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Expected value of information methods evaluate the
potential health benefits that can be obtained from con-
ducting new research to reduce uncertainty in the param-
eters of a cost-effectiveness analysis model, hence
reducing decision uncertainty. Expected value of partial
perfect information (EVPPI) provides an upper limit to
the health gains that can be obtained from conducting
a new study on a subset of parameters in the cost-
effectiveness analysis and can therefore be used as a sensi-
tivity analysis to identify parameters that most contribute to
decision uncertainty and to help guide decisions around
which types of study are of most value to prioritize for fund-
ing. A common general approach is to use nested Monte
Carlo simulation to obtain an estimate of EVPPI. This
approach is computationally intensive, can lead to signifi-
cant sampling bias if an inadequate number of inner sam-
ples are obtained, and incorrect results can be obtained if

correlations between parameters are not dealt with appro-
priately. In this article, we set out a range of methods for
estimating EVPPI that avoid the need for nested simulation:
reparameterization of the net benefit function, Taylor series
approximations, and restricted cubic spline estimation of
conditional expectations. For each method, we set out the
generalized functional form that net benefit must take for
the method to be valid. By specifying this functional form,
our methods are able to focus on components of the model
in which approximation is required, avoiding the complex-
ities involved in developing statistical approximations for
the model as a whole. Our methods also allow for any cor-
relations that might exist between model parameters. We
illustrate the methods using an example of fluid resuscita-
tion in African children with severe malaria. Key words:
value-of-information; Bayesian methods; cost-effectiveness
analysis. (Med Decis Making 2014;34:327–342)

Value of information (VoI) methods provide
a coherent decision-theoretic approach to

research prioritization.1,2 When making a decision
under imperfect information, it is possible that the

expected optimal decision is wrong, and this possi-
bility will be associated with an expected loss. VoI
methods define the value of research in terms of
the expected reduction in this expected loss result-
ing from the additional information gained. This is
derived from the expected impact of the proposed
study on parameter uncertainty. It is therefore natu-
ral to take a Bayesian perspective where prior beliefs
about parameters are ‘‘updated’’ by incorporating
new evidence to form posterior beliefs.3 The ex-
pected loss given current information is also known
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as the expected value of perfect information (EVPI),
because it is the amount the decision maker should
be willing to pay to eliminate all parameter uncertainty
in the decision.1,2 Where there are multiple sources of
uncertainty, it is possible to calculate the EVPI on
a subset of focal parameters, termed the expected value
of partial perfect information, or alternatively, ex-
pected value of perfect parameter information (EVPPI).
EVPI and EVPPI provide an upper bound to the value
of any proposed future study. Several authors have
highlighted the use of these methods in health technol-
ogy assessment in relation to sensitivity analysis and
research prioritization, and we refer interested readers
to this literature for a more complete discussion of the
role of value-of-information analysis in health technol-
ogy assessment.4,5

EVPPI involves an inner expectation nested within
an outer expectation, which can be challenging to
estimate; a common approach is nested Monte Carlo
simulation.6 There are 3 main issues with the nested
simulation approach. First, obtaining estimates of
adequate precision can be computationally expen-
sive.7 Second, estimates will have significant upward
bias if insufficient simulation sample sizes are used
for the inner loop.8 Third, it can be difficult to generate
unbiased EVPPI estimates when correlations exist
between parameters, unless the joint distribution of
the correlated parameters takes a known parametric
form.7 Conditions for the net benefit function have
been identified that, if satisfied, allow EVPPI to be cal-
culated in a single step by replacing the nonfocal
parameters with their expected means.9 In this article,
we extend the work of Ades and others,9 describing
methods that can be used to avoid nested simulation
in a broad range of situations, through careful consid-
eration of the structure of the net benefit function and
the relationships between its parameters. We illustrate
these methods using a case study involving fluid
resuscitation in African children with severe malaria,
followed by a discussion of the advantages of the
methods compared with other approaches and limita-
tions resulting from the assumptions made.

Motivating Example

Malaria accounts for up to 1 million deaths annually
in children younger than 5 years living in Sub-Saharan
Africa. Children hospitalized with cerebral malaria
(coma) have increased case fatality (18%–21%),10 and
survivors are at heightened risk of long-term neurologi-
cal sequelae (NS).11,12 There are clinical arguments sug-
gesting that fluid resuscitation could reduce mortality
in African children.13 Furthermore, pilot studies,

involving 3 fluids (saline, albumin, and gelofusine),pro-
vided limited but promising support for this hypothe-
sis.13–15 Following these studies, a large multinational
trial, the FEAST trial, was initiated to provide definitive
evidence on the efficacy of fluid resuscitation.16

