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Ferroptosis refers to iron-dependent, specialized, and regulated-necrosis

mediated by lipid peroxidation, which is closely related to a variety of

diseases, including cancer. Tumor cells undergo extensive changes in lipid

metabolism, including lipid peroxidation and ferroptosis. Changes in lipid

metabolism are critical for the regulation of ferroptosis and thus have

important roles in cancer therapy. In this review, we introduce the

characteristics of ferroptosis and briefly analyze the links between several

metabolic mechanisms and ferroptosis. The effects of lipid peroxides, several

signaling pathways, and the molecules and pathways involved in lipid

metabolism on ferroptosis were extensively analyzed. Finally, our review

highlights some ferroptosis-based treatments and presents some methods

and examples of how these treatments can be combined with

other treatments.
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1 Feature of ferroptosis

The discovery of ferroptosis stemmed from the identification of systematic xCT in

1980 (1). It was not until 2012 that Dixon al. formally proposed the concept of ferroptosis

(2). And ferroptosis is morphologically, biochemically and genetically different from

other regulated cell death (RCD).
1.1 Morphological characteristics

The morphology of ferroptosis cells is significantly different from other RCD.

Macroscopically, ferroptosis cells show swelling of the cytoplasm as well as organelles,
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deformation of the plasma membrane, and decreased chromatin

condensation similar to necrosis (3, 4). Microscopically,

ferroptosis cells show abnormalities in the mitochondrial

structure, such as mitochondrial outer membrane rupture, an

increase in mitochondrial membrane density, and reduced or

even disappearance of the mitochondrial cristae.
1.2 Biochemical characteristics

Abnormal iron and lipid metabolism in ferroptosis is

obvious, iron is a key factor in lipid oxidation and ferroptosis,

and abnormalities in its input, secretion, distribution, and

storage can affect ferroptosis (5, 6). Mitochondria is an

important organelle involved in the production of ROS (7),

and lipid peroxides are type of ROS that directly induce

ferroptosis (8). Normal cellular biological processes require the

participation of ROS, but excessive ROS will destroy cellular

components and lead to cell death (9). Two signaling axes, Xc
-/

GSH/GPX4 and FSP1/DHODH/CoQ10 protect cells from

ferroptosis. Specific regulatory factors and mechanisms are

detailed below (Figure 1).

Current research shows that ferroptosis is inextricably linked to

amino acid, glucose, iron, and lipid metabolism. Glutamate and

glutamine involved in the amino acid pathway regulate ferroptosis

(10). Cysteine input through system Xc
- belongs to the amino acid

pathway, and the transsulfurization pathway allows cells to convert

methionine to cysteine. Themitochondrial TCA cycle and electron

transport chain can promote cysteine deprivation-induced

ferroptosis, the process involving amino acid metabolism, lipid

metabolism, and glucose metabolism (11).
2 Lipid peroxidation and ferroptosis

Excessive accumulation of lipid peroxides is an important

link in the process of ferroptosis, and substrates and enzymes

involved in lipid peroxidation can regulate ferroptosis.
2.1 Key substrates and enzymes of
lipid peroxidation

Ferroptosis is accompanied by the accumulation of lipid

peroxides. Lipidomics analysis showed that PEs containing AA

or epinephrine AdA in the membrane phospholipid family

are susceptible to lipid peroxidation (12). Acyl-CoA

synthetase long-chain family member 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3) can

acylate AA/AdA to membrane phospholipids, affect the

properties of PUFA, and play important regulatory roles in

ferroptosis (13, 14).
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ACSL4 is an indispensable enzyme for lipid metabolism that

