in another study (18).
Also, the functional importance of PKC� is unclear. Expression
of a dominant negative mutant suppressed exocytosis in iso-
lated � cells (25), and a specific PKC translocation inhibitor
reduced insulin secretion from rat islets (21). However, func-
tional ablation of the protein did not affect glucose-induced
insulin secretion and even amplified that from islets treated
with fatty acids (26).
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Activation of conventional and nPKCs typically involves
their translocation to the plasma membrane. For nPKCs, this
process is mostly DAG-driven, and for cPKCs, it depends on a
combination of Ca2� and DAG dynamics (27, 28). We recently
discovered that glucose induces rapid DAG elevations in
restricted regions of the � cell plasma membrane with dura-
tions of �10 s. They reflect the exocytotic release of adenine
nucleotides with autocrine feedback activation of P2Y1 purino-
ceptors (29). Moreover, these DAG microdomains induced
PKC activation, measured as translocation of fluorescence-
labeled myristoylated alanine-rich C-kinase substrate
(MARCKS). However, it remains unclear whether the DAG
microdomains trigger PKC translocation or whether DAG
spiking merely activates PKCs already present at the plasma
membrane. It also remains to be establish which subclasses of
PKCs are activated and whether the different isoforms respond
differentially to the glucose-induced DAG signaling pattern.
Therefore, we analyzed the translocation dynamics of various
fluorescence-tagged PKC isoforms and DAG dynamics as well
as the subplasma membrane Ca2� concentration ([Ca2�]pm) in
insulin-secreting � cells using total internal reflection fluores-
cence (TIRF) microscopy.

Results

Depolarization-induced DAG Spiking Triggers nPKC-depen-
dent MARCKS Phosphorylation—TIRF imaging of MIN6
insulinoma cells co-expressing an mCherry-tagged DAG sen-
sor and the PKC activity detector MARCKS-GFP showed that
K�-mediated membrane depolarization induced repetitive,
brief (�10 s) and pronounced DAG elevations. Each DAG spike
was associated with less rapid dissociation of MARCKS-GFP
from the plasma membrane (Fig. 1, A and B). Gö 6976, an inhib-
itor of cPKCs, had little effect on these responses, whereas Gö
6983, targeting both conventional and nPKCs, immediately
suppressed MARCKS-GFP translocation without affecting
DAG spiking (Fig. 1, A and B). These data indicate that DAG
spiking primarily activates nPKCs in � cells.

Glucose-induced Plasma Membrane Translocation of nPKCs
Reflects DAG Spiking—MIN6-cells were next co-transfected
with the DAG biosensor and different GFP-tagged PKC iso-
forms. All nPKCs tested (�, �, and �) showed rapid, transient,
and repetitive glucose-induced translocation between the cyto-
plasm and the plasma membrane in response to glucose,
whereas the muscarinic agonist carbachol induced sustained
membrane association, almost perfectly mirroring simultane-
ously measured DAG patterns (Fig. 2, A–C). The glucose-in-
duced DAG spikes were often spatially confined, and the
nPKCs translocated specifically to the membrane regions with
elevated DAG, as illustrated for PKC� in Fig. 2D. PKC� was
further investigated to evaluate the DAG dependence of the
PKC translocation. Like glucose stimulation, membrane depo-
larization with a high K� concentration resulted in parallel
DAG spiking and PKC�-GFP translocation (Fig. 3A). Secreta-
gogue-induced DAG spiking in � cells is due to exocytotic
release of ATP with autocrine feedback activation of P2Y1 puri-
noceptors, which in turn activates phospholipase C (29). Con-
sistent with DAG spiking underlying the brief plasma mem-
brane binding of PKC�, both events were prevented by the P2Y1

receptor inhibitor MRS 2179 (Fig. 3A). Similarly, introduction
of MRS 2179 before K� depolarization prevented the appear-
ance of DAG spikes as well as the concomitant transient PKC�
translocation (Fig. 3B) without affecting the sustained depolar-
ization-induced increase of [Ca2�]pm (Fig. 3C). Conversely,
brief DAG increases caused by repeated 5-s applications of 0.1
�M P2Y1 receptor agonist MRS 2365 caused transient translo-
cations of PKC� to and from the plasma membrane, whereas
continuous application of the drug induced sustained re-
sponses (Fig. 3D).