We developed an economic model to assess the
cost-effectiveness of fluid resuscitation strategies,
taking a health services perspective in which the rel-
evant costs and benefits are those relating to the indi-
vidual patient (irrespective of who actually provides
the funds for health care). The model is based on the
assumptions given in Table 1, which were informed
by consultation with clinical experts advising the
FEAST trial. Assumption A6, used to derive the prob-
ability of NS in those receiving fluids, requires fur-
ther explanation. If fluid resuscitation reduces
mortality, there will be a subgroup of survivors who
would have died without fluids. Assumption A6
allows for the possibility that this subgroup is more
severely affected by malaria than those who would

Table 1 Assumptions Involved in Constructing the
Net Benefit Function

� A1: Fatalities from severe malaria occur within the first
few days following hospitalization.

� A2: Mortality differences between fluids are assumed
additive on the log-odds scale.

� A3: Survivors and nonsurvivors receive identical
treatment, except that survivors have a longer mean stay
in the hospital. This additional stay is associated with
an incremental cost of CH.

� A4: Neurological sequelae (NS) in survivors become
apparent within 28 d of discharge.

� A5: Giving fluid resuscitation to children who would
survive anyway has minimal impact on their likelihood
of developing NS.

� A6: Improved survival from treatment is associated with
a change dS in the log-odds of NS among those who are
‘‘saved’’ by treatment (see main text for further
explanation).

� A7: A proportion pL of NS cases at 28 d will persist long
term.

� A8: Short-term cases of NS have no impact on treatment
costs or quality of life.

� A9: Survivors who are free of long-term NS have a mean
quality-adjusted life expectancy of qM.

� A10: Long-term NS is associated with a reduction in
quality-adjusted life expectancy of QS and increased
discounted lifetime management costs of CS. These
values are assumed to be the same irrespective of fluids
received.

� A11: Parameters are assumed to be independent unless
correlations are induced between them through joint
estimation from a common data source.
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have survived without fluids and therefore are at
greater risk of NS. Note that we do not assume this
a priori; the model allows for the possibility that flu-
ids increase mortality or that improved survival is
associated with reduced NS risk.

There are 4 possible outcomes for patients in the
model: death, NS-free survival, survival with short-
term NS, and survival with long-term NS. Table 2 lists
the probability of each outcome with or without fluid
resuscitation, and a full list of model parameters is
given in Table 3. To assess the cost-effectiveness of
treatment j, we calculate its incremental net benefit
Bj(u) relative to no fluid, that is, the additional costs
incurred and health utility gained above those
observed without fluid resuscitation. This includes
the cost CF

j of fluid j and additional costs and benefits
related to changes in the proportion achieving each of
the outcomes in Table 2, that is,

BjðuÞ5
expðaÞ

ð1 1 expðaÞÞ �
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !

ðWqM � CH � pL pB exp ðdSÞ
ð1 1 pB exp ðdSÞÞ

� �
ðWqS 1 CSÞÞ

�CF
j ð1Þ

where u = a;dM
j ; q

M; qS;pL;dS
n o

; W = willingness to

pay per quality-adjusted life-year.
This model (eq. 1) was designed to estimate the

cost-effectiveness of fluids once FEAST trial results
were available. However, it can also be used in an
EVPPI analysis to provide insight on the potential
value of the FEAST trial and other studies that could
be undertaken to inform parameters in eq. 1. This
requires quantifying the uncertainty around the param-
eters implied by information available at the time the
FEAST trial was designed (Table 3). Values for CH,
CF, and qMwere based on health economic analysis
carried out by several of the authors alongside the
FEAST trial.16 Data on NS-related economic parame-
ters are sparse; our chosen values are toward the upper
end of what were considered plausible values, for rea-
sons that are explored in the Discussion section.

Table 3 also lists the type of future studies that can
provide information on each of the uncertain model
parameters. We assumed that baseline mortality in
a randomized controlled trial (RCT) population
would be different from that in the decision popula-
tions, so that a different study type would be needed
to provide information on baseline and relative effect
parameters. In practice, if the 2 populations are con-
sidered sufficiently similar, all of these parameters
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could be estimated from an RCT. Below, we present
generic methods that can be used to estimate EVPPI
in a wide range of circumstances. We then illustrate
their application for the fluid resuscitation example
by considering the different future studies that we
could run (Table 3) and the subset of parameters those
studies would directly inform.