catalyzes the binding of free long-chain fatty acids to CoA and

preferentially recognizes arachidonic acid, and acylates it (15),

after which LPCAT3 catalyzes the acylated AA into PL (14). The

inhibition of these two enzymes can block the accumulation of

lipid peroxides during ferroptosis, thus inhibiting ferroptosis to a

certain extent. In addition, FSP1 catalyzes the conversion of

ubiquinone to ubiquinol and prevents lipid peroxidation in the

cell membranes (16).
2.2 Oxygenases in lipid peroxidation

Lipid peroxidation can be divided into enzymatic and non-

enzymatic reactions (17), which the latter mainly refer to the

entry of iron into cells through transferrin, followed by the

Fenton reaction with hydrogen peroxide where excess oxygen

free radicals are generated (18). Lipid oxidases involved in

enzymatic reactions are divided into three types, namely

lipoxygenase (LOX), cytochrome P450 oxidoreductase (POR),

and cyclooxygenase (COX). The production of ROS requires the

participation of these enzymes, furthermore, these enzymes are

involved in ferroptosis (19). PUFA substrates are oxidized in the

U-shaped fatty acid-binding channels of LOXs (20), the LOX

gene family consists of six members: ALOX3, ALOX5, ALOX12,

ALOX12B, ALOX15, and ALOX15B (21). TP53 is a tumor

suppressor gene that suppresses the expression of SLC7A11 to

deplete GSH, thus inducing ferroptosis (22). Different members

of TP53 can induce ferroptosis via different ALOX (21, 23).

Cytochrome P450 oxidoreductase (POR) can use electrons

derived from the donor NADPH and provide them to

downstream effectors (such as CYP and cytochrome p50) to

reduce them. This causes the peroxidation of membrane

polyunsaturated phospholipids which can lead to ferroptosis

(24). COX-2 is upregulated during ferroptosis, however,

inhibition of COX-2 does not modulate ferroptosis.
3 Lipid metabolism
regulates ferroptosis

Comparedwith normal cells, the lipidmetabolismof tumor cells

is abnormal, and lipid metabolism is widespread in the process of

ferroptosis. Fatty acid synthesis, fatty acid transport, the mevalonate

pathway for cholesterol synthesis, and several major signaling

pathways involved in lipid metabolism regulate ferroptosis.
3.1 PUFA and MUFA

PUFA play a unique and important role in regulating cell

death, AA and AdA are the most critical substrate in ferroptosis.
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Hypermethylation of the promoter region results in low

expression of ELOVL5 and FADS1 in intestinal-type gastric

cancer (GC) cells, which are resistant to ferroptosis, and after

supplementation with AA, the cells become ferroptosis-

sensitive (25).

Treatment of cells with exogenous MUFA inhibits

ferroptosis, and this protective effect is dependent on the

involvement of ACSL3 (26). The mechanism is associated with

the inhibition of ROS accumulation in the plasma membrane by

MUFA, which competes with PUFA for binding to

phospholipids. Increasing the ratio of saturated fatty acids

(SFA) to monounsaturated fatty acids (MUFA) in cells, leads

to lipotoxicity and apoptosis (27). The mechanism by which

MUFA inhibits ferroptosis is distinct from its mechanism of

inhibiting lipotoxicity by directing SFA into the triglyceride pool

to form lipid droplets, which ultimately protects cells from

lipotoxicity (28).
3.2 De novo synthetic pathway

Normal cells rely on glucose as their primary energy source,

and excess glucose is used for de novo lipogenesis. SFA and

MUFA can be produced through this pathway, while PUFA level

is dependent on dietary intake (29), glucose in cancer cells is

used for anabolism rather than for generating oxidative energy

(30). Approximately 95% of the fatty acids in tumor cells are

derived from endogenous synthesis (31, 32). De novo
Frontiers in Oncology 03
synthesized fatty acids are stored in neutral lipids (stored in

the LD) and phospholipids (in the membrane), and lipid

synthesis is exuberant in cancer cells. Lipid droplets act as

potential scavengers of ROS and promote de novo lipid

synthesis in cancer cells (33, 34), the presence of lipid droplets

inhibits cell ferroptosis to a certain extent.
3.3 Fatty acid intake

In addition to de novo synthesis of fatty acids, fatty acid

transporters such as fatty acid translocase (FAT/CD36), fatty

acid transporter (FATP), and fatty acid-binding protein (FABP)

can transport extracellular fatty acids into the cells (35). Similar

to normal cells, cancer cells utilize exogenous lipids when de

novo synthesis is inhibited (36).