The stable acetylcholine analogue carbachol activates phos-
pholipase C, and the resulting increases in DAG and cytoplas-
mic Ca2� concentrations induce PKC activation. Two 5-min
periods of carbachol stimulation 15 min apart resulted in com-
parable plasma membrane DAG increases and PKC transloca-
tion dynamics (Fig. 4A). PKC�-GFP translocation to the plasma
membrane was sustained and typically very similar to the DAG
dynamics (Fig. 4A). Omission of Ca2� from the extracellular
medium together with addition of EGTA and the Ca2�-ATPase
inhibitor cyclopiazonic acid to prevent elevations of the cyto-
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FIGURE 1. Fast, repetitive MARCKS phosphorylation is mediated by novel
PKCs. A and B, simultaneous TIRF microscopy recordings of plasma mem-
brane DAG concentration (magenta) and membrane localization of MARCKS-
GFP (green) in single MIN6 cells. Membrane depolarization with 30 mM K�

induced DAG spiking, which was paralleled by transient drops of MARCKS
fluorescence, representing short-lived PKC activity that resulted in MARCKS
phosphorylation and dissociation from the membrane. MARCKS transients
were not affected by 1 �M cPKC inhibitor Gö 6976 (A) but vanished in
response to 1 �M Gö 6983, an inhibitor of both conventional and nPKCs, when
added in the presence (A) or absence (B) of Gö 6976. n � 14 cells in three
experiments for Gö 6976 and 15 cells in five experiments for Gö 6983.
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plasmic Ca2� concentration reduced carbachol-induced DAG
production, probably as a result of elimination of positive feed-
back from Ca2� on phospholipase C (31), and PKC�-GFP trans-
location was consequently also slightly reduced (Fig. 4, B and

C). These findings show that the glucose-induced DAG
microdomains are associated with translocation of nPKCs to
the plasma membrane and reinforce the notion that DAG is
sufficient for driving translocation of nPKCs.
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FIGURE 2. Glucose- and carbachol-induced translocation of nPKCs. Representative TIRF microscopy recordings from single MIN6-cells co-expressing the
DAG biosensor (magenta) and GFP-labeled PKC (green) during stimulation with an increase in glucose concentration from 3 to 11 mM, followed by addition of
100 �M carbachol. A–C, DAG dynamics and translocation of PKC� (A, n � 7 cells in three experiments), PKC� (B, n � 8 cells in four experiments), and PKC� (C, n �
9 cells in three experiments). D, TIRF image pairs acquired every second showing the spatial distribution of a DAG spike and corresponding PKC� translocation.
The cell border is outlined in yellow. The DAG spike occurs in a restricted part of the plasma membrane, and PKC� translocates to the same region. Scale bars �
5 �m.
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FIGURE 3. The depolarization-induced PKC� translocation pattern reflects DAG dynamics. Representative TIRF microscopy recordings from single MIN6
cells co-expressing the DAG biosensor (magenta) and GFP-labeled PKC� (green) or expressing the Ca2� sensor R-GECO (black). A and B, DAG dynamics and PKC�
translocation in cells exposed to 3 mM glucose, 30 mM K�, and 10 �M of the P2Y1 receptor antagonist MRS 2179. n � 6 cells in two experiments (A) and 7 cells
in three experiments (B). C, single-cell recording of the [Ca2�]pm response to depolarization with high K� in the presence of MRS 2179 (n � 15 cells from three
experiments). D, simultaneous recording of DAG dynamics and PKC� translocation in response to repetitive applications of the P2Y1 receptor agonist MRS 2365
(n � 14 cells from five experiments).
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Glucose Induces Complex Oscillatory cPKC Translocation
Reflecting both Ca2� and DAG Dynamics—Experiments were
also performed with MIN6 cells co-expressing the DAG biosen-
sor and either of the GFP-tagged cPKC isoforms PKC�, �I, or
�II. Elevation of the glucose concentration to 11 mM induced
prominent, repetitive translocation of all three cPKC isoforms
(Fig. 5, A–C). The translocation pattern of PKC�II differed
slightly from that of PKC� and PKC�I. Of 10 cells expressing
PKC�II-GFP, four showed DAG increases and PKC transloca-
tion even at a substimulatory glucose concentration (data not
shown). In the remaining cells, 11 mM glucose induced promi-
nent, repetitive translocation of PKC�II to the plasma mem-
brane with kinetics strikingly similar to that of DAG, and few
glucose-induced PKC�II recruitments to the membrane
occurred without a concomitant DAG spike (Fig. 5B). Carba-

