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Introduction

Cervical cancer (CC) is the fourth most common cause of 
cancer-related deaths in females worldwide and is mostly 
diagnosed at an advanced stage. Human papillomavirus 

(HPV), which is sexually transmitted, is a common risk 

factor for CC, and the development of CC may take 

months to years (1). Moreover, CC incidence and mortality 

rates show an increasing trend with late-stage diagnosis in 
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low- and middle-income countries, such as India, South 
Africa, and Thailand (2). In Thailand, CC is a major public 
health concern affecting the quality of life among females. 
Furthermore, in Thailand, there is no organized screening 
plan for HPV vaccination. Existing diagnostic procedures, 
such as the Papanicolaou (Pap) test and HPV testing, have 
limitations in terms of convenience, risk, and cost (3). The 
sensitivities of the Pap and HPV tests are 55.4% and 94.6%, 
respectively, whereas the specificities are 96.8% and 94.1%, 
respectively (4). Other markers, such as the squamous cell 
carcinoma antigen, also showed low specificity. Hence, a 
novel biomarker for the diagnosis of CC is required.

The discovery of small extracellular vesicles (sEVs) in 
many body fluids presents a new avenue for identifying 
molecular alterations. Blood-based biomarkers can be 
analyzed easily and quickly and therefore have the potential 
to greatly improve diagnostic efficiency. Immune-associated 
proteins found in serum sEVs of children with pneumonia 
have been proposed as a potential source of biomarkers 
for diagnosing pediatric pneumonia (5). sEVs are small 
membrane vesicles released by healthy and malignant cells 
that contain and transfer bio-active molecules affecting the 
tumor microenvironment and eliciting long-distance effects. 
Consequently, they may serve as potential biomarkers for 
cancer diagnosis. sEVs also contain oncogenic proteins, 
lipids, and mRNA, which reflect origin cell functions and 
can be horizontally transferred to recipient cells to regulate 
their characterization (6-12). sEVs have been studied in 

many cancer types, and the cargo of sEVs has been found 
to contain more oncogenic proteins than those of larger 
vesicles (8,13). Tetraspanin 1, a candidate protein marker, 
is detected at higher levels in plasma extracellular vesicles 
(EVs) from patients with colon cancer compared to those 
from healthy controls (HC), demonstrating a sensitivity 
of more than 75% (14). Moreover, several functional EV 
proteins have been identified in most cancers, including 
prostate cancer. Integrin alpha V, which induces protein 
kinase B activation, was found in EVs derived from prostate 
cancer cells (15).

Proteomic analysis has become a promising tool for 
obtaining insights into the mechanisms of biological 
processes by characterizing the composition of biological 
processes, molecular functions, cellular components, 
and conducting pathway analysis. It provides extensive 
knowledge of proteins expressed differentially in a particular 
condition, exposing unique signaling changes. The analysis 
of differential expression provides useful information 
regarding the molecular behavior in a particular condition 
of cancer and aids in biomarker development. Cancer-
derived EVs carry cancer-associated molecular cargo 
and modulate the behavior of recipient cells towards a 
pro-oncogenic type. Cancer-derived EVs circulating in 
blood play a role in cancer progression and development, 
reflecting the pathological state of cancer cells. One of the 
key mechanisms by which sEVs affect different cells in the 
tumor microenvironment is through both surface proteins 
and protein cargoes (16). The involvement of EV proteins 
in multiple cancer types has been extensively investigated 
(8,13-15,17,18), there is limited data available on EVs in 
clinical samples of CC. In this study, we utilized proteomic 
analysis to differentiate between the EV protein profiles 
of healthy and CC serum samples with the aim to identify 
candidate sEV biomarkers for the diagnosis of CC. The data 
obtained from this study will lay the groundwork for future 
development and validation of diagnostic biomarkers for 
CC. We present this article in accordance with the MDAR 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-517/rc).

Methods

Study design and blood collection

Serum samples from patients with CC (n=90, aged 30– 
65 years) were collected at Songklanagarind Hospital, 
Faculty of Medicine of Prince of Songkla University, Hat 
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Yai, Songkhla, Thailand, from 2016 to 2017. The inclusion 
criteria for the study were newly diagnosed and untreated 
CC cases. To serve as HC, blood samples were also collected 
from healthy females (n=30, aged 30–60 years) with no 
HPV infection and no history of cancer. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the Human 
Research Ethics Committee of the Faculty of Medicine, 
Prince of Songkla University, Thailand (No. REC 60-401-
04-2). Written informed consent was obtained from all 
participants. Whole blood (5 mL) was collected from each 
participant and allowed to clot at room temperature for 1 h. 
Within 2 h of collection, blood samples were centrifuged at 
2,500 ×g for 10 min at 4 ℃. All serum samples were divided 
into multiple aliquots and immediately stored at −80 ℃ 
until further analysis.