The cluster of differentiation 36 (CD36) can be involved in

fatty acid intake, and increased CD36 expression can lead to

tumor metastasis. Blocking CD36 can inhibit tumor growth and

metastasis in prostate cancer models (37). Fatty acid taken via

CD36 is mostly stored rather than used for fatty acid oxidation,

which may promote ferroptosis in CD36-overexpressing tumor

cells (38). On the other hand, CD36 can suppress ferroptosis by

exporting AA (39).

Besides CD36, FATP2 is also responsible for mediating fatty

acid uptake. Selective inhibition of FATP2 can delay tumor

progression, while loss of FATP2 leads to impaired uptake of

AA, making cells resistant to ferroptosis (40). FATP2 expression
FIGURE 1

The regulatory substances and mechanisms of ferroptosis. Ferroptosis is driven by the accumulation of lipid peroxides. Iron metabolism, PUFA
synthesis, and peroxidation promote the production of PUFA peroxides. AA and AdA are the key substances in the synthesis of PUFA. MUFA
(such as OA) and Lipid droplets inhibit ferroptosis to a certain extent by affecting the synthesis of PUFA. NADPH has been shown to prevent lipid
damage and counteract ferroptosis. System Xc

-/GSH/GPX4 axis and FSP1/DHODH/CoQ10 axis can inhibit ferroptosis through antioxidant
effects. The synthesis process of cholesterol is closely related to these two antioxidant axes, and IPP and FPP are the key substances.
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was reduced in GC cells, but the cells enhanced their ability to

synthesize fatty acids through de novo fatty acid synthesis so that

AA deficiency had minimal effect, allowing cells to remain

sensitive to ferroptosis (25).
3.4 Mevalonate pathway

Cholesterol can be oxidized and is an important component

of the cell membrane structure and lipoprotein, studies have

shown that cholesterol and ferroptosis have many links (41, 42).

In addition to de novo synthesis of FAs and cholesterol by liver

and adipocytes, cholesterol can also be synthesized via the

mevalonate pathway, in which hydroxymethylglutaryl-CoA

reductase (HMGCR) is the rate-limiting enzyme (43). Many

enzymes associated with de novo synthesis and/or mevalonate

pathway synthesis are thought to inhibit tumor growth (36, 44).

The mevalonate pathway also affects selenoprotein biosynthesis

(45), and GPX4 is a form of selenoprotein, thus, so the

mevalonate pathway is related to ferroptosis. Statins have been

used clinically for cholesterol-lowering therapy since their

development (46), and they were later found that patients

taking statins were resistant to some tumors, such as breast

cancer (47). Statins can inhibit HMG-CoA reductase (HMGCR),

resulting in the inactivation of GPX4 and induction of

ferroptosis in mesenchymal cancer cells (48). FIN56 is a class

III FIN that degrades GPX4 and activates squalene synthase

(SQS), which can lead to the exhaustion of coenzyme Q10

(CoQ10), leading to ferroptosis (49), moreover, its mechanism

of action involves the mevalonate pathway.
3.5 Signaling pathways
regulate ferroptosis

In addition to GPX4 and FSP1, there are also several

signaling pathways involved in lipid metabolism that can

regulate ferroptosis: the Hippo pathway involved in cell

proliferation and regulation of cell size, the AMPK signaling
Frontiers in Oncology 04
involved in energy metabolism, and the HIF pathway involved in