chol triggered pronounced and sustained recruitment of
PKC�II to the plasma membrane, mirroring the DAG dynam-
ics (Fig. 5B).

The translocation pattern of PKC�I consisted of a small, sus-
tained increase of fluorescence with superimposed, very pro-
nounced (�3-fold increases in fluorescence) repetitive translo-
cation peaks that only partially reflected parallel DAG spiking
(Fig. 5, C and D). Although carbachol transformed the DAG
pattern to a sustained increase, PKC�I continued to show fast,
repetitive translocation from an elevated level that sometimes
fluctuated slowly (Fig. 5, C and D). The fast PKC�I transloca-
tions that did not coincide with DAG spikes are most likely
driven by rapid glucose-induced changes in the cytoplasmic
Ca2� concentration. Fig. 5, E and F, shows an example of a
glucose-stimulated cell with slow oscillations of PKC�I trans-
location (duration �1 min) and superimposed spiking almost
perfectly mirroring slow and fast oscillations of [Ca2�]pm. With
PKC�I, it was more difficult to observe spatially restricted
translocation coinciding with DAG microdomains than it was
with the nPKCs. This was because PKC�I translocation spikes
were so frequent and clearly dependent on factors in addition to
DAG. Fig. 5G shows one of the rather infrequent examples of an
isolated PKC�I translocation event paralleled by local DAG
generation.

Membrane depolarization with a high K� concentration
resulted in sustained plasma membrane translocation of
PKC�I-GFP with superimposed spiking (Fig. 6A). This PKC�I-
GFP spiking was inhibited when DAG spiking was prevented by
P2Y1 receptor inhibition with MRS 2179 (Fig. 6, A and B). How-
ever, the sustained translocation of PKC�I-GFP was unaffected
by the drug (Fig. 6A), showing dynamics strikingly similar to
those of [Ca2�]pm, with a slight time-dependent decline (Fig. 6,
C and D). Likewise, introduction of MRS 2179 before K� depo-
larization did not affect the subsequent [Ca2�]pm elevation and
stable PKC�I translocation but prevented the appearance of
rapid DAG and [Ca2�]pm spikes as well as the concomitant
transient PKC�I translocations (Fig. 6, E and F).

In the presence of 3 mM glucose, carbachol triggered an
initial distinct peak of PKC�I-GFP translocation to the
plasma membrane, followed within a few seconds by dissocia-
tion and stabilization at a sustained plateau corresponding to
15% � 3% of the peak translocation (n � 19; Fig. 7, A and B).
Similar kinetics were not always observed for DAG production,
and the plateau phase corresponded to 83% � 5% of the peak
amplitude (n � 19, Fig. 7A). PKC�I translocation dynamics
were reminiscent of those of [Ca2�]pm, which were dominated
by a pronounced initial peak caused by inositol-1,4,5-trisphos-
phate-mediated mobilization of Ca2� from the endoplasmic
reticulum, followed by a modest stable elevation, mainly
reflecting store-operated Ca2� entry (Fig. 7B) (32). The sus-
tained PKC�I-GFP translocation probably reflects the Ca2�

dependence of DAG binding (33, 34). Omission of Ca2� from
the extracellular medium together with addition of EGTA and
cyclopiazonic acid prevented the carbachol-induced rise of
[Ca2�]pm (Fig. 7B) and effectively prevented plasma membrane
translocation of PKC�I-GFP (Fig. 7, C and D). Our findings
reinforce the notion that the translocation of cPKCs is strictly
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dynamics. A, DAG dynamics and PKC� translocation in response to repeated
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Ca2�-dependent but also emphasize that DAG mediates a fast
and transient component of membrane translocation.

The Atypical Isoform PKC	 Does Not Translocate to the
Plasma Membrane in Response to Muscarinic Receptor Activa-
tion, Glucose, or Insulin—We also investigated the transloca-
tion dynamics of PKC	, an aPKC family member expressed in �
cells (5–10). Although 100 �M carbachol or rise of glucose elic-
ited pronounced DAG signaling, there was no consistent PKC	-
GFP translocation to the plasma membrane (Fig. 8A). A weak
tendency of carbachol to increase PKC	-GFP membrane fluo-
rescence was probably unspecific and reproduced in control
experiments with plasma membrane-anchored GFP (data not
shown). Because PKC	-GFP might be responsive to phosphati-
dylinositol 3,4,5-trisphosphate, we investigated the effect of
insulin. At 100 –300 nM, insulin induced a phosphatidylinositol
3,4,5-trisphosphate increase of similar magnitude as glucose
but without recruitment of PKC	-GFP to the plasma mem-
brane (Fig. 8B).

Inhibition of P2Y1 Receptors Suppresses Glucose-induced
Insulin Secretion—To clarify whether DAG spiking and PKC
translocation contributed to glucose-induced insulin release,
we measured insulin secretion dynamics from MIN6 pseudois-
lets. Increase of glucose from 3 to 20 mM induced pulsatile insu-
lin release that deteriorated after introduction of 10 �M MRS
2179 (Fig. 9A). After averaging data from five experiments, pul-
satility was no longer evident, but there was significant suppres-
sion of insulin release during MRS 2179 exposure (time-average
secretion, 64% � 9% of the preceding 10-min control period;
p � 0.01; Fig. 9B).

Discussion

This study demonstrates that exocytosis-induced microdo-
mains of DAG recruit both conventional and nPKCs to the
plasma membrane in � cells. Autocrine signaling is thus
involved in controlling the spatiotemporal dynamics of PKC
activity in glucose-stimulated � cells. In contrast to the view
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that DAG changes slowly and that Ca2� accounts for the rapid
translocation of PKC (28, 35), this study highlights that fast,
oscillatory PKC translocation can be determined by DAG spik-
ing, whereas more sustained translocation is Ca2�-dependent.

PKC translocation dynamics has previously been investi-
gated in insulin-secreting � cells. However, glucose-induced
plasma membrane recruitment of PKC�I-GFP has not been
observed before, probably because of insufficient time resolu-
tion and difficulties to specifically detect changes in plasma
membrane fluorescence (25). PKC� and PKC�II have been
reported to undergo oscillatory membrane translocation in glu-
cose-stimulated primary � cells (18, 23), probably reflecting
slow oscillations of the free cytosolic Ca2� concentration (23,
36). Endogenous PKC� has been found to strongly associate
with the plasma membrane during the first phase of insulin
secretion, followed by a dissociation and subsequent reassocia-
tion during second-phase insulin release (10). We now discov-
ered more complex and rapid translocation dynamics that were
strikingly parallel with DAG spiking. We propose that the pre-
viously described translocation dynamics merely reflect the
Ca2�-driven component of cPKC activation and that improved

temporal resolution and selective imaging of the plasma mem-
brane now reveal a superimposed component of transient,
rapid, and local DAG-mediated plasma membrane binding of
cPKCs. Subtle variations in translocation patterns among
closely related isoforms indicate that the PKCs are fine-tuned
to respond differently to distinctive DAG and Ca2� signals.