METHODS

Let BjðuÞbe a general form for the incremental net
benefit of intervention j given model parameters u

and j* be the optimal decision given current informa-
tion. We define j as a subset of (focal) parameters on
which we are considering collecting further informa-
tion on in a new study, and jC as the set of remaining
(nonfocal) model parameters. EVPPI jð Þ equals

the expected gain in net benefit, given current infor-
mation, from switching to the optimum treatment
once j is known with certainty:

EVPPI jð Þ5 E
j

max
j

E
jCjj

BjðuÞ � Bj�ðuÞ
� 	( )" #

: ð2Þ

We describe 2 types of methods that can be used (if
necessary in combination) to avoid the inner-simula-
tion step when calculating EVPPI jð Þ, which all
involve finding a solution (exact or approximate) for
the inner expectation E

jCjj
BjðuÞ � Bj�ðuÞ
� 	

.

Methods in Which Expectations for (Functions of)
jc Can Be Plugged in Directly

Method 1: Direct Substitution of Means of the Non-
focal Parameters in a Linear Net Benefit Function

Table 3 Values/Distributions Used for Parameters in the Economic Model and Study Designs That Would
Provide Further Information on Them

Parameter Description Value/Distribution
Study Design to Provide Further

Information

dM
2

Effect of albumin on mortality Posterior distribution generated by
Bayesian evidence synthesis
model

RCT including albumin and
control arm

dM
3

Effect of saline on mortality Posterior distribution generated by
Bayesian evidence synthesis
model

RCT including saline and
control arm

dM
4

Effect of gelofusine on mortality Posterior distribution generated by
Bayesian evidence synthesis
model

RCT including gelofusine
and control arm

dS Change to NS risk in ‘‘saved’’
patients

Posterior distribution generated by
Bayesian evidence synthesis
model

RCT including fluid
resuscitation arm(s) and
control arm

CF Fluid cost (per patient) $1 (saline), $35 (albumin), $12.50
(gelofusine)

CH Additional in-patient costs
associated with survival

$60 (based on 5 d at $12/d)

a Log-odds of death without fluid
resuscitation

Normal with implied median
probability of death 25%, 95% CI
15%–40%

Cohort study with short-term
follow-up

pB Probability of NS without fluid
resuscitation

Beta (1,9) (mean 10%, 95% CI
0.6%–28.5%)

Cohort study with 28-d
follow-up

pL Probability that NS will still be
present at 6 mo conditional on NS
observed at 28 d

Beta (1,1) Cohort study with 6-mo
follow-up

CS Long-term discounted costs of NS $20 000

qM QALY loss per fatality Normal with CHAR1 = 20 and s = 5 Cohort study on survivors
without NS: long-term
follow-up

qS QALY loss per case of NS Truncated normal with CHAR1 = 5,
s = 3.16, lower limit = 0

Cohort study on those with
NS: long-term follow-up

Note: CI = confidence interval; NS = neurological sequelae; QALY = quality-adjusted life-year; RCT = randomized controlled trial.
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This method is applicable when the net benefit takes
the form

BjðjC;jÞ5
X

i

fi; j jð ÞjC
i ;

where jC
i ,the ith component of jC, is independent of

any of the elements ofj in its linear coefficient fi; j jð Þ.
Given this independence, it has been shown4,9 that

E
jCjj

BjðjC;jÞ
� 	

5
X

i

fi; j jð ÞE jC
i

� 	
: ð3Þ

EVPPI jð Þcan now be estimated in a single Monte
Carlo simulation by substituting equation 3 into
equation 2.

Method 2: Direct Substitution of Means of the Nonfo-
cal Parameters in a Multilinear Net Benefit Function

This method is applicable when the net benefit can be
expressed in the form

BjðjC;jÞ5
X

i

fi; j jð Þgi; j jC
� �

;

where

� each function gi; j jC
� �

is a product of mutually inde-
pendent elements of jC and

� each of the elements of gi; j jC
� �

is independent of the
elements of j in its linear coefficient fi; j j;jð Þ.

If these conditions are satisfied, it has been shown4,9

that the expected value of each function gi; j jC
� �

will
equal the product of the expectations of its compo-
nents, so that

E
jCjj

BjðjC;jÞ
� 	

5
X

i

fi; j jð Þgi; j E jC
1

� �
;E jC

2

� �
; . . .

� �
: ð4Þ

EVPPI jð Þcan now be estimated in a single Monte
Carlo simulation by substituting equation 4 into
equation 2.

Method 3: Reparameterization to Linearize the
Net Benefit Function

This method is applicable when the net benefit can
be expressed in the form

BjðjC;jÞ5
X

i

fi; jðjÞbi; j jC
� �

where

� bi; j jC
� �

are any functions of the jC parameters and
� the elements of jC in each bi; j jC

� �
are all independent

of any of the elements of j in its linear coefficient
fi; jðjÞ.