hypoxic conditions (50, 51). The regulatory mechanisms of these

three pathways and their involvement in lipid metabolism are

summarized in Table 1.
4 Ferroptosis-related
cancer treatment

RCD includes but is not limited to autophagy, pyroptosis,

necroptosis, and ferroptosis. Signal transduction in RCDs can be

artificially regulated and promote tumor cell death (60). The

mechanisms of RCDs are different (61–63). Mechanistically,

some drugs and compounds involved in ferroptosis function

by regulating iron metabolism, lipid peroxidation, or both

pathways. We summarize some ferroptosis-based treatments

(Table 2 and Figure 2).
4.1 Ferroptosis-based drug therapy

4.1.1 Iron metabolism-related drug therapy
There is widespread dysregulation of iron metabolism in

well-known cancer types, such as breast cancer, pancreatic

cancer, lymphoma, hepatocellular carcinoma, glioblastoma,

prostate cancer, and colorectal cancer (77). Regulation of

ferroptosis via iron metabolism is a reliable approach for the

treatment of different cancer types. Artesunate enhances the

lysosomal activity and increases the lysosomal iron

concentration in cells (78). Furthermore, it regulates the

mRNA expression levels of iron-related genes (79), the

expression of NCOA4 to promote ferritin phagocytosis to

increase the cellular iron concentration, and other processes

which can induce ferroptosis (80). Artesunate regulates iron

metabolism through the above-mentioned mechanisms and

induces ferroptosis in pancreatic cancer cells (81). Artesunate

also inhibits Burkitt lymphoma by inducing ferroptosis (82).

Dihydroartemisinin increases the autophagic degradation of

ferritin by accumulating in lysosomes, increasing the cellular
TABLE 1 This table introduces the three pathways that regulate ferroptosis, and some of their specific mechanisms, and states whether lipid
metabolism processes are involved.

Signaling pathway Mechanism Involved in lipid
metabolism

Refs

E-cadherin-NF2-Hippo-
YAP

Downstream effector TAZ alters cell density no (52,
53)

YAP affects ferroptosis by regulating target genes ACSL4 and TfR1 yes (54)

Cadherin affects cell-to-cell contact and EMT by regulating the Hippo pathway no (55)

AMPK Activation of AMPK inhibits ferroptosis by inhibiting lipid peroxidation yes (56)

AMPK promotes ferroptosis by directly blocking system Xc
- activity yes (57)

HIF-2a-HILPDA HIF-2a-HILPDA axis selectively enriches polyunsaturated lipids by activating the expression of
hypoxia-inducible factors

yes (58,
59)
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iron content, and inducing ferroptosis (78, 83), thereby

triggering ferroptosis in glioma cells (84). Cisplatin, which is

involved in ferritin phagocytosis and leads to an increase in

cellular free iron levels, also induces ferroptosis (85). In a

cisplatin-resistant head and neck cancer cell model, the

treatment effect of artesunate was poor, and the inhibition of

the NRF2-ARE pathway increased the sensitivity of artesunate
Frontiers in Oncology 05
and reversed the ferroptosis resistance of the model (86).

Changes in iron metabolism were also involved in this process.

4.1.2 Lipid peroxidation-related drug therapy
The two signal axes mentioned earlier, system Xc

-/GSH/

GPX4 axis and FSP1/DHODH/CoQ10 axis, as well as

transcription factor NERF2, p53 gene, and three types of lipid
FIGURE 2

Mechanisms by which some treatments affect ferroptosis and tumors. Radiation therapy can generate ROS, induce lipid peroxidation, upregulate
ASCL4, promote PUFA synthesis, provide a substrate for lipid peroxidation, deplete GSH and affect GPX4 to affect ferroptosis. IFN-g in
immunotherapy can affect system Xc

-, which further affects ferroptosis through the GPX4 pathway. PD-L1 can directly inhibit tumors.
Nanotherapy can deliver iron and chemotherapeutic drugs to cells to achieve better therapeutic effects. The impact of the immune
microenvironment on ferroptosis and tumors cannot be ignored.
TABLE 2 This table summarizes examples of radiation therapy, chemotherapy, immunotherapy, and other combination of treatments, and briefly
describes the mechanism.

Therapy Treatment Combination
drugs

Mechanism Refs

Radiotherapy RT FINs Up-regulates ACSL4, inhibits SLC7A11 or GPX4 (64)

Chemotherapy Bortezomib Iron Increases intracellular iron content to induce ferroptosis (65)

doxorubicin and
cisplatin

microRNA miR-133a Targeted downregulation of ferritin light chain (FTL) protein (66)

Statins – Reduces selenoproteins (such as GPX4) and CoQ10 biosynthesis (67)

Cyst(e)inase FINs Depletes extracellular cystine (16)

Sorafenib siRNA Inhibits the system Xc
- (68)

