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Abstract: Background: Obstructive Sleep Apnea (OSA) occurs in 7% of the adult population. The
relationship between neurodegenerative diseases such as dementia and sleep disorders have long
attracted clinical attention; however, no comprehensive data exists elucidating common gene expres-
sion between the two diseases. The objective of this study was to (1) demonstrate the practicability
and feasibility of utilizing a systems biology approach called network-based identification of common
driver genes (NICD) to identify common genomic features between two associated diseases and (2)
utilize this approach to identify genes associated with both OSA and dementia. Methods: This study
utilized 2 public databases (PCNet, DisGeNET) and a permutation assay in order to identify common
genes between two co-morbid but mutually exclusive diseases. These genes were then linked to
their mechanistic pathways through Enrichr, producing a list of genes that were common between
the two different diseases. Results: 42 common genes were identified between OSA and dementia
which were primarily linked to the G-coupled protein receptor (GPCR) and olfactory pathways. No
single nucleotide polymorphisms (SNPs) were identified. Conclusions: This study demonstrates the
viability of using publicly available databases and permutation assays along with canonical pathway
linkage to identify common gene drivers as potential mechanistic targets for comorbid diseases.

Keywords: Obstructive Sleep Apnea; driver genes; Alzheimer’s disease

1. Introduction

Obstructive Sleep Apnea (OSA) occurs in 7% of the adult population and up to 7.5% of
the pediatric population. Clinically, OSA is characterized by intermittent apnea/hypopnea,
arousals, and sleep fragmentation; however, the clinical symptoms vary greatly between
patients (Figure 1). OSA is a common heritable disorder, but a few genetic loci and
risk genes are reported from the previous studies. For example, Chen et al. performed
a multiethnic meta genome-wide association analysis and found a possible association
between the apnea-hypopnea index and rs12936587, which is on chromosome 17 and
is overlapped with RAI1 (Retinoic Acid Induced 1) [1]. OSA has been correlated with
symptomatology and disease expression in adults with dementia and is associated with
several neurological diseases including stroke, as well as neurocognitive and behavioral
symptoms. Untreated OSA in the adult population has been shown to accelerate dementia
progression while treatment with continuous positive airway pressure (CPAP) has been
shown to slow disease progression to varying degrees [2,3].
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Figure 1. Describes the variety of pathophysiological changes within OSA leading to dementia. 

Given the number of overlapping processes, there are a variety of contributory mechanisms lead-

ing to or aggravating underlying dementia. TIA: Transient ischemic attack. The figure adapted 

from [4], with permission from Elsevier, 2016. 

However, demonstration of causality is difficult, as dementia in the absence of OSA 

is known to cause abnormalities in sleep structure. Furthermore, sleep fragmentation is 

known to be an early feature of Alzheimer’s disease and is independently associated with 

disease progression and intensity [5]. Therefore, as treatment of OSA may impact the pro-

gression of dementia, it is important to delineate common gene drivers between these 

seemingly interrelated disease processes. These would provide clinical biomarkers which 

could be potential therapeutic targets. To date, characterizing common genomic features 

between the two, despite several studies independently identifying loci of disease in both 

groups, has not been elucidated [1,6]. Therefore, we designed a systems biology approach 

to identify common genes associated with both dementia and OSA. This approach uses 

network-based identification of common driver (NICD) genes of multiple phenotypes or 

disease-associated phenotypes utilizing a sequence of techniques involving bioinformat-

ics, public biomedical databases, and computational biology. Specifically, NICD uses the 

Parsimonious Composite Network (PCNet), which is a composite network created by 

Figure 1. Describes the variety of pathophysiological changes within OSA leading to dementia.
Given the number of overlapping processes, there are a variety of contributory mechanisms leading
to or aggravating underlying dementia. TIA: Transient ischemic attack. The figure adapted from [4],
with permission from Elsevier, 2016.

