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SUMMARY
Lyme disease (LD) is tick-borne disease whose post-treatment sequelae are not well understood. For this
study, we enrolled 152 individuals with symptoms of post-treatment LD (PTLD) to profile their peripheral
blood mononuclear cells (PBMCs) with RNA sequencing (RNA-seq). Combined with RNA-seq data from 72
individuals with acute LD and 44 uninfected controls, we investigated differences in differential gene expres-
sion. We observe that most individuals with PTLD have an inflammatory signature that is distinguished from
the acute LD group. By distilling gene sets from this study with gene sets from other sources, we identify a
subset of genes that are highly expressed in the cohorts but are not already established as biomarkers for
inflammatory response or other viral or bacterial infections. We further reduce this gene set by feature impor-
tance to establish anmRNAbiomarker set capable of distinguishing healthy individuals from thosewith acute
LD or PTLD as a candidate for translation into an LD diagnostic.
INTRODUCTION

Approximately 30,000 diagnosed cases of Lyme disease (LD) are

reported to the CDC each year. However, the actual estimated

burden is �476,000 cases, carrying a yearly healthcare cost of

�$1 billion in the US.1 Testing and diagnosis of the earliest

stages of LD have proven to be difficult or unreliable.2 The uni-

versally accepted diagnostic test for LD is a positive enzyme-

linked immunosorbent assay (ELISA) followed by a positive

western blot for immunoglobulin M (IgM) and IgG, referred to

as the two-tier test (TTT). In addition, there is a recently intro-

duced modified TTT (MTTT) and a test for antibodies reactive

to the VlsE1 antigen.3 The TTT test has a sensitivity of

17%–43% during the early stage of infection.2 In the absence

of a laboratory diagnostic tool, the diagnosis of early LD is reliant

on clinical demonstration of the erythema migrans (EM) skin

lesion that occasionally does not present or is not observed.

This can lead affected individuals to progress to early dissemi-

nated or late-stage disease, which can have more difficult-to-

treat symptoms, before the disease is diagnosed and treated

with antibiotics. Antibiotic treatment includes a dosing regimen

of doxycycline, amoxicillin, ceftriaxone, or cefotaxime, depen-

dent on patient age and displayed symptoms.4 Even when the

disease is clearly diagnosed and properly treated, about 10%–

20% of affected individuals do not respond completely and

develop prolonged symptoms, a condition termed post-treat-

ment LD (PTLD).5 According to the proposed case definition

put forth in the 2006 guidelines of the Infectious Diseases Society

of America (IDSA), PTLD is characterized by a previously docu-

mented case of LD infection, completion of appropriate antibi-
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otics, and symptoms 6 months after completion of antibiotic

treatment of fatigue, bodily pain, and/or cognitive difficulties

that impact day-to-day life.4 In 2020, the IDSA updated these

guidelines; however, this proposed research case definition for

PTLD was removed.6 PTLD has been controversial in the medi-

cal community due its non-characteristic symptoms and the cur-

rent inability to identify the causes of the persistent symptoms

and their subsequent resolution. While prior studies have shown

altered biology in individuals with PTLD, there are no biomarkers

to diagnose the condition.7

Several studies have examined the gene-expression profile

of cells and tissues from individuals with acute LD.8–12 In the

studies examining peripheral blood mononuclear cells

(PBMCs), all three studies identified strong differential gene

expression (DGE) signatures during acute disease that were

differentiated from healthy controls, and these signatures were

dominated by the expression of numerous immune-related

genes.8–10 In two of these three studies,8,9 when gene expres-

sion was examined at later time points after antibiotic treatment,

the DGE signature can be distinguished from healthy controls up

to 1 year post-infection, even though symptoms had largely

resolved in many cases. The underlying mechanisms that drive

this sustained gene expression are not clear. However, in a third

study, it was observed that by 6 months after antibiotic treat-

ment, the gene-expression signatures of Lyme and heathy con-

trol cases were indistinguishable.10 Presently, the reason for this

discrepancy is not clear butmay relate to the size and/or compo-

sition of the cohorts. Importantly, all three studies were able to

identify LD gene signatures that may be of value in the diagnosis

and staging of human LD. The study examining gene expression
s Medicine 3, 100816, November 15, 2022 ª 2022 The Author(s). 1
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Figure 1. PCA of normalized RNA-seq