Immunotherapy PD-L1 inhibitors FINs Releases IFN-g to reduce the uptake of cystine (69)

photodynamic therapy – Increases the level of lymphocyte infiltration in tumors and recruits immune cells to
secrete IFN-g

(70)

Nanotherapy Nanoparticle materials Iron Increases intracellular iron content and activates the Fenton response (71)

Sorafenib and Cisplatin Increases the sensitivity of cancer cells to drugs (72,
73)

PUFA Regulates lipid peroxidation (74,
75)

exosomes erastin Avoids adverse reactions (76)
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oxidase: COX, cytochrome POR, and LOX, can serve as targets

for regulating lipid peroxidation. In terms of regulating the lipid

peroxidation pathway, gemcitabine is the main treatment drug

for Pancreatic ductal adenocarcinoma (PDAC), which leads to

the accumulation of ROS and induces ferroptosis when it exerts

its therapeutic effect (87). Inhibition of the HSPA5-GPX4

pathway can induce and provoke ferroptosis in PDAC cells

and enhance the anticancer effect of gemcitabine (88). Sorafenib

can directly inhibit the function of system Xc
- and activate the

NRF2-SLC7A11 signaling pathway. The use of the NRF2

inhibitor trigonelline in a sorafenib-treated mouse model was

found to promote ferroptosis and enhance the tumor suppressor

effect of sorafenib (68). In a glioblastoma multiforme (GBM)

model, temozolomide (TMZ) induces SLC7A11 expression by

activating NRF2 and ATF4, which partially inhibits

ferroptosis (89).
4.2 Combining ferroptosis
with other treatments

4.2.1 Radiation therapy
Radiation therapy can induce various types of DNA damage

in cells (90) and produce highly reactive OH radicals and other

ROS by stimulating oxidase activity (91, 92), making it capable

of inducing ferroptosis. The ionizing radiation produced by

radiotherapy induces ferroptosis in three ways (93): 1.

Production of excess ROS to induce lipid peroxidation. 2. Up-

regulation of ACSL4 expression which further promotes PUFA-

PL biosynthesis. 3. GSH consumption inhibits the protective

effects of GPX4 on ferroptosis. The combination of radiation

therapy and ferroptosis inducers such as erastin and

sulfasalazine (SAS) for class I FIN, RSL3 and ML162 for class

II FIN, and FIN56 for class III FIN increases tumor sensitivity to

radiation therapy. Studies have shown that these ferroptosis

inducers combined with radiation therapy increase the

sensitivity of non-small cell lung cancer cells to radiation

therapy and achieve better therapeutic effects than

conventional radiotherapy (64). Recent studies have shown

that the combination of class I FIN and radiotherapy for

SLC7A11 has a better effect, while class II and class III FIN

have poor pharmacokinetic effects and are prone to cytotoxicity

in actually combined therapy, and the overall therapeutic effect is

not as good as that of class I FIN in combination with radiation

therapy (92).

4.2.2 Chemotherapy
At present, based on iron and lipid metabolism, two

important factors related to ferroptosis, some effective drugs

and methods for reversing tumor resistance have been

discovered. Inhibition of ferroptosis-related genes and

pathways in tumor cells is thought to be one of the reasons for

drug resistance (94, 95).
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Regarding iron metabolism, initial studies have shown that

TFR is associatedwith tumor drug resistance, and down-regulation

of TFR can reverse tumor drug resistance (96). Ferritin levels in

multiple myeloma cells are thought to be directly related to

bortezomib resistance, iron supplementation in multiple

myeloma cell lines increases cell death, and ferritin reduction

allows tumor cells to overcome bortezomib resistance (65). After

targeted down-regulation of the ferritin L subunit by microRNA

miR-133a in cisplatin and doxorubicin-resistant breast cancer cells,

the cells showed increased sensitivity to these drugs (66).