Method 2 is not applicable if any of the bi; j jC
� �

are
not products of their components and/or include
correlated nonfocal parameters . However, the
second condition ensures the independence of
each bi; j jC

� �
from its linear coefficient fi; jðjÞ, which

implies that

E
jCjj

BjðjC;jÞ
� 	

5 fi; jðjÞ E
jC

bi; j jC
� �� 	

: ð5Þ

EVPPI jð Þcan now be estimated in a single Monte
Carlo simulation by substituting equation 5 into
equation 2. This method has been used by Welton
and others.17

Methods Involving Functions Approximating the
Conditional Expectations of jC

Method 4: Taylor Series Approximations to the
Net-Benefit Function

This method is applicable when net benefit takes the
form

BjðjC;jÞ5
X

i

fi; jðjÞbi; j jC
�i

� �
hi; j jC

i ;j
� �

;

where

� fi; jðjÞare arbitrary functions of the focal parameters
and hi; j jC

i ;j
� �

are arbitrary smooth nonlinear func-
tions of j and a single element jC

i of jC,
� bi; j jC

�i

� �
are arbitrary functions of the remaining jC

parameters (excluding jC
i ), and

� jC
i , the elements of j in hi; j jC

i ;j
� �

, and the elements
of jCin bi; j jC

�i

� �
are mutually independent.

Because jC
i , jC

�i and the elements of j in hi; j jC
i ;j

� �
are mutually independent, we can decompose the
expectation:

E
jC jj

X
i

fi; jðjÞbi; j jC
�i

� �
hi; j jC

i ;j
� �" #

5

X
i

fi; jðjÞE bi; j jC
�i

� �� 	
E hi; j jC

i ;j
� �� 	

:

The expectation of each bi; j jC
�i

� �
, if required, can be

found using method 3. Because hi; j jC
i ;j

� �
is nonlin-

ear, its expectation conditional on j will not equal
hi; j E jC

i

� �
;j

� �
, and we cannot use methods 1 to 3.

Our strategy is instead to construct a function of
E jC

i

� �
that approximates the required conditional

expectation and so can be used to replace the inner
simulation step. One approach is to use Taylor series
expansions.9 The nth-order Taylor series expansion
of hi; j jC

i ;j
� �

in the neighborhood of E jC
i

� �
is given by
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hi; j jC
i ;j

� �
’ hi; jðE½jC

i �;jÞ1
Xn

r 5 1

1

r!

drhi; j E½jC
i �;j

� �
d jC

i

� �r jC
i � E½jC

i �
� �r

:

As long as jC
i is independent of the elements of j in

hi; j jC
i ;j

� �
, taking conditional expectations on both

sides gives

E
jC

i
jj

hi; j jC
i ;j

� �� 	
’ hi; jðE½jC

i �;jÞ

1
1

2

d2hi; j E½jC
i �;j

� �
d jC

i

� �2
� Var½jC

i �1 . . . :

This can be used to give an approximation to the con-
ditional expectation of the net benefit function; for
example, a second-order approximation is

E
jCjj

BjðjC;jÞ
� 	

’
X

i

fi; j jð Þ �hT2
i; j ðE jC

i

� 	
;jÞE bi; j jC

�i

� �� 	
; ð6Þ

where

�hT2
i; j ðE jC

i

� 	
;jÞ5 hi; jðE½jC

i �;jÞ1
1

2

d2hi; j E½jC
i �;j

� �
d jC

i

� �2
� Var½jC

i �:

EVPPI jð Þcan now be estimated in a single Monte
Carlo simulation by substituting equation 6 into
equation 2.

The form of the approximation will depend on the
functional form of hi; j jC

i ;j
� �

. For example, net benefit
functions commonly consist of an absolute probability
that is informed by parameters on the log-odds scale
(baseline log-odds plus a log-odds ratio for treatment j),
so that hi; j jC

i ;j
� �

is the inverse-logit function of the form

hi; jðji
C;jÞ5 e ji

C 1jð Þ
1 1 e ji

C 1jð Þ : ð7Þ

The second-order Taylor series approximation for the
inverse-logit function is (see supplementary
appendix):

E
jC jj

hðj;jC
i ;jÞ

� 	
’ H 1

Hð1�HÞð1� 2HÞVar½jC
i �

2

where H 5
e E jC

i½ �1jð Þ

1 1 e E jC
i½ �1jð Þ :

Occasionally, the absolute probability is informed by
parameters on the cumulative log-log (clog-log) scale,
so that function h is the inverse-clog-log function of
the form

hi; jðji
C;jÞ5 1� e�e

ji
C 1jð Þ

:

In this case, it can be shown that the second-order
Taylor approximation gives (see supplementary
appendix)

E
jC jj

hðj;jC
i ;jÞ

� 	
’ 1�H 1

H ln Hð Þ ln Hð Þ � 1ð ÞVar½jC
i �

2

where H 5 e�e
E jC

i½ �1jð Þ
:

When using Taylor series approximations, it is
important to assess the accuracy of the approxima-
tion and to consider adaptations that improve accu-
racy, for example, the addition of higher-order
terms. We have developed the following adaptation
for this purpose. We split the prior distribution for
jC

i into quantiles, Q, and find the mean, mQ, of jC
i

conditional on lying in quantile Q. We then construct
separate Taylor series approximations to hi; jðji

C;jÞ
within each quantile around the quantile-specific
mean, mQ. It can be shown that the expected value

of the average over this set of Taylor series approxi-
mations converges to the required quantity,

E
jCjj

hðj;jC
i ;jÞ

� 	
(details and proof in the supplemen-

tary appendix). Figure 1 illustrates the accuracy of

Taylor series expansions in the case in which ji
C

is normally distributed, hi; jðji
C;jÞ takes the form

given in equation 6, and E[j1jC
i ] = 2. The accuracy

of approximations based on Taylor series expan-

sions around E[jC
i ] reduces as the variance of jC

i

increases, and the fourth-order approximation is
noticeably more accurate than the second-order
approximation. However, averaging over second-
order expansions around the interquartile means is
more effective in improving accuracy than increas-
ing the order of the single approximation. The Tay-
lor series gives local approximations whose
accuracy diminishes as the distance from the expan-
sion point increases. Therefore, averaging over mul-
tiple expansions around a range of values reduces
error in the approximation by restricting the range
over which each approximation is made, and this
is our recommended approach.

Method 5: Spline-Approximation Methods When
There Are Correlations between Parameters This
method is applicable when the net benefit takes
the form
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BjðjC;jÞ5
X

i

fi; jðjÞhi; j jC;ji

� �
;

where

� fi; jðjÞ are arbitrary functions of the focal parameters,
� hi; j jC;ji

� �
are arbitrary smooth nonlinear functions

of jC and a single element ji of j, and
� for at least one value of i, ji is correlated with one or

more of the elements of jC in hi; j jC;ji

� �
.

Here we can no longer use Taylor series expansions to
estimate the conditional expectation of hi; j jC;ji

� �
in

terms of the unconditional expectation ofjC, because
elements of the latter are correlated withji. Instead,
we aim to construct functions ji; j jið Þ whose values
are close approximations to E

jCjj
hi; jðjC

i ;jÞ
� 	

, so that

E
jCjj

BjðjC;jÞ
� 	

’
X

i

fi; j jð Þji; j jið Þ: ð8Þ

EVPPI jð Þ can then be estimated in a single Monte
Carlo simulation by substituting equation 8 into
equation 2.

An obvious choice for ji; j jið Þ is a spline.18 There are
several different types of splines; we describe here the
use of restricted cubic splines for this purpose. The
restricted cubic spline ji; j jið Þ takes the form

ji; j jið Þ5 gj; 0 1 gj; 1 1 S
Nt

n 5 1
gj;n 1 1 max 0;ji � tnð Þð Þ3; ð9Þ

where t1; . . . tNt
f g are the Nt knots that define the

breakpoints of ji; j jið Þ. The parameters g are chosen
so that ji; j jið Þ is linear for values of ji less than t1

or greater than tNt. This requires a minimum of 3
knots. Furthermore, ji; j jið Þmust be continuously dif-
ferentiable, which places further restrictions on the g.
To construct these splines, we first require estimates

of E
jCjj

hi; jðjC;jiÞ
� 	

for a large set of values for ji span-

ning a plausible range. Once knots t1; . . . tNt
f g have

been chosen, regression analysis can be used to
derive coefficients g defining the splines that fit the
estimated conditional expectations most closely.
This approach can be implemented by the following
algorithm.

Step 1: Generate Nu samples from the joint distribution
of u and estimate hi; jðjC;jÞ for each sample and each
intervention j. These should be the same set of samples
that will subsequently be used to estimate EVPPI jð Þ.

Step 2: Divide the range spanning the values of ji into
MB bins Fm 5 fxm�1; xmg; 2 < m < MB. We chose val-
ues for xm so that there were an equal number of

samples in each bin (this is not the only possible
approach, e.g., bins could be of equal width).

Step 3: For each bin Fm :
a. Identify the subset of samples within u for which

the sampled value of ji lies within Fm .
b. Calculate the mean ji;m of all the sampled values

of ji in the subset.
c. Calculate the mean hi; j;m of all the sampled values

of hi; jðjC;jiÞ in the subset.

Step 4: Choose a vector of knots t1; . . . tNt
f g that lie

within the range spanning the values of ji i.e.,
(x1; xMB ). We chose to use equally spaced knots.