Although DAG-dependent activation of nPKCs is well estab-
lished, it is notable that all tested isoforms were capable to
respond to glucose-induced DAG spiking with strikingly rapid
translocation to the plasma membrane. Several previous stud-
ies failed to detect glucose-induced plasma membrane associa-
tion of PKC� (10, 36, 37), and in HEK293 cells, this isoform
translocates to the endoplasmic reticulum after activation of
purinergic receptors (38). Another study stressed a difference
between the � and � isoforms, with PKC� translocating to the
cell periphery and PKC� to perinuclear sites in response to glu-
cose (21). The presently observed similarity in plasma mem-
brane translocation dynamics of the two isoforms was therefore
somewhat surprising, especially because PKC� and � often have
different or even opposing, effects (39). However, a similar spa-
tiotemporal pattern at the plasma membrane does not exclude
distinct activation at other subcellular sites. Endogenous PKC�
was reported to associate with insulin staining near the nucleus,
and glucose was found to induce changes in staining intensity,
reflecting the biphasic insulin response of the perfused rat pan-
creas (10). Although the spatial resolution in the latter study did
not permit a definite localization of the staining to the secretory
granules, confocal imaging of PKC�-GFP supported a glucose-
induced association of PKC� to insulin granules in INS1E
insulinoma cells, with the most prominent effect near the
plasma membrane (25). No granular pattern was evident in the
presently observed PKC� distribution, indicating that the pro-
tein also can interact directly with the plasma membrane.

PKC� differed from the other nPKCs in that transient mem-
brane translocation sometimes occurred without a simultane-
ously detected DAG elevation. The reason may be a higher
DAG affinity of the C1 domain of PKC� compared with that of
the PKC�-derived DAG sensor (27). PKC� has been found pre-
viously to locate to the cytoplasm in rat islets (5) and to mem-
branes in RINm5F cells (8), but, unlike in this study, carbachol
did not affect the distribution pattern in either case.

The aPKCs lack a Ca2�-binding C2 domain, and their C1
domain variant is unable to bind DAG (1, 2). The carbachol-
induced membrane translocation is therefore likely mediated
by protein-protein interactions via the PB1 domain, which is
specific for aPKCs (1, 2). Carbachol-induced translocation of
PKC	 to the plasma membrane has been detected previously by
Western blotting and suggested to mediate carbachol-stimu-
lated insulin release in RINm5F cells (8). Another study using
various PKC inhibitors concluded that glucose-induced insulin
secretion is, at least in part, dependent on activation of an aPKC
isoform (20). Using immunohistochemistry, Warwar et al. (10)
demonstrated that glucose induces transient translocation of
PKC	 to the plasma membrane, corresponding to first-phase
insulin secretion, and that prolonged stimulation led to accu-
mulation of PKC	 in the nucleus. The present findings do not
support the view that glucose or carbachol cause rapid associ-
ation of PKC	 with the plasma membrane but do not allow
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conclusions about its localization or activity in other subcellu-
lar compartments.

Our findings strengthen the idea that DAG spiking underlies
the secretagogue-induced, repetitive, brief plasma membrane
associations of novel and cPKCs. They also emphasize the
requirement of DAG production for nPKC translocation and
suggest that cPKCs can associate with the plasma membrane
without prominent increases in DAG concentration. The mod-
est, stable DAG elevation caused by membrane depolarization
in the presence of MRS 2179 (Figs. 3B and 6D) probably results
from Ca2�-driven phospholipase C activity (29, 40 – 42). Mem-
brane binding of cPKCs is also mediated via interaction of the
Ca2�-binding C2 domain with other lipids, primarily phos-
phatidylserine, phosphatidylinositol-4,5-bisphosphate, and phos-
phatidylinositol 3,4,5-trisphosphate (43, 44). The C2 domain of
nPKCs is not required for membrane binding. Instead, their C1
domain has an increased affinity for DAG (33). Moreover, the
C1 domain binds selectively and stereospecifically to phos-
phatidylserine-containing membranes in a DAG-dependent
manner (33, 34), which is consistent with our finding that PKC�
did not translocate when DAG spiking was prevented.