However, demonstration of causality is difficult, as dementia in the absence of OSA
is known to cause abnormalities in sleep structure. Furthermore, sleep fragmentation is
known to be an early feature of Alzheimer’s disease and is independently associated with
disease progression and intensity [5]. Therefore, as treatment of OSA may impact the
progression of dementia, it is important to delineate common gene drivers between these
seemingly interrelated disease processes. These would provide clinical biomarkers which
could be potential therapeutic targets. To date, characterizing common genomic features
between the two, despite several studies independently identifying loci of disease in both
groups, has not been elucidated [1,6]. Therefore, we designed a systems biology approach
to identify common genes associated with both dementia and OSA. This approach uses
network-based identification of common driver (NICD) genes of multiple phenotypes
or disease-associated phenotypes utilizing a sequence of techniques involving bioinfor-
matics, public biomedical databases, and computational biology. Specifically, NICD uses
the Parsimonious Composite Network (PCNet), which is a composite network created
by combining 21 gene–gene interaction networks such as STRING [7], GIANT [8], and
ConsensusPathDB [9], and is focused on reducing the false positives of novel disease
gene identification [10] and DisGeNET, which is a database which identifies associations
between diseases utilizing computational mining techniques classified by evidence [11] to
identify the common genes that are associated with multiple diseases.
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The aim of this study was to identify driver genes that contribute to disease pathogen-
esis for dementia and OSA.

2. Methods

The preparation and validation of NICD was a multistep process (Figure 2).
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Figure 2. This figure demonstrates the network-based identification of common driver genes (NICD) workflow, with the
specific data sets and programs used construct the algorithm. In the topmost panel, the diseases and genes are identified.
These are then placed into PCNet, which is a composite gene network focused on common gene identification for query. In
order to remove those genes which maybe randomly associated, a permutation assay with Benjamini–Hoichberg correction
is done to ensure that proper candidates demonstrate strength of association. In the bottom-most panel, an enrichment
assay is done on the candidate genes which tests their association with canonical pathways.

2.1. Biological Network Preparation

NICD is a computational approach and requires a biological network and multiple
gene sets for each disease of interest. The biological network is used to detect genes and
is physically linked with databases of gene sets. In this study, we used PCNet v1.3 [10].
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PCNet is a composite network and was constructed for the purpose of identifying common
diseases genes. We downloaded the network from the National Data Exchange (NDEx
UUID: f93f402c-86d4-11e7-a10d-0ac135e8bacf). We excluded the Ubiquitin C (UBC) gene
from the network as this gene connects with nearly every other gene and therefore causes
significant artifacts during analysis. Furthermore, the ubiquitous nature of this gene is not
causally tied to a single disease mechanism. We then focused on performing permutation
assays between the genes collected from both diseases, utilizing the workflow described in
Figure 2.

2.2. Collecting Disease Gene Sets of OSA and Dementia from DisGeNET

To collect disease-specific genes for OSA and dementia, we collected single nucleotide
polymorphisms (SNPs) and genes linked with the SNPs from DisGeNET v1.0.0. (https:
//www.disgenet.org/, accessed on 26 May 2020). DisGeNET is a database which displays
associations between diseases and genes or variants that were identified by computation
literature mining techniques. The search terms in this database allow the user to search
a disease by name and phenotypic association to identify a SNP/gene set of interest.
This disease ontology has been utilized in several previous studies [11]. Given disease
inputs, NICD first seeks variants that are associated with diseases and maps the variants
to genes, and we assumed that genes were associated with a disease/phenotype if the
genes had any variant-gene mapping records with any disease/phenotype variants of
the disease/phenotype in DisGeNET. For the disease-variant mapping, NICD uses a
disease-variant mapping table from the database (all_variant_disease_associations.tsv.gz)
and a variant-gene mapping table from the database (variant_to_gene_mappings.tsv.gz).
To find the variants in the study, we first used the Unified Medical Language System
Concept Unique Identifiers (UMLS CUI) of OSA and dementia in DisGeNET. UMLS CUI
is the database identifier in DisGeNET and is used to represent a disease/phenotype. We
gathered 14 dementia-related UMLS CUI and three OSA related UMLS CUI (Table 1).
Given that OSA has a variety of neurological sequelae (Figure 1), we used a broad category
of identifiers in the neurological category to capture as many sequelae as possible.