Nanoparticle tracking analysis (NTA)

The particles in the serum were measured using a 
NanoSight NS300 Analyzer equipped with a 488 nm 
laser (Malvern Panalytical, Malvern, UK). The particle 
concentration and size distribution were analyzed using 
NanoSight NTA software version 3.2, as described 
previously (19). For analysis, thawed serum samples were 
diluted in distilled water to a final volume of 1 mL. Two 
dilutions within the range of 1:10,000 to 1:5,000 were 
prepared for each sample, achieving a particle concentration 
of 107–109 particles/mL (i.e., 20–100 particles/frame). 
Data were recorded using a camera level set at 15, with a 
detection threshold of 6. Video capture was performed for 
five cycles (30 s/cycle). The absolute concentrations of the 
particles in each dilution were calculated based on a dilution 
factor of 1,000 or 2,000. Statistical analysis was performed 
using GraphPad Prism version 6.0 (GraphPad Software). 
The particle concentration (109 particles/mL) and size 
distribution were reported as the median and interquartile 
range. The Shapiro-Wilk normality test was used for the 
sample distribution test, and significant differences between 
the two groups were calculated using the Mann-Whitney U 
test. Statistical significance was defined as P≤0.05.

Isolation and purification of EVs

EVs pellets were isolated using a series of differential 
ultracentrifugation (dUC) steps as previously described (20).  
Briefly, 1 mL serum samples from each individual were 
pooled into three pools for HCs and nine pools for patients 

with CC (10 mL per pool). Pooled samples were subjected 
to dUC at 800, 2,000, and 12,000 ×g and filtered through 
0.22 µm Minisart pore filters (Cat No. 2SRF2-16534K, 
Millipore, Burlington, MA, USA). The filtered supernatant 
was then centrifuged at 110,000 ×g using an optimal MAX-
XP ultracentrifuge (Beckman Coulter, Brea, CA, USA) with 
an MLA-55 fixed-angle rotor. All centrifugation steps were 
performed at 4 ℃. The resulting pellets were resuspended 
in a qEV size exclusion chromatography (SEC) column (Izon 
Science, Medford, MA, USA). Fractions were collected 
according to the manufacturer’s protocol. Briefly, the void 
volume (volume of the mobile phase required to elute a 
molecule having zero retention in the stationary phase 
in SEC) was 5 mL. Using 1× phosphate-buffered saline 
(PBS) as the elution buffer, 550 µL of the pellet solution 
was loaded on the column. Directly after this, 500 µL 
per fraction was collected for a total of 20 fractions. Each 
collected fraction was then centrifuged at 110,000 ×g for 
1.5 h to concentrate the small vesicles. The pooled fractions 
were collected for further analyses.

Transmission electron microscopy (TEM)

Purified EVs, fixed with 2.5% glutaraldehyde, were 
deposited on a Formvar-coated carbon grid. After staining 
with 2% uranyl acetate, the grids were dried at room 
temperature and visualized using a JEM-2010 TEM.

Immunoblotting

EV proteins (20 µg/lane) were resolved using sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis, 
transferred onto polyvinylidene fluoride membranes, 
probed with each primary antibody, and incubated with a 
horseradish peroxidase-conjugated secondary antibody. The 
following primary antibodies were used: CD63 (D4I1X, 
1:500) and CD9 (D801A, 1:500) from Cell Signaling 
Technology (Danvers, MA, USA), CD81 (sc166028, 1:500) 
from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, 
USA), and cytochrome c (1:1,000) from BioLegend (San 
Diego, CA, USA).