expression vectors labeled by cohort

Each sample represents one individual from one

visit. There were no biological or technical repli-

cates, but some of the acute samples were from

the same person at multiple visits. Acute LD refers

to the cohort of individuals at their initial visit;

healthy refers to non-Lyme-exposed healthy

control participant samples taken at several time

points; and PTLD refers to the cohort of individuals

diagnosed with PTLD.
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within whole EM tissue identified several immune related genes,

including cytokines, chemokines, Toll-like receptors (TLRs), anti-

microbial peptides, interferon-inducible genes, and genes asso-

ciated with monocytoid cell activation.11 More recently, single-

cell transcriptome analysis of cells recovered from EM lesions

clearly identified antigen-driven clonal expansion of novel B

cell subsets, as well as the presence of activated T cells and

myeloid subsets.12 Collectively, these studies demonstrate that

infection with B. burgdorferi is accompanied by activation of

cellular elements of the innate and adaptive immune response

that can be identified locally in tissue and in blood.

To further our understanding of the molecular mechanisms

that may contribute to PTLD symptoms and to identify reliable

biomarkers for the diagnosis of PTLD, we examined the tran-

scriptional profiles of PBMCs isolated from 152 individuals with

PTLD and compared these profiles with individuals with acute

LD and uninfected healthy control participants. Visualization of

these cohorts was performed by examining the projection of

the RNA sequencing (RNA-seq) profiles into lower dimensions.

In addition, differential gene-expression analysis followed by

enrichment analysis was employed to identify upstream regula-

tory mechanisms and disease phenotypes distinctly associated

with LD and PTLD. Next, we further analyzed the differentially ex-

pressed genes (DEGs) to identify genes that may serve as an

mRNA biomarker to confirm LD at the early stages of the disease

as well as to assist in distinguishing between completely conva-

lescent individuals and those with PTLD.

RESULTS

RNA-seq profiles were collected from PBMCs isolated from 152

individuals with PTLD. These individuals were compared with

previously published RNA-seq profiles from 72 individuals with

acute LD (acute cohort) and 44 healthy controls also followed

over time (Table S1).9 Principal-component analysis (PCA) of

the dimensionality-reduced profiles suggests that most individ-

uals with PTLD have an expression signature that is different
2 Cell Reports Medicine 3, 100816, November 15, 2022
from the healthy controls and profiled in-

dividuals with acute LD (Figure 1). A

smaller number of individuals with PTLD

show expression profiles that are compa-

rable to those in the acute cluster.

To explore the characteristics of the in-

dividuals with PTLD, we compared them

with the healthy control and the acute
LD groups. Differential expression analysis was followed by

enrichment analysis (see STAR Methods). When comparing the

individuals with PTLD with healthy controls, 1,213 genes were

identified as significantly upregulated in PTLD and 803 were

identified as significantly downregulated (limma-voom,

Benjamini-Hochberg [BH]-adjusted p value < 0.01). The enrich-

ment results are presented as bar charts along with links to the

reports in Enrichr (Figures 2A and 2B). The upregulated genes

are enriched for immune response genes and upregulation of

the cell cycle. Specifically, MSigDB Hallmark sets are enriched

for G2-M checkpoint and E2F transcription factor targets

(Fisher’s exact test, p < 0.000005, q < 0.0001) and response

to herpes simplex virus 1 infection (KEGG pathways,

p < 5.3e�12, q < 1.54e�9). Interestingly, a significant number

of DEGs are enriched for cilium components (Gene Ontology

[GO: 0005929], p < 0.0006, q < 0.1) and cilium-related disorders

(primary ciliary dyskinesia, p < 0.00008). Downregulated genes,

when comparing individuals with PTLD with healthy controls, are

enriched for Wnt pathway components (Wiki Pathways, Wnt

signaling in kidney disease WP4150, p < 0.00001, q < 0.003)

and spinal cord specification genes (Tissue Protein Expression

from Human Proteome Map, adult spinal cord, p < 0.00009,

q < 0.0027).

When comparing the 152 gene expression profiles from indi-

viduals with PTLD with the 72 individuals with acute LD, we

observed similar patterns (Figures 2C and 2D). Specifically,

817 genes are significantly upregulated in the individuals with

PTLD, and these genes are enriched for activation of the

cell cycle compared with the individuals with acute LD, for

example, ‘‘Metaphase/Anaphase Phase Transition’’ from the

Elsevier Pathway Collection (p < 0.000006, q < 0.0022).