Step 5: For each intervention j and function i, we fit
a restricted cubic spline regression model to estimate
the spline function ji; j jið Þ, based on the MB pairs of

values ji;m;hi; j;m


 �
, where hi; j;m is the dependent

variable, ji;m the explanatory variable, and the knots

are as chosen in step 4. The estimated spline function

ji; j jið Þ provides an approximation to E
jC jji

hi; jðjC;jiÞ
� 	

that converges to the true expectation as Nu and MB

increase. Restricted cubic splines can be fitted in
many statistical packages; we used the R package

Figure 1 Taylor series approximations for the expectation of the

inverse logit of (j1jC
i ), where j is known, jC

i is normally distrib-

uted, and E[j1jC
i ] = 2. Pluses mark true values for the expectation

as the standard deviation of jC
i varies, and approximations are

based around a single expansion around the mean (second- and

fourth-order approximation) and averaging over approximations

derived at each interquartile mean (second-order approximation).
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rms (available at http://biostat.mc.vanderbilt.edu/
wiki/Main/Rrms).

EVPPI Calculations for the Fluid Resuscitation
Example

We describe below, for the fluid resuscitation
example (eq. 1), how EVPPI can be calculated for var-
ious different subsets of parameters, representing dif-
ferent potential future studies (Table 3), using the
appropriate method described in the Methods sec-
tion. We assume that we have a set of simulated sam-
ples from the joint prior distribution for all of the
uncertain parameters.

Example 1: Net Benefit Linear in Nonfocal
Parameters

Suppose we wish to evaluate the value of running 2
studies: 1) a 4-arm RCT (such as FEAST) to provide
information on relative effects, dM;dS, and 2)
a cohort study with 6-mo follow-up to provide infor-
mation on a;pB;pL. In this case, the focal parameters
(i.e., those for which we wish to calculate the EVPPI)

are j5 dM;dS;a;pB;pL
n o

, so that jC 5 qM; qS

 �

. By

defining

f1; jðjÞ5 W
expðaÞ

ð1 1 expðaÞÞ �
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !

f2; jðjÞ5 pLW
expðaÞ

ð1 1 expðaÞÞ �
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !

pB expðdSÞ
ð1 1 pB expðdSÞÞ

� �

f3; jðjÞ5
expðaÞ

ð1 1 expðaÞÞ �
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !

CH 1 pLCS pB expðdSÞ
ð1 1 pB expðdSÞÞ

� �
1 CF

j ;

the net benefit can be expressed as

BjðjC;jÞ5 f1; j jð ÞqM � f2; j jð ÞqS � f3; j jð Þ:

This satisfies the conditions that must be met to use
method 1 for single-step Monte Carlo estimation of
EVPPI. Therefore, we can apply equations 1 and 2
to restate EVPPI jð Þ in a form requiring only a single
simulation step:

EVPPI jð Þ5 EVPPI dM;a;pB;dS;pL
� �

5 E
j

max
j

Bjðj;E½qM�;E½qS�Þ � Bj�ðj;E½qM�;E½qS�Þ

 ��  :

Method 1 can also be used when jC 5 qM;pL

 �

or

when jC equals any single element of qM; qS;pL

 �

.

Example 2: Net Benefit Multilinear in Nonfocal
Parameters
Suppose we wish to evaluate the value of running 3
studies: 1) a 4-arm RCT (such as FEAST) to provide
information on relative effects, dM;dS, 2) a cohort
study with 28-d follow-up (or routine data) to pro-
vide information on a;pB, and 3) a long-term cohort
study on patients who survive without NS to pro-
vide information on qM. In this case,

j5 dM;a;pB;dS; qM
n o

, so that jC 5 pL; qS

 �

.
Defining

f1; jðjÞ5 W
expðaÞ

ð1 1 expðaÞÞ �
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !

pB expðdSÞ
ð1 1 pB expðdSÞÞ

� �

f2; jðjÞ5 CS expðaÞ
ð1 1 expðaÞÞ �

expða 1 dM
j Þ

ð1 1 expða 1 dM
j ÞÞ

 !

pB expðdSÞ
ð1 1 pB expðdSÞÞ

� �

f3; jðjÞ5
expðaÞ

ð1 1 expðaÞÞ �
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !

WqM � CH
� �

� CF
j

net benefit can be expressed as

Bðj;jC;jÞ5 � f1; j jð ÞpLqS � f2; j jð ÞpL 1 f3; j jð Þ:

This satisfies the conditions that must be met to use
method 2 for single-step Monte Carlo estimation of
EVPPI. Therefore, we can apply equations 2 and 4
to restate EVPPI jð Þ in a form requiring only a single
simulation step:

EVPPI jð Þ 5 EVPPI dM;a;pB;dS; qM
� �

5 E
j

max
j

Bjðj;E½pL�;E½qS�Þ � Bj�ðj;E½pL�;E½qS�Þ

 ��  :
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Method 2 can also be used when jC 5 qM; qS;pL

 �

.