Liquid chromatography-tandem mass spectrometry (LC-
MS/MS)

The protein concentration of EVs purified from serum and 
resuspended in PBS was determined using a bicinchoninic 
acid assay (Bio-Rad, Hercules, CA, USA). MS analysis was 
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conducted by the Proteomics Research Laboratory, National 
Center for Genetic Engineering and Biotechnology, 
and the National Science and Technology Development 
Agency, Pathum Thani, Thailand. EV protein (10 µg total) 
from HC or CC was exchanged with 50 mM ammonium 
bicarbonate buffer and dithiothreitol was then added to 
a final concentration of 10 mM. Samples were incubated 
at 60 ℃ for 30 min, then cooled to room temperature. 
Iodoacetamide was added to a final concentration of 10 mM 
and samples were incubated in the dark for 30 min at room 
temperature. Tryptic digestion was subsequently performed 
at 37 ℃ overnight. Each digested sample was then injected 
onto a column and into a nebulizer. Tryptic peptides were 
protonated with 0.1% formic acid before being injected 
into a NanoAcquity system equipped with asymmetric 
C18 5 µm, 180 µm × 20-mm trap column, and BEH130 
C18 1.7 µm, 100 µm × 100-mm analytical reverse phase 
column. (Glu1)-fibrinopeptide B was used to calibrate the 
mass spectrometer and was delivered through the reference 
sprayer of the NanoLockSpray source. Tryptic peptides 
were analyzed using a SYNAPT HDMS mass spectrometer 
(Waters Corp., Manchester, UK). Argon gas was used in 
the collision cell to obtain the MS/MS data. The MS/
MS spectra obtained were processed using MaxEnt 3, a 
deconvolution software for peptides (Ensemble 1, Iterations 
50, auto peak width determination) within MassLynx 4.0.

Proteomics data processing and analysis

MS intensities of individual LC-MS/MS analyses were 
differentially quantified using DeCyder MS Differential 
Analysis Software (GE Healthcare, Chicago, IL, USA). 
The PepMatch module was used to evaluate the average 
abundance ratio of each sample peptide, allowing for 
the automated detection of peptides and assignment 
of  charge states.  The result ing peptide mass and 
associated fragmentation spectra were searched against 
the non-redundant database of the National Center for 
Biotechnology Information (NCBInr) and identified using 
Mascot software (Matrix Science, London, UK). Database 
interrogation parameters were as follows: taxonomy, 
Homo sapiens; database, NCBInr; enzyme, trypsin; fixed 
modification, carbamidomethyl; variable modification, 
oxidation of methionine residues; mass values, monoisotopic; 
peptide mass tolerance, 1.2 Da; peptide charge state, 1+, 
2+, and 3+. Duplicate protein entries were removed from 
the lists of MS data. The accession numbers were entered 
into the UniProt database (https://www.uniprot.org/). 

EV protein data obtained from the UniProt database 
were filtered to remove Uniparc and unmapped identifier 
proteins. Venn diagrams were generated using the Jvenn 
interactive Venn diagram viewer and the JavaScript library 
plug-in (https://jvenn.toulouse.inra.fr/app/index.html) to 
identify proteins present in both the HC and CC groups. 
Further, unique and co-expressed proteins were categorized 
into biological processes, cellular components, molecular 
functions, and contributing pathways using PANTHER 
(version 16.0; https://pantherdb.org/). Differentially 
expressed proteins (DEPs) were analyzed using R software. 
The number of upregulated and downregulated proteins 
between the HC and CC groups was determined based 
on the log2fold change (log2FC) criteria. The peptide ion 
intensities for all the groups were compared and statistical 
significance was defined at P<0.05.

The express ion leve l s  o f  the  upregulated  and 
downregulated DEPs were validated using online clinical 
samples across cervical tumors and normal samples 
using the University of Alabama at Birmingham Cancer 
(UALCAN) database analysis portal.

Results

Detection of EVs in human sera

To identify potential biomarkers for the diagnosis of CC, 
sEVs derived from the sera of HC and patients with CC 
were compared in terms of the number of particles and 
EV protein information obtained this study. The research 
workflow is illustrated in Figure 1. We analyzed the particle 
concentration and size distribution in serum using NTA. 
The concentration of particles in the CC group was 
marginally higher than that in the HC group (Figure 2A). 
Size distribution showed that the major EV population 
sizes, ranging from 101–150 nm, were found in both HC 
and CC, which is consistent with typical sEVs (Figure 2B).  
However, the mode size of the particles in the CC group 
was significantly smaller than that in the HC group 
(P=0.0018) (Figure 2C).

Isolation and purification of sEVs from human sera

We used dUC combined with SEC to isolate and purify 
EV pellets from the sera of HC and patients with CC. 
The typical EV marker proteins (CD9, CD63, and CD81) 
were detected using immunoblotting. Cytochrome c was 
used as a negative marker for EVs. The protein patterns 
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showed that fractions 8–10 were highly enriched with EV 
markers in patients with CC compared with those in the 
HC group (Figure 2D, Figures S1,S2). Subsequently, we 
pooled EV pellets from fractions 8–10 for morphological 
characterization and further proteomic analysis. TEM 
revealed that the EV pellets contained a homogenous 
population of cup-shaped vesicles with a diameter of <2 µm 
(Figure 2E).