The very short periods of PKC activation may explain why it
has been difficult to detect increased PKC-mediated phosphor-
ylation in glucose-stimulated � cells (18). Our data clearly show
that a brief DAG spike with concomitant PKC translocation is
sufficient for inducing protein phosphorylation. In � cells, the
MARCKS protein seems to be phosphorylated primarily by an
nPKC. The transient nature of these PKC signaling events
should be suitable for regulation of rapid processes such as exo-

cytosis. Indeed, several components of the exocytosis machin-
ery, including SNAP25 and Munc18, are targets for PKC (45,
46). Studies of the effects of PKC inhibitors on insulin secretion
have nevertheless yielded contradictory results (18 –23). The
inconsistencies may in part be explained by different effects of
PKC on the initial and late phases of secretion (23). Another
possibility is that PKC is important for the periodic pattern of
insulin release. Accordingly, inhibition of the purinergic feed-
back mechanism that underlies the DAG spiking and transient
PKC translocation markedly perturbed pulsatile insulin secre-
tion (Fig. 9). Similar findings have been reported previously
from the perifused rat pancreas using a conventional immuno-
assay (47) and from isolated mouse insulinoma cells using a
single-cell optical assay (29). The disrupted pulsatility was asso-
ciated with either inhibition (Ref. 29 and this study) or stimu-
lation (47) of insulin secretion, a discrepancy that is probably
due to differences in experimental preparations. The effects of
adenine nucleotides on � cells are pleiotropic and involve the
action of several purinergic receptors (reviewed in Refs. 48, 49).
Recent work in human � cells confirmed that P2Y1 receptors
mediate autocrine stimulation of insulin secretion (50). Further
investigations are required to define the functional importance
of the various PKC isoforms in � cells. In conclusion, insulin
secretagogues induce transient DAG microdomains that rap-
idly recruit both conventional and novel PKCs to the � cell
plasma membrane. The findings implicate PKC signaling in the
autocrine regulation of � cell function and emphasize a role of
DAG for rapid kinetic control of PKC-dependent cellular
processes.
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Experimental Procedures

Reagents and DNA Constructs—MRS 2179 tetrasodium salt,
MRS 2365, Gö 6976, and Gö 6983 were purchased from Tocris
Bioscience (Bristol, UK). Bovine serum albumin was from
Roche Diagnostics and physiological salts for the experimental
buffer from Merck. Cyclopiazonic acid, EGTA, and HEPES
were purchased from Sigma-Aldrich (St. Louis, MO). The
plasmids containing GFP-labeled PKCs and MARCKS-GFP
were provided by Prof. Tobias Meyer (Stanford University)
and Prof. Naoaki Saito (Kobe University), respectively. A DAG
biosensor based on the C1 domain tandem repeat in PKC�
(�C1aC1b-mCherry) was created as described earlier (29), and
the genetically encoded Ca2� sensor R-GECO (51) was used
for measurements of the cytoplasmic Ca2� concentration.
mCherry targeted to the plasma membrane by a CAAX motif
was used as plasma membrane marker.