Cells with high expression of GSH and the light chain

subunit xCT in system Xc
- exhibit resistance to drugs and

radiation via lipid metabolism-related pathways (97, 98). The

drug resistance of tumor cells is believed to originate from its

dependence on GPX4, and inhibition of GPX4 can induce

ferroptosis and attenuate the drug resistance of tumor cells

(99). FSP1 acts as an oxidoreductase in the plasma membrane

to reduce CoQ and inhibit lipid peroxidation and ferroptosis, a

pathway thought to be parallel to the GSH/GPX4 axis (16), this

pathway also shows the potential of anti-tumor drug resistance

(100): in a mouse model established using ferroptosis-resistant

H460 lung cancer cell xenografts, the inhibition of FSP1 resulted

in significant tumor suppression in both GPX4 KO and GPX4

KO/FSP1 KO groups (16).

4.2.3 Immunotherapy
The role of ferroptosis in regulating tumor immunity is

bidirectional. It not only kills tumors, but also upregulates

immune checkpoints and the production of immunosuppressive

mediators can promote tumor growth. Interferon-gamma (IFN-g)
released from CD8+ T cells downregulates the expression of

SLC3A2 and SLC7A11 in system Xc
-, leading to ferroptosis in

mouse model tumor cells (69). Another study reported that IFN-g
secreted by CD8+ lymphocytes upregulates PD-L1 in ovarian

cancer cells, promoting tumor growth (101). Therefore, it is

speculated to imagine that the combination of immune

checkpoint inhibitors and ferroptosis therapy may have a notable

effect. TAMs are M2 polarized macrophages that secrete vascular

endothelial growth factor (VEGF) to promote tumor growth (102).

IFN-g inhib i t s TAM di ffe rent ia t ion in the tumor

microenvironment and converts TAMs to M1 macrophages (103,

104), M1 macrophages are more resistant to ferroptosis than M2

macrophages, and studies have shown that nitric oxide synthase

(iNOS)/NO regulates macrophage ferroptosis resistance, and

decreased levels of iNOS result in decreased ferroptosis resistance

in M1 cells, whereas NO donors increase ferroptosis resistance in

M2 cells (105). Photodynamic therapy can increase tumor

lymphocyte infiltration and recruit immune cells to secrete IFN-g
and enhance ferroptosis (70),which involves complex regulation of

the immune microenvironment. The combination of ferroptosis

and immunotherapy has broad prospects in the future, but the

complexity of the immune microenvironment of tumor cells, the

positive and negative effects of ferroptosis in tumor regulation, and
frontiersin.org
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the toxicity of ferroptosis-inducing agents on organisms require

further in-depth experiments and inquiry.

4.2.4 Nanotherapy
Ferroptosis-based nanotherapeutics are currently under

development, nanomaterials are generally divided into iron-based

and non-iron-based nanomaterials . Iron-containing

nanoparticulate materials can release iron to the tumor site and

trigger the Fenton reaction to generate ROS, which induces

ferroptosis (71). Chemotherapeutic drugs or ferroptosis inducers

can be loaded into iron-based nanoparticles, such as sorafenib and

cisplatin, to work more effectively (72, 73). Non-iron-based

nanomaterials are iron-free in the first place, and they can

function by carrying ferroptosis-inducing agents, carrying lipids,

carrying non-coding RNAs, etc (106). PUFA can be supplemented

by nanoparticle drugs, which can modulate lipid peroxidation and

induce ferroptosis in tumor cells (74, 75). Furthermore, erastin has

poor water solubility and is nephrotoxic, folic acid-labeled erastin-

loaded exosomes were used in triple-negative breast cancer cells to

avoid nephrotoxicity, and the treatment produced a good

therapeutic effect (76). Tumor cell secretion of exosomal PD-L1

suppresses T cell activity, blocks immune checkpoints, and may

lead to resistance to therapy (107). Nanounits constructed from

exosome inhibitors and ferroptosis inducers can link the

immunogenic advantage of exosome inhibition with ferroptosis,

this is a new and effective immunotherapy strategy (106).
Conclusion and opinion

There is a wide range of metabolic abnormalities associated

with ferroptosis. This abnormal regulation of metabolic

pathways occurs in many diseases, especially cancer.

Researchers have discovered some regulatory substances,

pathways, genes, enzymes, and other components involved in

ferroptosis. The presence of these target sites makes it possible to

achieve disease treatment by regulating ferroptosis. In this

review, we summarize and present the link between lipid

metabolism and ferroptosis, with a focus on treatments that

modulate ferroptosis by regulating lipid metabolism, and in

combination with other treatments to achieve tumor therapy.