EV protein profiling

The EV protein expression profiles of both sample 
groups were identified using LC-MS/MS (table available 
at https://cdn.amegroups.cn/static/public/tcr-23-517-1.
xlsx), and then compared and visualized using a two-way 
Venn diagram. We found probable relationships between 
protein expression and uniquely expressed proteins in sEVs 
derived from the sera of the HC and CC groups. The 
results identified five uniquely expressed EV proteins in 
the HC group and seventeen in the CC group (Figure 3A). 
A list of uniquely expressed proteins found in either the 
HC or CC group is presented in Table 1. The abundance 

of EV proteins in each group was used to generate a heat 
map using the MetaboAnalyst platform (https://www.
metaboanalyst.ca/) (Figure 3B). The heatmap represents the 
protein expression profiles of the various pooled samples. 
Hierarchical clustering of the protein expression profiles 
showed significant differential expression.

Proteomic and pathway analysis of unique EV proteins in 
the CC group

The EV protein expression profiles of both groups 
were determined using LC-MS/MS, and subsequently 
compared and visualized using a Venn diagram (Figure 4). 
The uniquely expressed proteins in the CC group were 
subsequently subjected to functional enrichment analysis 
using PANTHER, based on their biological processes, 
molecular functions, cellular components, and pathways 
they are related to. Because the program allows a limited 
number of protein inputs, only proteins found to be 
uniquely expressed in the CC sEVs, not in the HC sEVs, 
were analyzed. The proteins enriched in CC sEVs were 
involved in cellular processes, metabolic processes, and 
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https://cdn.amegroups.cn/static/public/TCR-23-517-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-517-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tcr-23-517-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-517-1.xlsx


Molika et al. CC EV proteomes3118

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(11):3113-3128 | https://dx.doi.org/10.21037/tcr-23-517

biological regulation (Figure 4A). In terms of molecular 
function, proteins involved in binding, catalytic activity, 
transcription, translation and ATP-dependent activity were 
identified (Figure 4B). Uniquely expressed proteins related 
to cellular components included cellular anatomical entities 
and protein-containing complexes (Figure 4C). Interestingly, 
the unique EV proteins found in the CC group were 
involved in pathways such as the platelet-derived growth 
factor (PDGF), thyrotropin-releasing hormone receptor, 
angiogenesis, Fas cell surface death receptor (FAS), vascular 
endothelial growth factor (VEGF), and Ras signaling 
pathways (Figure 4D).

DEP and functional enrichment analysis

Using the R software, proteins expressed in both groups 
(Venn diagram overlap) were subjected to differential 

expression analysis comparing the CC group and the HC 
group (Figure 5, table available at https://cdn.amegroups.cn/
static/public/tcr-23-517-2.xlsx). The histogram represents 
proteins that were differentially expressed in the CC 
group compared to the HC group. DEPs were identified 
based on the criteria of |log2FC| >2 and include both 
upregulated and downregulated proteins. These proteins 
were further subjected to functional enrichment analysis 
using PANTHER, based on their associated biological 
processes, molecular functions, cellular components, and 
pathways (Figure 6A-6E). We found that the majority of 
up- and downregulated proteins identified in CC sEVs 
showed similar functions with regards to their involvement 
in biological processes, cellular components, and molecular 
functions. They were associated with the following 
PANTHER-defined categories of biological processes: 
“cellular process”, “metabolic process”, and “biological 
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regulation” (Figure 6A). Molecular function analysis 
showed that both groups of DEPs were mainly associated 
with “binding activity” and “catalytic activity” (Figure 6B). 
Furthermore, DEPs exhibited similar groupings in cellular 
components: “protein-containing complex” and “cellular 
anatomical entity” (Figure 6C). Pathway analysis revealed 
differences between up- and downregulated proteins 
(Figure 6D,6E). Upregulated proteins were associated with 
pathways such as the p53 pathway. Downregulated CC sEVs 
proteins were also associated with the p53 pathway, but 
also demonstrated association with pathways that were not 
associated with the upregulated proteins. These included 
the transforming growth factor (TGF), fibroblast growth 
factor (FGF), epidermal growth factor (EGF), VEGF, Wnt 
signaling, chemokine and cytokine signaling, angiogenesis, 
and apoptosis pathways.