Interestingly, the same gene sets that are upregulated when

comparing the PTLD group with healthy controls are downregu-

lated when comparing PTLD with acute LD (KEGG, herpes sim-

plex virus 1 infection, p < 1.5e�32, q < 4.39e�30) (Figure 3).

After processing these data to identify DEGs, we analyzed and

visualized the results with a Super-Venn diagram (Figure 4). We
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Figure 2. Enrichment analysis of DEGs

(A) Enrichment results from Enrichr for significantly DEGs in

controls versus PTLD up (up in PTLD). Full results across

more libraries are available from https://maayanlab.cloud/

Enrichr/enrich?dataset = 5c8c3715899dbaa6ce7aa17d3fe

0e77d.

(B) Enrichment results from Enrichr for significantly DEGs in

controls versus PTLD down (down in PTLD). Full results

across more libraries are available from https://maayanlab.

cloud/Enrichr/enrich?dataset=4a58c5ae103e3fa93861d23

1a9718f54.

(C) Enrichment results from Enrichr for significantly DEGs in

acute LD versus PTLD up (up in PTLD). Full results across

more libraries are available from https://maayanlab.cloud/

Enrichr/enrich?dataset=1954a8136b6aa8c0b73b1cff30ad

5280.

(D) Enrichment results from Enrichr for significantly DEGs in

acute LD versus PTLD down (down in PTLD). Full results

across more libraries are available from https://maayanlab.

cloud/Enrichr/enrich?dataset=00e156d32ab62844391aba

f9e3b0b823.
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Figure 3. Differentially expressed genes in acute LD and

PTLD compared with the KEGG term herpes simplex virus

1 infection
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compared the DEGs from the acute LD and PTLD cohorts with

gene sets from other infectious diseases (Table S2). The addi-

tional gene sets were extracted from Enrichr.13 Such gene sets

include gene sets extracted from published studies of human

PBMCs from subjects virally infected with influenza, HIV, and

COVID-19. These gene sets were filtered by genes that are

also differentially expressed in acute LD or PTLD. Bacterial infec-

tion response genes derived from Enrichr gene sets are those

corresponding to studies that profiled human PBMCs from indi-

viduals infected with pathogens such as Mycobacterium tuber-

culosis andNeisseria gonorrhoeae. In addition, gene sets related

to Streptococcus pneumoniae, Staphylococcus aureus, Escher-

ichia coli, and bacterial sepsis extracted from studies that pro-

filed human cells infected with those bacteria were included.

Also, gene sets from DisGeNET,14 and those corresponding to

diseases caused specifically by Spirochetes, filtered by genes

that are also differentially expressed in acute LD or PTLD were

included (Table S2).

Next, processing the Super-Venn diagram for overlapping

sets, we extracted the DEGs from the acute LD and the PTLD

groups that were specifically not present in any viral or bacterial

infection gene sets. The resulting gene set contained 41 shared

LD up genes, 134 shared LD down genes, and 175 genes that

appear to be affected in opposite directions between acute

LD and PTLD. The set of 350 candidate genes was further

reduced using permutation importance with the goal of

achieving an optimal tradeoff between performance and gene

set size. Permutation importance was calculated with logistic

regression classifiers trained on a randomly selected 50% of

the samples to predict the class labels of the remaining 50%.

Furthermore, the permutation importance was performed using

four separate binary classification tasks: (1) distinguishing

acute LD and PTLD together from healthy controls; (2) distin-

guishing acute LD from healthy controls; (3) distinguishing
4 Cell Reports Medicine 3, 100816, November 15, 2022
PTLD from healthy controls; and (4) distinguishing be-

tween acute LD and PTLD.

The top k genes from the gene permutation impor-

tance test can be used to train a classifier that performs

increasingly well as k becomes larger. We found that at

around 35 genes, where a split in the permutation

importance distribution occurs, we only lose 0.04 area

under the receiver operating characteristic (AUROC)

curve for the acute LD versus healthy control classifier

when compared with using all 350 genes. At fewer

than 35 genes, performance begins to degrade rapidly.