Cell Culture and Transfection—If not otherwise stated, all
cell culture reagents were from Life Technologies. Insulin-se-
creting MIN6 insulinoma cells (30) of passages 17–31 were cul-
tured in DMEM containing 25 mM glucose and supplemented
with 2 mM glutamine, 70 �M 2-mercaptoethanol, 100 units/ml

penicillin, 100 �g/ml streptomycin, and 15% fetal calf serum
and kept at 37 °C in a humidified atmosphere with 5% CO2.
Cells were transfected while being seeded onto 25-mm cover-
slips (Menzel-Gläser, Thermo Fisher Scientific, Waltham, MA)
coated with polylysine (0.01 mg/ml). For each coverslip, 	0.2
million cells were suspended in 100 �l of Opti-MEM� medium
containing 0.5 �l of LipofectamineTM 2000 with up to 0.3 �g of
plasmid DNA and plated onto the glass. After 3 h, when the cells
were attached, the transfection was interrupted by addition of 3
ml of complete culture medium. Experiments were conducted
after 13–36 h of further culture. For insulin secretion experi-
ments, 1.5 million MIN6 cells were allowed to form pseudois-
lets by culture in a 60-mm polystyrol Petri dish (Sarstedt, Nüm-
brecht, Germany) for 4 days.

TIRF Microscopy Recordings of [Ca2�]pm, DAG, and PKC
Translocation—Before each experiment, the coverslip with
attached cells was transferred to experimental buffer and incu-
bated for 30 min at 37 °C. The buffer contained 125 mM NaCl,
4.8 mM KCl, 1.3 mM CaCl2, 1.2 mM MgCl2, 25 mM HEPES, 3 mM

D-glucose, and 0.1% (w/v) bovine serum albumin with the pH
adjusted to 7.4 with NaOH. After preincubation, the coverslip
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with the cells was mounted in an open 50-�l chamber and
superfused with buffer at a rate of 0.3 ml/min. All experiments
were performed at 37 °C.

The plasma membrane localization of GFP-tagged PKCs and
the DAG translocation biosensor as well as the intensity of the
Ca2� sensor fluorescence were measured with a TIRF micros-
copy setup consisting of an Eclipse Ti microscope (Nikon) with
a TIRF illuminator and a �60, 1.45 numerical aperture objec-
tive. The 488-nm line of a multiline argon laser (ALC 60X, Cre-
ative Laser Production, Munich, Germany) and the 561-nm line
from a diode-pumped solid-state laser (Jive, Cobolt AB, Solna,
Sweden) were selected by narrow bandpass filters (Semrock,
Rochester, NY) in a filter wheel (Sutter Instruments, Novato,
CA) and used for excitation of GFP (488 nm), mCherry, and
R-GECO (561 nm). Fluorescence was detected with a back-
illuminated DU-897 electron multiplying charge-coupled
device camera (Andor Technology, Belfast, Northern Ireland)
controlled by MetaFluor software (Molecular Devices Corp.,
Downington, PA). Emission wavelengths were selected with a
filter wheel (Sutter Instruments) and the following filters: 527/
27-nm half-bandwidth for GFP and 584-nm long pass for
mCherry and R-GECO (Semrock Rochester, NY). For time-
lapse recordings, images or image pairs were acquired every 1 s.
The laser beam was blocked by a shutter (Sutter Instruments)
between image captures to minimize exposure to the poten-
tially harmful light.

Measurements of Insulin Secretion—Groups of 20 –24 pseu-
doislets were placed in a 20-�l chamber superfused at 130
�l/min with a similar experimental buffer as described above
but with 2.6 mM CaCl2. After 35 min of superfusion with buffer
containing 3 mM glucose, the perifusate was collected in 30- or
60-s fractions during elevation of the glucose concentration to
20 mM and addition of MRS 2179. The collected medium was
immediately put on ice, and after appropriate dilution, insulin
was measured using a human insulin AlphaLISA immunode-
tection kit (PerkinElmer Life Sciences) according to the proto-
col of the manufacturer.

Data Analysis—Fluorescence intensities were logged from
individual cells as a function of time using MetaFluor (Molec-
ular Devices) and expressed relative to the initial fluorescence
after subtraction of background (F/F0). The response ampli-
tudes and area under the curve were evaluated using Igor Pro
software (Wavemetrics Inc.) and are presented as mean � S.E.
Statistical analysis was performed with paired or two-sample
equal variance Student’s t test as appropriate.
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authors analyzed the data and approved the final version of the
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