Validation of unique and upregulated proteins using The 
Cancer Genome Atlas (TCGA) datasets in UALCAN 
database

We used the UALCAN data analysis portal (https://
ualcan.path.uab.edu/index.html) to explore the expression 
of CC-derived proteins (seventeen unique and nineteen 
upregulated proteins) in primary tumors compared to 
that in normal tissues. While 10 of the seventeen proteins 
unique to CC sEVs (IPO5, TSHB, ERI3, COX5A, ATRX, 
VWA3B, CHD2, SGSM3, PHF10, and ETS1) were found 
in the TCGA database, only three (ERI, COX5A, and 
SGSM3) were significantly increased in primary CC tissue 
compared to normal tissue (P<0.05) (Figure 7A). Among the 
DEPs identified in CC through LC-MS/MS analysis, a total 
of nineteen were found to be significantly upregulated. To 
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patients with CC. The total EV proteins in the HC and CC groups were 3,030 and 3,042, respectively. (B) Heatmap of the top 50 identified 
EV proteins in all the groups of samples and clustering dendrogram illustrating differential expression of proteins between the two groups. 
The red color shows upregulation; the blue color, downregulation in the CC group compared to the HC. The length of the branch between 
two sample groups corresponds to the degree of similarity between the expression of proteins in sEVs derived from HC and CC. The 
heatmap was generated using the MetaboAnalyst 5.0 platform. HC, healthy control; CC, cervical cancer; sEVs, small extracellular vesicles.
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Table 1 A list of proteins that are uniquely expressed in either HC or CC samples

Group No. Entry name Protein name Gene name

HC 1 KCNK4 Potassium channel subfamily K member 4 KCNK4, TRAAK

2 MYH16 Putative uncharacterized protein MYH16 MYH16, MYH5

3 HAPR1 HUWE1-associated protein modifying stress responses HAPSTR1, C16orf72, TAPR1

4 STAU1 Double-stranded RNA-binding protein Staufen homolog 1 STAU1, STAU

5 PBIP1 Pre-B-cell leukemia transcription factor-interacting protein 1 PBXIP1, HPIP

CC 1 ZN185 Zinc finger protein 185 ZNF185

2 CP51A Lanosterol 14-alpha demethylase CYP51A1, CYP51

3 IPO5 Importin-5 IPO5, KPNB3, RANBP5

4 UBP34 Ubiquitin carboxyl-terminal hydrolase 34 USP34, KIAA0570, KIAA0729

5 G3P Glyceraldehyde-3-phosphate dehydrogenase GAPDH, GAPD, CDABP0047

6 EFTU Elongation factor Tu, mitochondrial (EF-Tu) (p43) TUFM

7 TSHB Thyrotropin subunit beta TSHB

8 ADA32 Disintegrin and metalloproteinase domain-containing protein 32 ADAM32

9 ERI3 ERI1 exoribonuclease 3 ERI3

10 COX5A Cytochrome c oxidase subunit 5A, mitochondrial COX5A

11 ATRX Transcriptional regulator ATRX ATRX, RAD54L, XH2

12 RUN3A RUN domain-containing protein 3A RUNDC3A, RAP2IP, RPIP8

13 VWA3B von Willebrand factor A domain-containing protein 3B VWA3B

14 CHD2 Chromodomain-helicase-DNA-binding protein 2 CHD2

15 SGSM3 Small G protein signaling modulator 3 SGSM3, MAP, RABGAPLP, RUTBC3

16 PHF10 PHD finger protein 10 PHF10, BAF45A

17 ETS1 Protein C-ets-1 ETS1, EWSR2

HC, healthy controls; CC, cervical cancer.

further investigate the clinical relevance of these proteins, a 
search was conducted in the TCGA database. Nine proteins 
(LCK, TYW1B, PCBP1, CCL26, GALK2, ANKK1, 
PLK3, LYST, and WRN) were identified. Only four of 
these (LCK, PCBP1, GALK2, and ANKK1) displayed 
significant increases in primary CC tissue compared to 
normal tissue (Figure 7B).