Although the roles of many related pathways and factors have

been demonstrated and validated in different cancer models,

there are still some issues that have not yet been resolved.
Frontiers in Oncology 07
Cancer treatment by regulating ferroptosis has been

confirmed and applied in experimental processes and clinical

environments. However, there are indeed differences in the

effects of in vitro experiments and in vivo treatment. The side

effects of some treatment methods also limit their practical

application. For different types of cancer, targeted therapy

should be selected according to their characteristics.

Combining ferroptosis-based treatment with other treatment

methods to promote strengths and avoid weaknesses appears to

be a better treatment strategy in the future.
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Glossary

AA trioxyarachidonic acid

ACC acetyl-CoA carboxylase

ACSL4 long-chain family member 4

ACSL3 acyl-CoA synthetase longchain family member 3

AdA adrenal acid

ALOX Arachidonate lipoxygenase

AMPK 5’adenosine monophosphate-activated protein kinase;

ATP adenosine triphosphate

BECN1 beclin 1

CD36 cluster of differentiation 36

CN-A Cotylenin A

CoQ10 Coenzyme Q10

COX cyclooxygenase

cPLA2 cytoplasmic phospholipase A2

CYP Cytochrome P450

DHODH dihydroorotate dehydrogenase

DPP4 dipeptidyl peptidase 4

ECM extracellular matrix

ELOVL5 elongase of very-long fatty acid 5;

EMP1 epithelial membrane protein 1

EMT epithelial-mesenchymal transition

FABP fatty acid binding protein

FADS1 fatty acid desaturase 1

FAT fatty acid translocase

FATP2 fatty acid transporter 2

Fer-1 ferrostatin-1

FIN ferroptosis inducers

FPP farnesyl pyrophosphate

FSP1 ferroptosis suppressor protein1

GBM glioblastoma multiforme

GC gastric cancer

GPX4 glutathione peroxidase 4

GSH g-L-glutamyl-Lcysteinylglycine;

GSSG glutathione disulfide

HIF hypoxia-inducible factor;

HILPDA hypoxia-inducible lipid droplet-associated protein

HSPA5 heat shock protein family A member 5 IFN-g Interferon g

IPP isopentenyl pyrophosphate

KO knock out

LD lipid droplets

LOX lipoxygenases

LPA Lysophosphatidic Acid

LPCAT3 lysophosphatidylcholine acyltransferase 3;

ML162 molecular libraries 162

MUFA monounsaturated fatty acids;

NADPH nicotinamide adenine dinucleotide phosphate

NCOA4 nuclear receptor coactivator 4

NOS nitric oxide synthase NADPH oxidase 4

(Continued)
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NRF2 nuclear factor erythroid 2-related factor 2

PE phosphatidylethanolamine;

PDAC pancreatic ductal adenocarcinoma

PD-L1 Programmed cell death ligand 1

PEITC phenethyl isothiocyanate

PLINs perilipins

PMN-MDSC polymorphonuclear myeloid-derived suppressor cell

POR cytochrome;

PRRs pattern recognition receptors P450 oxidoreductase

RCD regulated cell death

ROS reactive oxygen species

PUFA polyunsaturated fatty acid;

RSL3 Ras selective lethal 3

RSL5 Ras selective lethal 5

SAS sulfasalazine

SFA saturated fatty acids

SLC3A2 Solute carrier family 3 member 2;

SLC7A11 Solute carrier family 7 member 11

SQS squalene synthase;

STAT3 signal transducer and activator of transcription 3

TAM Tyro3

Axl and Mer

TAZ transcriptional co-activator with PDZ-binding motif;

TCA tricarboxylic acid cycle

TCRs T cell receptors

TFR1 ferrotransferrin receptor 1

TMZ temozolomide

TNFR tumor necrosis factor receptor;

TP53 tumor protein 53

TRF transferrin

YAP yes-associated protein 1;

VEGF vascular endothelial growth factor.
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