With 35 genes (Table S3), the classifier performs at 98%

accuracy, determining whether a sample is from an in-

dividual with LD or a healthy control (Figure 5). Since the

35 selected biomarker genes are specific to LD and are

not known to be associated with immune activation

functions, we attempted to explore enriched terms

associated with these 35 genes (Figure 6). Interestingly,
the genes CACNB4 and ALDH7A1 are highly enriched for epi-

lepsy based on OMIM15 (Fisher’s exact test, p < 0.0047,

q < 0.0093), and the genes CACNB4, ALDH7A1, SLC4A10,

and SCN3A are enriched for proteins involved in epilepsy based

on the Elsevier Pathway Collection database (p < 0.0013,

q < 0.093). Neuropsychiatric symptoms have been reported in in-

dividuals with PTLD and in individuals with Lyme encephalopa-

thy16,17 and this analysis suggests a molecular underpinning of

such a phenotype. Three of the genes from the set of 35 bio-

markers, namely AHNAK2, APBA1, and SHANK1, encode genes

with a PDZ domain that is statistically over-represented

(p < 0.0015, q < 0.034). These genes may form complexes with

the several ion channels that are over-represented in the list of

35 biomarkers and potentially impact the neurologic symptoms

observed in PTLD. Applying WEAT analysis,18 we observe that

most of the 35 have some annotations, but they are mostly un-

der-studied (Table S4).

Nonetheless, due to the strong alignment of the samples to

the two principal components, we sought to identify the most

singularly predictive genes to find an adequate proxy for the

principal components. The top-ranked gene based on the per-

mutation importance analysis is Kelch-like family member 11

(KLHL11), which is a known member of the cullin-RING-based

BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex.

KLHL11 expression levels are capable of distinguishing LD

from healthy controls well but cannot distinguish acute LD

from PTLD as well. Another gene, undifferentiated embryonic

cell transcription factor 1 (UTF1), can distinguish acute LD

from PTLD well but does not perform well in classifying LD

from healthy controls. A classifier that combines KLHL11

and UTF1 together performs much better than a random clas-

sifier but not well enough to become a reliable diagnostic (Fig-

ure S3). Additionally, we assessed the performance of all

singular marker genes on the four classification tasks and



Figure 4. Super-Venn diagram visualization of overlapping gene sets between the cohorts and genes known to be related to inflammatory

responses in other diseases

Counts on the top correspond to the number of sets that overlap, counts on the right correspond to the number of genes in the set, and counts at the bottom

correspond to the number of genes in the intersecting set. Up- and downregulated genes in acute LD refer to significantly DEGs with respect to the healthy

individuals at visit 1. Up- and downregulated genes in PTLD refer to significantly DEGs with respect to the healthy individuals. Viral, bacterial, and spirochete

genes derived from Enrichr gene sets and filtered by genes that are also differentially expressed in LD or PTLD. Relevant gene sets from Enrichr are listed in

Table S2.
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computed AUROC curves in the same way on the test set

(Figure 7).

DISCUSSION

LD and the infection-associated sequelae of PTLD continue to

emerge as an important public health issue. Existing tests

to confirm diagnosis have limited accuracy, especially in sup-

porting the diagnosis of PTLD, which is made in persistently

symptomatic individuals manymonths to years after appropriate

diagnosis and treatment. Here, we have applied whole PBMC

transcriptome analysis to a set of individuals in a well-defined

cross-sectional cohort of individuals with PTLD. The PTLD

signature was found to be distinct from the healthy controls

and from individuals diagnosed with acute LD, which were part

of a longitudinal cohort that we have reported on previously.9

Importantly, the PTLD and acute LD RNA-seq signatures were

sufficiently distinct, enabling us to design a set of mRNAmarkers

that will be of value in distinguishing acute LD, PTLD, and healthy

controls. Although the individuals diagnosed with PTLD have a

similar immune activation to the individuals with acute LD, there

is a component of this immune response that is diminished or

altered. The reduction in immune activation is expected, but

the observation that these affected individuals are markedly

different from healthy controls is illuminating. The separation of

participants with PTLD from the healthy controls and acute LD

clusters may be explained by batch effects. However, removing

the batch effects is difficult because the group labels correspond

to the batch labels. The observation that the DEGs point to bac-

terial infection and inflammatory response suggest that the dif-
ferences observed are not just due to batch effects. Some of