Discussion

In this study, we performed a quantitative comparison 
of the total particles circulating in the sera derived from 
HCs and patients with CC. We determined the particle 
concentration and size distribution of the total particles 
in serum using NTA. The levels of EV particles in human 

body fluids, particularly those in blood, may themselves be 
used as a diagnostic marker for cancer development and 
allow differentiation between patients with and without 
cancer. Our experiment determined the total number 
of serum particles in both the HC and CC groups. The 
results showed that sera from both HC and patients with 
CC had similar particle sizes in the range of 101–150 nm. 
However, the mode sizes of the particles in the HC group 
were significantly larger than those in the CC group. 
Furthermore, the particle concentrations of the CC group 
were marginally higher than those in the HC group. 
Consistent with recent clinical evidence, plasma particle 
levels were significantly higher in patients with cancer than 
in HCs (21-24). According to a proteomic study on EVs 
derived from patients with breast cancer, a single cancer cell 
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Figure 4 Functional enrichment analysis of the seventeen uniquely expressed proteins found in the CC group highlighted associations 
in terms of (A) biological processes, (B) molecular functions, (C) cellular components, and (D) signaling pathways. GO, Gene Ontology; 
PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth facto; CC, cervical cancer.

can release more than 104 particles per day (25,26).
Further, we investigated the EV protein profiles 

derived from the sera of HCs and patients with CC. We 
isolated and purified EV particles using ultracentrifugation 
combined with SEC. We determined the surface markers 
of EV and visualized the morphology and size of EV 
particles using an electron microscope. As expected, the 
combination of ultracentrifugation and SEC successfully 
isolated sEVs. From the immunoblotting results, the 
abundance of EV markers, including CD63, CD9, and 
CD81, indicates the successful isolation of EVs from serum 
samples. Nevertheless, we used cytochrome c as a negative 
control for EV characterization following the MISEV2018 
guidelines (27). Moreover, TEM images revealed a typical 
morphology and size range of sEVs. Interestingly, we 
successfully purified the EVs from abundant serum proteins, 
as shown in the TEM image, wherein slightly precipitated 
abundant proteins were detected.

Proteomics profiling using LC-MS/MS has become 
a widely utilized approach in various clinical settings to 
discover potential screening and diagnostic biomarkers. 
This method offers the advantage of mass screening 
for protein markers and the ability to identify signaling 
pathways potentially associated with diseases (17,18). In 
contrast, the analysis of protein isoforms resulting from 
somatic mutations through immunohistochemistry (IHC) 
is limited by the unavailability of antibodies to epitopes 

specific to particular isoforms. Therefore, MS-based 
technology provides a valuable alternative for the discovery 
of protein isoforms resulting from somatic mutations (28). 
In this study, proteomic profiling of sEVs derived from 
patients with CC and HC demonstrated that 3,025 proteins 
were expressed in both groups, while five and seventeen 
proteins were uniquely expressed in the HC and CC 
groups, respectively. The metabolic pathways with which 
the total proteins in each group were associated with, were 
similar. We further investigated the pathways of the 17 
proteins found to be uniquely expressed in the CC group: 
ZN185, CP51A, IPO5, UBP34, G3P, EFTU, TSHB, 
ADA32, ERI3, COX5A, ATRX, RUN3A, VWA3B, CHD2, 
SGSM3, PHF10, and ETS1.

COX5A is a subunit of cytochrome c oxidase, an enzyme 
complex located in the mitochondria. Cytochrome c oxidase 
plays a major role in metabolic processes (29), including 
ATP production (30). Consequently, COX5A expression 
is associated with many cancers, including colorectal, 
breast, prostate, and lung cancer (31-34). Its expression 
has been associated with the proliferation of cancer cells 
and angiogenesis (35-37). Similarly, IPO5, also expressed 
in colorectal cancer cells, plays a role in promoting the 
proliferation and tumorigenesis of cancer cells (38). 
Furthermore, the IPO5 test with logistic regression analysis 
revealed that COX5A is the best individual potential 
biomarker for differentiating cancer cases from HCs (37). 
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Interestingly, the correlated pathway analysis revealed 
that EV proteins that were uniquely expressed in the CC 
group were associated with angiogenesis, glycolysis, and the 
VEGF signaling pathway. Angiogenesis is the formation of 
new vessels that supply nutrients to cancer cells, and VEGF 
plays a pivotal role in the initial stages of angiogenesis (39). 
The proteins found to be uniquely expressed in the CC 
group were also associated with the Ras signaling pathway. 
Ras proteins are crucial mediators of several malignant 
characteristics in transformed cancer cells and function as 
activators in many cancers (40). Targeting the Ras pathway 
to inhibit tumor growth has shown promise as a therapeutic 
approach to inhibit tumor growth (40). However, further 
validation is necessary to confirm the clinical relevance 
of these unique EV proteins in CC. Nevertheless, these 
findings suggest that the unique expression of proteins in 
CC-derived EVs may serve as developmental signals in 