Example 3: Net-Benefit Linear in Functions of the
Nonfocal Parameters

Suppose we wish to assess the value of running
a cohort study with long-term follow-up, including
patients with and without NS, to estimate persis-
tence rates and long-term quality of life.

Here j5 qM; qS;pL

 �

, so that jC 5 dM;a;pB;dS
n o

.
The net benefit function is no longer multilinear in
jC, so neither of methods 1 or 2 is valid. However,
by defining

b1; j jC
� �

5
expðaÞ

ð1 1 expðaÞÞ �
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

b2; j jC
� �

5
expðaÞ

ð1 1 expðaÞÞ �
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !

pB expðdSÞ
ð1 1 pB expðdSÞÞ

� �

f1 jð Þ5 WqM � CH

f2 jð Þ5 pL WqS 1 CS
� �

;

the net benefit can be expressed as

BjðjC;jÞ5 f1 jð Þb1; j jC
� �

� f2 jð Þb2; j jC
� �

� CF
j :

This satisfies the conditions that must be met to use
method 3 for single-step Monte Carlo estimation of
EVPPI. Therefore, once the unconditional expecta-
tions E b1; j jC

� �� 	
and E b2; j jC

� �� 	
are known, we

can apply equations 2 and 5 to restate EVPPI jð Þ in
a form requiring only a single simulation step:

EVPPI jð Þ5 EVPPI qM; qS;pL
� �

5 E
j

max
j

Bj j;E b1; j jC
� �� 	

;E b2; j jC
� �� 	� �
�

�Bj� j;E b1; j jC
� �� 	

;E b2; j jC
� �� 	� �

g
i
:

Method 3 can also be used when j is any subset of
qM;qS;pL

 �

.

Example 4: Net Benefit Includes Joint Nonlinear
Functions of Independent Focal and Nonfocal
Parameters

Suppose we wish to evaluate the value of running
a 4-arm RCT (such as FEAST) to provide information

on relative effects, dM;dS. Here, j5 fdM;dSg, so that
jC 5 a;pB;pL; qS; qM


 �
. In this case, by defining

h1; jða;jÞ5
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

h2ðpB;jÞ5 expðdS 1 ln ðpBÞÞ
ð1 1 expðdS 1 ln pBð ÞÞ

� �

b1ðqMÞ5 WqM � CH
� �

b2ðqMÞ5 pL WqS 1 CS
� �

;

the net benefit can be expressed as

Bj jC;j
� �

5 h1; j a;jð Þ � h1; 1 a;jð Þ
� �

b1 qM
� ��

�h2 pB;j
� �

b2 jC
� �

Þ � CF
j :

Because a and pB are independent and dM and dS are
known, the terms h1, h2, b1, and b2 are mutually inde-
pendent. Therefore, we can write

EVPPI dM;dS
h i

5 E
j

max
j

B9j � B9j�

 �� 

where

B9j 5 Bj j;b1 E qM
� 	� �

;b2 E pL
� 	

;E qS
� 	� �

;E h1; ;1 að Þ
� 	

;
�

E h1; j j;að Þ
� 	

;E h2 j;pB
� �� 	

Þ:

E h1; j j;að Þ
� 	

(a function of of a and dM
j ) and

E h2 j;pB
� �� 	

(a function of pB and dS) can be approx-

imated using Taylor series expansions, as described
in the Methods section (method 4). Method 4 can

also be used when j5 a;pB

 �

.

Example 5: Net Benefit Includes Joint Nonlinear
Functions of Correlated Focal and Nonfocal Pa-
rameters

Suppose we wish to evaluate the value of collecting
routine data on mortality under current practice (i.e.,
without fluid resuscitation). Here, j5 af g, so that

jC 5 pB;pL; qS; qM;dM;dS
n o

. In this case, by defining

b1ðuÞ5
expðaÞ

ð1 1 expðaÞÞ ðWqM � CH � pL pB expðdSÞ
ð1 1 pB expðdSÞÞ

� �

ðWqS 1 CSÞÞ

b2ðjCÞ5 pL pB expðdSÞ
ð1 1 pB expðdSÞÞ

� �
ðWqS 1 CSÞ
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h1; jðuÞ5
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !
ðWqM � CHÞ

h2; jðuÞ5
expða 1 dM

j Þ
ð1 1 expða 1 dM

j ÞÞ

 !
pB expðdSÞ

ð1 1 pB expðdSÞÞ

� �
;

the net benefit can be expressed as

BjðjC;jÞ5 b1 uð Þ � h1; jðuÞ1 h2; jðuÞb2 jC
� �

� CF
j :