theDEGs in PTLD point to common symptoms observed in these

affected individuals. For example, neuropsychiatric symptoms

that have been reported in individuals with PTLD and in individ-

uals with Lyme encephalopathy16,17 are consistent with the

enrichment analysis that suggests potential genetic underpin-

ning of such a phenotype. Expression data from RNA-seq

applied to PBMCs collected from acute LD, PTLD, and healthy

controls yields distinct separation of individuals along the first

two principal-component axes of variance. This suggests that

mRNA biomarkers may be feasibly identified to diagnose acute

LD and PTLD. Gene set overlap analysis was used to identify

consensus and divergent DEGs in acute LD and PTLD and

compared with gene sets from other viral and bacterial infec-

tions. The resulting genes that are specific for LD were further

reduced, and classifiers were constructed to assess the feasi-

bility of developing a diagnostic. Overall, the gene classifiers

we identified can categorize individuals with acute LD and

PTLD using as few as two mRNA biomarkers.

Our results suggest the possibility of utilizing an mRNA-based

diagnostic biomarker panel, in combination with precise clinical

evaluations, to identify and/or categorize individuals in whom LD

is suspected. This approach could be adapted to utilize whole

blood, a readily accessible tissue, andwould not rely on the detec-

tion of anti-Borrelia antibodies or bacterial DNA, approaches that

have been shown to lack sensitivity. In addition, previous studies

have shown that levels of chemokines (CCL19), serum metabo-

lites, and a fecal microbiome signature have been associated

with the development of PTLD.19–21 Therefore, it is possible that

an approach incorporating mRNA combined with other molecular
Cell Reports Medicine 3, 100816, November 15, 2022 5



A

B

C

Figure 5. Performance of the classifier using

35 mRNA biomarker genes chosen with the

training set

Performance is based on training four independent

models and predicting the held-out samples not

used during training or feature selection. The test set

is randomly under-sampled such that classes are

balanced. p values are based on a permutation test

across different potential train-test splits. (A)

Confusion matrices for a two-gene classifier. (B)

Confusion matrices for the 35-gene biomarker set.

(C) ROC and Precision Recall curves for the 35-

gene-set biomarker.
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Figure 6. Enrichment results from Enrichr for the 35 biomarker genes

Full results across more libraries are available from https://maayanlab.cloud/Enrichr/enrich?dataset=41c885f2b79be29e03211733ca32d137.
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signaturesmay lead to an accurate diagnostic with high sensitivity

and specificity in diagnosing the multiple stages of human LD,

including PTLD. This, however, will require a broader study design

using samples frommultiple PTLD cohorts as well as the study of

cohorts from other disorders such as post-acute COVID-19 and

chronic fatigue syndrome.

The finding that PBMCs from individuals with PTLD express an

mRNA signature also indicates that PTLD has a specific underly-

ing biology. Understanding this complex biology will be of great

value in the development of novel treatment strategies. The gene

expression data on this large group of individuals with PTLD

expand on previous work, all of which lead to the identification

of gene classifiers for acute LD.8–10 In addition, the studies on

acute LD identified an mRNA signature that was consistent

with a strong immune response. In this study, which focuses

on PTLD, analysis using a Super-Venn diagram showed that

both up- and downregulated genes overlapped with host inflam-

matory response genes and genes linked to viral and bacterial in-

fections. Comparing the genes that distinguish PTLD from acute

LD identified several immune features. The complement

pathway is identified using KEGG22 and BioCarta pathways

analysis, as well as GO Biological Processes23 enrichment anal-

ysis. In addition, enrichment analysis using the Azimuth Cell

Types library identified gene signatures from immune cell types

including plasmablasts and proliferating CD4+ and CD8+

T cells. This would imply, as mentioned above, that several im-

mune pathways are a part of the underlying biology of PTLD.

In addition, our analysis also identified non-immune features.

For example, when comparing upregulated genes in PTLD

versus healthy controls, WikiPathways24 enrichment analysis

identified a gene set related to primary cilium development and

ciliopathies, and GO Cellular Components revealed cilium (GO:
0005929) and motile cilium (GO: 0031514). These are features