patients with CC.
In addition, 3,025 proteins were co-expressed in both 

the CC and HC groups, with both upregulated and 
downregulated protein expression seen in CC. DEPs 
were analyzed using a multilevel enriched Gene Ontology 
(GO) analysis. Notably, nineteen upregulated proteins 
were primarily associated with the following biological 
processes: “cellular process”, “metabolic process”, and 
“biological regulation”. Cellular processes are required to 
maintain homeostasis. EVs play an essential role in many 
pathways related to both physiological and pathological 
homeostasis by facilitating cellular communication, 
including the excretion of nucleic acids from cells (41). 
Both up- and downregulated proteins in CC were found 
to be involved in “binding” and “catalytic activity” within 
cellular processes, and cellular component analysis of these 
proteins also revealed similarities. Proteomic profiling of 
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EVs derived from the blood samples of females with breast 
cancer revealed that 80% of EV proteins were involved in 
protein binding. This is consistent with our findings as well 
as those of studies on other cancers, including ovarian and 
colorectal cancer (42-45). Additionally, pathway analysis 
revealed distinct differences between the upregulated and 
downregulated DEPs in the CC and HC groups. The 
nineteen proteins upregulated in the CC group were 
associated with the following major pathways: p53, T 
cell activation, and chemokine and cytokine signaling. 
Chemokines are a group of soluble factors that play crucial 
roles in immune regulation during inflammatory response 
processes and in defense against foreign pathogens. 
Chemokines also regulate many biological processes such 
as angiogenesis and stem cell migration during embryo 
development. The chemokine signaling pathway is regulated 
in diverse cellular processes, such as angiogenesis, epithelial 
cell proliferation, and survival (46,47). Intriguingly, 
chemokines are critical for cancer development and exhibit 
high functionality in the tumor microenvironment (48). 
Together, these results suggest that chemokine signaling 
can be utilized to target and deliver chemokines in cancer 
treatment.

Pathway analysis  of  downregulated proteins in 
CC revealed their involvement in the Wnt signaling 
pathway, the chemokine and cytokine signaling pathway, 
angiogenesis, the p53 pathway, apoptosis, the Ras 
pathway, hypoxia response via the hypoxia-inducible 
factor (HIF) pathway, and the JAK/STAT pathway. The 
Wnt/β-catenin signaling pathway is highly conserved 
and plays a role in a variety of physiological processes, 
including proliferation, differentiation, apoptosis, 
invasion, migration, and homeostasis. Dysregulation of 
Wnt signaling leads to carcinogenesis (41,48,49). The 
detailed GO analysis revealed that EV proteins that were 
downregulated in patients with CC are associated with the 
Wnt signaling pathway. The current study highlights the 
crucial role of EVs in transporting and delivering signaling 
molecules involved in important processes, such as cancer 
development. EVs have been shown to transport and release 
Wnt signaling proteins in both homeostasis and cancer 
conditions (42). A recent study found that Wnt protein is 
located on the surface of EVs and activates Wnt signaling 
on the surface of target cells during disease progression (43). 
Moreover, p53, known as the “guardian protein of genome”, 
is a transcription factor involved in maintaining genome 
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Figure 6 Functional enrichment analysis of DEPs between HC and patients with CC in terms of (A) biological processes, (B) molecular 
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integrity. In response to various stressors, most notably 
genotoxic damage and hypoxia, p53 promotes permanent 
and/or transient growth arrest by repairing DNA or by 
activating cell death programs. Many malignancies, such as 
breast, colon, prostate, and bladder cancers, can result from 
p53 mutation and dysregulation (44,45,50). To validate the 
findings of EV protein analysis, the UALCAN database was 
utilized. Out of the 19 proteins upregulated in CC EVs, 
nine (LCK, ANKK1, CCL26, GALK2, LYST, PCBP1, 
PLK3, TYW1B, and WRN) were found in CC tissue based 
on TCGA data. Among these, LCK, PCBP1, GALK2, and 
ANKK1 showed significantly increased expression levels in 
CC tissue compared to normal tissue. This further supports 

their potential role as clinically relevant biomarkers in CC.
In addition, we found more than hundred finding 

proteins showed significant downregulated in CC. We 
found 17 out of 50 proteins, namely CELF5, MYEF2, 
SUMO1, SCY1, COQ6, CXCR1, ACTN4, STAU1, 
LTV1, HDAC4, WDR19, KCNK4, KANK2, BAZ2A, 
GAK, KCTD3, and FZD2 proteins. Further investigation 
using the TCGA data showed that three proteins, SCYL1, 
HDAC4, and WDR19, demonstrated significantly 
decreased expression levels in primary CC tissue compared 
to normal tissue. Previous studies on hepatocellular 
carcinoma and breast cancer have reported that SCYL1 is 
associated with the development of breast cancer and affects 