Table 1. The list of DisGeNET disease/phenotype identifiers (Unified Medical Language System
Concept Unique Identifiers, UMLS CUI) used in the study.

Category UMLS CUI Disease/Phenotype Name

Dementia

C0524851 Neurodegenerative Disorders
C0002736 Amyotrophic Lateral Sclerosis
C0030567 Parkinson Disease
C0002395 Alzheimer’s Disease
C0020179 Huntington Disease
C0497327 Dementia
C0338656 Impaired cognition
C0011265 Presenile dementia
C0038454 Cerebrovascular accident
C0242422 Parkinsonian Disorders
C0233794 Memory impairment
C0026769 Multiple Sclerosis
C0338451 Frontotemporal dementia
C0752347 Lewy Body Disease

OSA
C0520679 Sleep Apnea, Obstructive
C0037315 Sleep Apnea Syndromes
C0520680 Sleep Apnea, Central

2.3. Candidates of Common Driver Genes Identification

After NICD identifies genes sets for each disease, the next step involves the identifi-
cation of common driver genes which are linked to both diseases. For each disease gene
set, NICD seeks a list of genes that have physical links with any of the genes in the gene

https://www.disgenet.org/
https://www.disgenet.org/
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set on the biological network, which utilizes human data sets and gene arrays which are
publicly available. NICD performs the procedure across the disease gene sets and only
retains genes that are expressed in both diseases. The co-expressed genes are considered as
“primary candidates”.

2.4. Permutation Test to Measure Robustness of Each Primary Candidate Gene

To test whether the primary candidates are selected by a random chance, NICD per-
forms a permutation test. A permutation test is a non-parametric statistical approach
to empirically estimate the null hypothesis by a random shuffling manner. It has been
widely used for many bioinformatics studies such as epistasis [12], multi-omics data in-
tegration [13], and gene–gene network construction [14]. The permutation test of NICD
is as follows; NICD randomly picks the same number of genes and performs an iden-
tification assay. Overlapping between the random gene list and the acquired gene list
could be due to random chance. However, while it is possible to identify overlap between
the candidates and genes by chance, the findings may not be completely random. The
possibility is exponential, so it is not computationally possible to calculate the probability
of randomness of primary candidates. Instead of enumerating every possibility, NICD
performs a permutation test as described in Figure 3.

1. Let A be the number of DisGeNET IDs where A is the genes identified from disease
A;

2. Let B be the number of DisGeNET IDs where B is the genes of the disease from disease
B;

3. Let C be the genes that are common genes of both sampled ID sets.
4. For each gene in C, increase the count by 1;
5. Perform Step 1–4 for 100 × n times where n is the array of common genes from the

previous step (which was not chance);
6. For each of the common genes, calculate p-value by x/100 × n, where x is the gene

count for step 1–5;
7. Correct the p-value using Benjamini–Hochberg correction to decrease the number of

false positives.

After performing the permutation test, a list of common genes is produced. The code
utilized for performing this test is available in the link for data sharing at the end of the
manuscript.

2.5. Gene Enrichment Analysis

To understand the biological mechanisms of input genes or the potential common
drivers, NICD performs gene enrichment analyses. During the analyses, NICD uses Enrichr
(https://amp.pharm.mssm.edu/Enrichr/, accessed on 26 May 2020) to test enrichment
between genes and any canonical genes sets that are defined by gene ontologies or pathway
annotations [15,16]. This allows us to understand the mechanistic underpinning of a
disease process.

https://amp.pharm.mssm.edu/Enrichr/
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Figure 3. This figure demonstrates the permutation analysis used to identify common driver genes. For a given gene set of
interest, this is randomly checked against a list of random genes. This sequence is run repeatedly and corrected to remove
overlap and to test the strength of association between genes associated with both diseases. FDR: False Discovery Rate.