that are associated with non-immune, non-bone-marrow-

derived cell types such as epithelial cells. Of note, cell-type

enrichment analysis using the Descartes Cell Types and Tissue

2021 library identified a signature associated with ciliated epithe-

lial cells of the lung, and the Human Gene Atlas library identified

enriched terms aligned with non-immune cell types. This signa-

ture could be from a non-bone-marrow-derived cell that bears

primary cilia, or it could be from an immune cell that expresses

cilia-like projection. Regarding this latter possibility, recent

data have shown that effector T cells can form cilia-like projec-

tions, most notably in the process of immune synapse formation

when effector T cells are interacting with targets cells.25 These

structures have been referred to as ‘‘frustrated cilia,’’ and the

genes responsible overlap considerably with genes known to

be involved in formation of primary cilia in epithelium and other

non-immune cell types.25 These genes include TTC26, TTC23,

IFT 74, IFT81, IFT85, ARL13B, CEP83, CEP162, CEP76, and

CEP44. CEP83 encodes a protein involved in centrosome dock-

ing on the plasma membrane and is critical for primary cilia and

immune synapse formation.25,26 ARL13B encodes a guanine

exchange factor that regulates membrane composition and the

recruitment of signalingmolecules in both the cilium and immune

synapses.27 TTC genes encode tetratricopeptide repeat-con-

taining proteins that can interact with IFT proteins and are critical

for cilia formation and function.28 Intraflagellar transport (IFT)

proteins participate in the active sorting and transport of cyto-

solic and membrane proteins destined for the cilium,

and this can include signaling molecules.29 All these genes

are upregulated in individuals with PTLD relative to healthy

controls, suggesting the presence of an immune cell type in cir-

culation that is in the process of assembling cilia-like structures.
Cell Reports Medicine 3, 100816, November 15, 2022 7
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Figure 7. Classifier performance with single

genes

Performance of singular mRNA biomarkers as the

feature for the models. Performance is based on

training four independent models with the training

set and predicting the test samples not used during

training. The test set is randomly under-sampled

such that classes are balanced. AUROCs for each

gene are reported as a heatmap.
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This is consistent with the discussion above, suggesting that im-

mune activation is a component of the underlying biology of

PTLD. Further study utilizing single-cell transcriptomics would

be of value in clearly identifying and validating this novel cell sub-

set as well as help to understand what role such a cell type may

play in disease pathogenesis.

The 35 biomarker genes identified as a classifier were not

linked to obvious immune pathways. However, enrichment anal-

ysis with Enrichr did identify enrichment for several metabolomic

pathways including glycine, serine, and threonine metabolism

(BioPlanet30 and KEGG), lysine catabolism (BioPlanet), and

glycolysis (MSigDB31). This is consistent with previous work

identifying a metabolomic signature in PTLD.20 In addition, a

recent study identifying a set of 31 genes for diagnosis of acute

LD also noted that only a fraction of the genes are immune

related.We believe that these observations underscore the com-

plex biology that is part of PTLD. Understanding the roles that

immune and non-immune pathways play in the various stages

of LD including PTLD will likely lead to novel therapeutic targets

and other therapeutic strategies. The 35 biomarker genes have

two genes involved in calcium ion channel regulation (CBARP,

CACNB4) and several genes that are highly co-expressed with

CAM kinases 2 and 4 (SLC4A10, CACNB4, NAP1L2, APBA1,

PPFIA4, and SHANK1, marked in Table S3), potentially forming

a neuronal cell signaling pathway and further making a case for

neurological symptoms.
8 Cell Reports Medicine 3, 100816, November 15, 2022
In conclusion, this study produced a gene-expression profile

for PTLD. This is just a first step that requires confirmation for

diagnosis of PTLD. Gene expression can support the diagnosis

of PTLD in individuals with a history of prior diagnosed and

treated LD and persistent post-treatment symptoms. In addition,

if a future diagnostic panel can suggest negative test results for

PTLD, based on a reduced representation of gene-expression

profile, this could be valuable in individuals with look-alike syn-

dromes not associated with prior LD and would lead to further

evaluation of these affected individuals to establish a definitive

diagnosis.

Limitations of the study
The identified 35 biomarker genes may be useful as a diagnostic

only if the same approach is applied to whole blood instead of

PBMCs. PBMC isolation is expensive and currently requires

academic laboratory expertise. To translate the test into primary

health care for individuals with LD, a parallel test will have to be

devised by experimentally comparing PBMCs with whole-blood

results. This can be done computationally but more reliably by

experimentally measuring gene expression from PBMCs and

whole blood from the same large cohort of individuals diagnosed

with LD and PTLD.