Figure 7 Validation of unique and upregulated proteins in the CC group, as determined using the TCGA dataset on the UALCAN 
platform. (A) Three of the seventeen proteins unique to the CC group (ERI3, COX5A, and SGSM3) had significantly different expression 
levels in primary tumor tissue compared to normal tissue. (B) Four proteins upregulated in the CC group (LCK, PCBP1, GALK2, and 
ANKK1) showed significantly increased expression levels in primary tumor tissue compared to normal tissue. Statistically significant 
differences were determined using Student’s t-test (*, P<0.05). TCGA, The Cancer Genome Atlas; CC, cervical cancer; UALCAN, the 
University of Alabama at Birmingham Cancer.
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cell cycle arrest in hepatocellular carcinoma (51,52). The 
cell cycle is regulated by various biological mechanisms, and 
regulatory proteins that play a role in this process are crucial 
for controlled cell cycle expression. However, alterations 
in the balance of regulatory proteins can contribute to the 
development of several diseases, including cancer. SCYL1 
has been shown to affect the cell cycle by enhancing 
the steady state of several proteins, including Cyclin F 
and RRM2, which constitute the regulatory circuit (52).  
In breast cancer, SCYL1 has demonstrated potential as a 
prognostic marker, as knockout of SCYL1 significantly 
reduced the progression and migration of breast cancer 
cells (51). Furthermore, HDAC4 is believed to target the 
p21 protein and participate in its repression. One study 
suggested that HDAC4 could serve as a promising target 
for novel anticancer therapies that inhibit specific HDACs, 
as silencing HDAC4 arrested cancer cell growth in the 
glioblastoma model (53,54). Moreover, the HeLa CC model 
showed that HDAC4 binds to the NAC1 protein, which is 
associated with CC progression (55).

Based on our investigations, the results obtained from 
EV proteins derived from serum samples, as well as the 
reported data from CC tissues, showed both consistent 
and discrepant results. It is important to note that some 
proteins from the cells of origin can potentially migrate 
to other distant cells through EV vehicles, and as a result, 
these trafficked proteins can be detected as cargo within 
EVs (56,57). Nevertheless, EVs hold significant potential 
as valuable markers for the screening and diagnosis of CC 
patients in the future. Our study specifically identified 
ERI3, COX5A, and SGSM3 as uniquely expressed proteins 
in sEVs derived from patients with CC. These proteins 
could be further developed as additional biomarkers and 
validated using cell-blocks of cytology specimens (58).

A challenge we faced in our study was the heterogeneity 
of clinical samples in terms of CC staging. We were unable 
to design a sample set in which age, CC stage, and number 
of CC samples were perfectly matched for each stage. 
Therefore, a limitation of our study was the relatively 
small sample used for the validation step. Despite these 
limitations, our findings provide valuable initial data that 
serve as a foundation for further studies aiming to develop 
combination panel markers instead of relying on a single 
biomarker for clinical application. It is essential to conduct 
future research with larger sample sizes to validate our 
findings and confirm the potential of these markers for 
improving CC diagnosis and management.

Conclusions

In this study, we conducted a comprehensive proteomic 
analysis of sEVs derived from the serum of patients with 
CC and healthy volunteers. The aim was to identify 
potential candidate proteins that could serve as biomarkers 
for CC and provide insights into the disease’s underlying 
mechanisms. Our findings revealed that the protein profiles 
of sEVs derived from cancer patients, compared to those 
from healthy serum, included both unique proteins specific 
to CC and proteins shared between the two groups. 
While these findings are promising, further validation 
studies are necessary to confirm the diagnostic potential 
of these identified proteins and translate them into clinical 
practice. The development of CC markers as a non-invasive 
technique can help to reduce the diagnostic window and 
enable early detection of CC, leading to improved clinical 
outcomes for patients.
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