3. Results

Initially, 1108 dementia-associated and 23 OSA-associated genes were identified. The
aforementioned genes were used to identify 3610 genes which had links with both any
OSA-associated genes and any dementia-associated genes. Following NICD with per-
formance of permutation testing, 42 genes were identified with common associations
between Alzheimer’s disease and OSA (Table 2). These identified genes by NICD were
then mapped back to the pathway which the gene affects. Many of the genes were in-
volved with G-coupled protein receptor (GPCR) and olfactory signaling pathways. Gene
enrichment analysis using Enrichr found that a subset of genes (10/42) was significantly
enriched in these pathways (p = 1.314 × 10−9 for olfactory transduction in the KEGG 2019
pathway library and p = 0.00002605 for signaling by GPCR in the BioPlanet 2019 pathway
library) (Figure 4). The identified gene candidates were then characterized by chromosome
(Figure 5).
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Table 2. The list of common driver genes identified by NICD.

Common
Gene

Dementia
Genes Osa Genes Olfactory GPCR p Value

TMEM181 SH3RF1 NRG1 1.36 × 10−4

TSPAN19 TSPAN16 TSPAN18 8.31 × 10−6

CSTL1 AHSG, PRKN NRG1 4.93 × 10−4

RNF121 ITGB2 LPAR1 2.60 × 10−4

AL121594.3 RNF4 NRG1 5.04 × 10−4

OR4E2 MC1R ARRB1
√ √

5.15 × 10−4

FAM241A PLP1, LINGO1 LPAR1, SGCD 2.35 × 10−4

FITM2 CCRL2, HTR2C LPAR1, TSPAN18 2.74 × 10−4

OR2L13 ZP3 ARRB1
√ √

2.02 × 10−4

OR11H4 PTAFR ARRB1
√

2.13 × 10−4

CST11 CST3, AHSG NRG1 3.43 × 10−4

OR4C6 HEATR4 ARRB1
√ √

2.71 × 10−4

TMEM120A VKORC1 TSPAN18 2.47 × 10−4

OR2AE1 PTAFR, GPR65 ARRB1
√ √

4.74 × 10−4

OR7C1 CHRM1 ARRB1
√ √

3.63 × 10−4

TMEM87B SLC30A7 LPAR1 1.91 × 10−4

OR8D1 CBLL2, ADAD1 ARRB1
√ √

2.88 × 10−4

OR4S2 ADAM10 ARRB1
√ √

3.57 × 10−4

OR2J2 PCDH11X ARRB1
√ √

5.26 × 10−4

TMED8 TMED9 PTGER3 1.22 × 10−4

OR2C3 CBLL2, ADAD1,
CCDC62 ARRB1 4.16 × 10−4

TMCO5A
DKKL1, TEX33,

ADAD1,
CCDC62, CBLL2

TSPAN18 3.38 × 10−4

HSPA7 UBXN11 ARRB1 2.27 × 10−4

ZSWIM9 ESR2, ZNF292 AHDC1 5.15 × 10−4

FABP9 FABP2 FABP4 6.09 × 10−5

GTSF1 HSPB1 MPHOSPH6 1.47 × 10−4

TMEM151A CAMK2A, SNCB LPAR1 5.60 × 10−4

TMEM218 NARS2 TSPAN18 3.99 × 10−4

MGAT5B FAM171A2,
MGAT5 PTGER3 2.44 × 10−4

OR6F1 PTAFR ARRB1
√ √

2.13 × 10−4

ZNF385D ZNF804A PTGER3 4.71 × 10−5

TMEM161B RPS6KB1 LPAR1 1.63 × 10−4

LARGE2 DKKL1 NRG1 4.13 × 10−4

SCFD2 SCFD1, STXBP2,
UBE2Z, SIRT2 NBAS 2.83 × 10−4

RAVER2 CNKSR3 NRG1 2.94 × 10−4

CPNE8 TRPM1, VAMP8,
NDUFS1, SOAT1 ARRB1 5.29 × 10−4

ARRDC2 RXRA, PDE4D ARRB1 4.68 × 10−4

OLFM2 TUBB1 NBAS 3.55 × 10−4

ENOX1 NOX4, SETD1A,
RBMS3 LPAR1 5.76 × 10−4

TMEM120B RNF5, SIGMAR1 LPAR1 4.32 × 10−4

BLOC1S3 DTNBP1,
DNAJC6 ARRB1 2.63 × 10−4

CFAP45 SPTAN1, PACRG ARRB1 4.13 × 10−4
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Figure 4. The network of common driver genes that are associated with olfactory transduction and
GPCR. Red nodes correspond to the common drivers and blue nodes and green nodes correspond
to dementia genes and OSA genes, respectively. This represents the fundamental premise behind
identifying common gene drivers common to both disease processes.
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With regards to single nucleotide polymorphisms, we used the data from two large
genome wide association study (GWAS) repositories which have been previously pub-
lished [1,5]. No common SNPs between the two diseases were identified or achieved
statistical significance.

4. Discussion

OSA has long been associated with cognitive impairment and depression [13], and
neurological disorders have been associated with sleep disruptions. There are proposed