The study also has additional limitations. The healthy

controls and individuals with acute LD samples were collected

for a different study and as such were not processed
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altogether, although they were processed using the same meth-

odology. Because of this, standard batch correction techniques

cannot be adequately performed, and the possibility of a batch

effect between PTLD and acute LD samples cannot be

completely ruled out. Future studies should be designed with

the controls processed at the same time as the cases. In addi-

tion, the individuals were profiled with RNA-seq in either their

acute phase or when they had developed PTLD. However, we

do not have sufficient samples from the same individuals that

contributed samples in both phases. Hence, we cannot predict

which acute individuals would eventually develop PTLD. The

rigorous inclusion and exclusion criteria for these cohorts may

also limit applicability to a wider set of potential individuals

affected by PTLD. A follow-up study should include individuals

with LD and PTLD with a broader range of clinical presentations.
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14. Piñero, J., Queralt-Rosinach, N., Bravo, A., Deu-Pons, J., Bauer-Mehren,

A., Baron, M., Sanz, F., and Furlong, L.I. (2015). DisGeNET: a discovery

platform for the dynamical exploration of human diseases and their genes.

Database. 2015.

15. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., and McKusick,

V.A. (2005). Online Mendelian Inheritance in Man (OMIM), a knowledge-

base of human genes and genetic disorders. Nucleic Acids Res. 33,

D514–D517.

16. Matera, G., Labate, A., Quirino, A., Lamberti, A.G., BorzÃ, G., Barreca, G.S.,
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All source code used for the analysis is provided at: https://github.com/LymeMIND/LM3-study-supporting-materials.

DOI for source code: https://doi.org/10.5281/zenodo.7084176.

Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The human cohort
The cohorts of patients included in the current analysis are part of large, on-going studies to characterize patients with LD and

PTLD. Samples from 152 patients with PTLD were drawn from a cross-sectional study for which detailed recruitment and

eligibility information has been previously described.32 Briefly, participants were largely recruited from a clinic-based

population during the period of 2008-2018 and were required to have medical record-confirmed prior LD and appropriate anti-

biotic treatment. Eligibility criteria included evidence of documented erythema migrans rash, oligoarthritis with joint swelling,

facial palsy, neuropathy, meningitis, encephalitis, carditis, or a viral-like illness, as well as concurrent laboratory evidence of

infection performed by a laboratory following CDC recommendations for test interpretation. Additionally, participants were

required to have continued fatigue, pain, or cognitive dysfunction that affected function, and were excluded for a range of spe-

cific medical conditions with significant symptom overlap with PTLD. For the current analysis, we did not require participants to

have been ill for at least 6 months at the time of enrollment. The implications of this decision were tested, and the makeup of

the biomarker set was largely preserved even without considering the convalescent cohort patients. This is because these pa-

tients are uniformly mixed with the other PTLD patients (Figures S1 and S2). Healthy controls were recruited from the same

geographic region. They did not have a clinical history for LD and were CDC-negative on two-tier testing for antibodies to

B. burgdorferi.
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Demographics of the human cohort
The PTLD cohort consisted of 152 patients made of 66 females and 86males. Their average age was 47.27 with a SD of 15.85. Three

patients in this cohort were self-identified as Asian, five as Hispanic, and three as Black while the remaining self-identified as White.

The acute LD cohort consisted of 72 patients made of 31 females and 41males. Their average age was 47.19 with a SD of 15.68. One

patient self-identified as Asian, and one as Black while the remaining self-identified asWhite. The healthy control cohort consisted of

45 patients made of 26 females and 19 males. Their average age was 50.29 with a SD of 15.28. Five patients in this cohort were self-

identified as Black, five as Hispanic, and one as Native American while the remaining self-identified as White.

RNA-seq profiling of patients
The RNA-seq profiles of participants with PTLD were compared to data from 72 patients with acute Lyme (‘acute LD’) who were

then followed longitudinally up to one year after completing appropriate antibiotic treatment (convalescent cohort which was not

considered in this study). Participants with acute LD had a physician-diagnosed EM rash present and%72 h of appropriate antibiotic

treatment at the time of enrollment. Finally, 44 healthy control participants without a clinical history of LDwhowere also two-tier sero-

negative for LD were also included. Additional details of the acute LD and control participants, as well as prior analysis of their RNA-

seq profiles, were previously published.9

The Institutional ReviewBoard of the Johns Hopkins University School of Medicine approved this study, and all participants signed

written consent prior to initiation of any study activities.

METHOD DETAILS

Isolation of PBMC
PBMCs were isolated from fresh whole blood using Ficoll (Ficoll-Paque Plus, GE Healthcare) and total RNA was extracted from 107

PBMCs using RLT Lysis Buffer (Qiagen) by following manufacturer’s instructions. The NEBNext Ultra II Directional RNA Library Prep

Kit for Illumina (Cat# E7765) was used to generate RNA-seq libraries.

Preparation of the samples for RNA sequencing
Poly A RNAs were isolated from total RNAs using NEBNext Poly(A) Magnetic IsolationModule (NEB #E7490) and then fragmented for

cDNA synthesis. End repair is performed where 30 to 50 exonuclease activity of enzymes removes 30 overhangs, and the polymerase

activity fills in the 50 overhangs. An ‘A’ base is then added to the 30 end of the blunt phosphorylated DNA fragmentswhich prepares the

DNA fragments for ligation to the sequencing adapters, which have a single ‘T’ base overhang at their 30 end. Ligated fragments are

subsequently size selected through purification using the Sample Purification Beads included in the kit and undergo PCR amplifica-

tion to prepare the ‘libraries. The BioAnalyzer is used for quality control of the libraries to ensure adequate concentration and appro-

priate fragment size free of adapter dimers. The resulting library insert size is 200bp-500bp with a median size around 300bp. Li-

braries were barcoded and pooled for HiSeq2500 sequencing.

RNA sequencing
The prepared samples were processed by an Illumina HiSeq2500 sequencing instrument at the Genomics Core Facility at the Icahn

School of Medicine at Mount Sinai.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq processing
All samples taken from both studies were processed with FastQC, aligned to the human genome (gh38) with the STAR RNA-seq

aligner,33 after which Picard tools were used for gene, exon, and transcript quantification. The RNA-seq gene counts were merged,

genes filtered by edgeR34 quasi-likelihood, log2 transformed, quantile normalized and z-scored. Top differentially expressed genes

were calculated using a limma-voom35,36 applied to the raw counts with a BH-corrected adjusted q-value cutoff of 0.01. Differentially

expressed genes are computed by comparing pairwise between healthy controls, acute LD from patients at their first visit, and pa-

tients with PTLD.

Enrichment analysis
The differentially expressed genes were submitted to Enrichr,13 an interactive web tool for performing Enrichment analysis. Each set

was submitted independently, and a report of significant hits compiled.

Set overlap analysis
The differentially expressed gene sets were further investigated using the Super-Venn package to visualize multi-set comparisons,

helping to contrast gene sets against those in Enrichr. Enrichment analysis of GO Biological Processes37 using the consensus upre-

gulated genes between acute LD and PTLD revealed significant enrichment for cellular response to molecules of bacterial origin but
e2 Cell Reports Medicine 3, 100816, November 15, 2022



Article
ll

OPEN ACCESS
also to inflammatory response. Consensus and divergent genes between the two groups which did not appear as biomarkers for

inflammatory response, or several other viral or bacterial infections were considered as candidate biomarkers.

Classification model construction and candidate biomarker selection
The candidate biomarkers were further filtered by a variance selection criterion which scores biomarkers by total variance divided by

inter-group variance and by permutation importance using Logistic Regression classifiers on four classification problems: LD

vs. healthy, acute LD vs. healthy, PTLD vs. healthy, and acute LD vs. PTLD. The biomarkers achieving high scores for each of these

categories were selected as features for the classification task. Additionally, the top single-gene biomarkers capable of separating

samples were highlighted.

Model evaluation
To benchmark the generalizability of the approach, we hold out a third of the patients stratified across: controls, acute LD, and PTLD.

Then, we follow the same candidate biomarker selection approach to produce a biomarker set. We constructed four independent

pipelines consisting of scaling to unit mean and variance followed by a Logistic Regression classifier trained on the test set and

evaluated using the held-out patients. To mitigate class imbalance, we under sampled the test set to have equal number of samples

in the positive and negative classes during validation. The performance on the held-out set is visualized with Receiver Operating

Characteristic (ROC) and Precision Recall (PR) curves, area under these curves (AUC) is computed and a confusion matrix produced

from the true and false positives when considering a cutoff at 50% of the Logistic Regression Classifiers’ assigned probability. Addi-

tionally, permutation testing is applied on different train test splits to ensure results are consistent across many runs.
Cell Reports Medicine 3, 100816, November 15, 2022 e3
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