shared pathophysiological mechanisms between OSA and dementia [17] which have been
demonstrated in a large clinical study as well [18]. Specifically, Alzheimer’s diease patients
treated for OSA demonstrated increased slow wave sleep (SWS) as well as greater clearance
of Aβ protein, the quantity of which has been directly correlated with disease severity.
However, patients with dementia often have compliance difficulty with the use of CPAP
resulting in [19] a bidirectional, positive feedback loop leading to worse outcomes [20].

The identified gene drivers in our study focused on two pathways: (1) olfaction and (2)
GPCR. Olfactory pathways in dementia have drawn significant interest due to their early
involvement in the dementia process [21]. Loss of olfaction is a common feature in several
types of dementia with proteomic signatures varying across dementia phenotypes [22].
It has been suggested that the olfactory bulb could be the nidus of pathology in several
dementia subtypes [23]. In OSA, disorders of olfaction have been characterized as well,
with the degree of olfactory disturbance correlating with the severity of disease [24].
Furthermore, there is improvement in olfaction after therapy with OSA [25], demonstrating
that olfactory pathways maybe early sites of involvement with both diseases.

The role of GPCRs in the context of both diseases is less clear due to the subtypes
and nearly ubiquitous nature of these receptors. Multiple pathological variants have been
described for GPCRs for several different clinical phenotypes of dementia [26–28]. There
have been no studies to date studying GPCRs in the setting of underlying OSA. Unlike
dementia, OSA is a systemic disease process with multiple sites of end organ involvement,
thereby making localized study difficult.

While this study can identify drivers of both diseases, we are unable to determine
what the triggers for those drivers are. Additionally, we are unable to determine causality,
which would require more in depth translational and clinical studies to delineate. However,
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this study can demonstrate that there are gene drivers commonly linked between OSA
and dementia. This methodology can be further applied to other disease pairs which
are independent but may lead to worsening of the other disease’s clinical presentation.
Examples include Type 2 diabetes mellitus and hypertension, as well as more hereditable
diseases, such as obesity and alcoholism.

In summation, this study provided a new framework for identifying common gene
drivers, utilizing several known techniques combined with permutation analysis. This
algorithm was used to identify common drivers between two often co-existing but mutually
exclusive diseases, OSA and dementia. These common gene drivers can then be tested
for clinical utility and potentially be used as biomarkers after validation. This particular
methodology is particularly useful to identify drivers for diseases which have different
etiologies but can co-exist and can create care issues when comorbid. This can facilitate
driving therapies which can impact multiple disease processes in the same patient.

Key Points

Question: Is there a method to identify common gene drivers between two diseases
that are comorbid but unrelated, specifically OSA and dementia?

Findings: This study describes a common methodology that utilizes publicly available
data to identify 42 common genes between OSA and dementia

Meaning: This methodology can be extrapolated to multiple large data sets to poten-
tially identify gene drivers of common, comorbid, but independent diseases.
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