Because dM and dS are correlated, none of the meth-
ods previously described can be used to estimate

E
jC

h2; jðuÞ
h i

. However, restricted cubic splines jj að Þ

can be constructed (method 5) such that

jj að Þ ’ E
jC ja

h2; j jC;a
� �� 	

:

Then, EVPPI[a] can be approximated by

EVPPI a½ �5 E
a

max
j

E
jC ja

BjðjC;jÞ � Bj�ðjC;jÞ
� 	( )" #

’ E
a

max
j

E b2 jC
� �� 	

jj að Þ � jj� að Þ
� �

1 CF
j � CF

j�

n o�  :

The method described for this example can also be
used when j is any single element of dS;dM;pB


 �
.

RESULTS

Evidence Synthesis and Cost-Effectiveness Analysis

We carried out a Bayesian evidence synthesis,
using WinBUGS version 1.4.3,19 to estimate posterior
distributions for the treatment effect parameters dM

and dS based on the data from the 3 pilot studies
(details in the supplementary appendix). A Markov
chain Monte Carlo (MCMC) simulation with a burn-
in of 50 000 (the number of samples required for con-
vergence of multiple chains) followed by simulation
of 5 million parameter value sets (chosen based on
the memory limits of the computer) was used to rep-
resent joint parameter uncertainty, which forms the
prior for the EVPPI analysis.

Table 4 gives posterior parameter means and corre-
lations, based on the pilot studies listed in supple-
mentary appendix A2. The impact of saving a life
on the subsequent risk of NS, dS, is correlated
with the effect of each treatment on mortality, dM.

The treatment effects on mortality are also correlated
with each other. This is because dS and dM are jointly
estimated from the pilot studies, where the observed
proportion of NS depends on both dS and dM (supple-
mentary appendix A2). No other correlations exist
between model parameters because they are esti-
mated from independent data sources.

Albumin is the only treatment for which the 95%
credible interval for the log-odds ratio relative to no
fluids does not include 0 (no effect). Appropriate
cost-effectiveness thresholds in an African context
are less well established than in regions such as the
United Kingdom. We therefore explored a range for
the willingness-to-pay threshold (WTP) of 0 to 4000
USD/quality-adjusted life-year (QALY) when calcu-
lating net benefit. Based on the pilot data and the syn-
thesis model, the most cost-effective option is
albumin if WTP is .$269/QALY and gelofusine oth-
erwise (there are no choices of threshold for which
saline or no fluid is the optimal treatment). Around
the ‘‘switching’’ threshold of $269/QALY, there is
considerable uncertainty about the most cost-effec-
tive treatment. For example, although gelofusine
has the highest expected net benefit at a threshold
of $250/QALY, there is only an 18% probability
that it is the most cost-effective at that threshold,
compared with 54% for albumin, 7% for saline, and
21% for no fluids. Results are more certain at higher
thresholds; at $1000/QALY, for example, albumin
has the highest net benefit with a 92% probability.

Value of Information

All calculations were performed using the soft-
ware package R (version 2.15). For the effectiveness
parameters dM and dS, these samples were generated
using MCMC simulation from the evidence synthesis
model. For the remaining parameters, samples were
generated in R directly. Computations were per-
formed on a PC with an Intel i5 processor and 3 Gb
of RAM.

The EVPI is highest around the threshold at which
the optimal treatment changes, where the decision is
most uncertain and sensitive to additional informa-
tion (Figure 2). Another influence on the EVPI/WTP
relationship is that, at low threshold values, NS costs
are high enough for additional information on
NS-related parameters (qS, dS, pL, pB) to potentially
change the decision. This effect can be verified by cal-
culating the EVPPI for different model parameters.
Table 5 illustrates EVPPI estimates for different
subsets of parameters, each calculated in a single sim-
ulation step using the methods described above,
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assuming a WTP of $250/QALY. Methods that
involve replacing nonfocal parameters or functions
of them, with their unconditional means in the net
benefit function (methods 1–3), can be used to esti-
mate the benefit of knowing individual parameters
with certainty in 3 cases: pL, qM, and qS. This benefit
is large for the first 2 parameters but 0 for qS (the
QALY loss associated with persistent NS).

The accuracy of EVPPI estimated using methods 1
to 3 depends on the precision of the estimates of the
unconditional parameter means, which in turn will
depend on the size of the sample generated from the

posterior distribution. The point at which sample
size is sufficient can be assessed by plotting the rela-
tionship between the estimate of EVPPI and the sam-
ple size used to derive it. Figure 3 illustrates the
number of outer simulations needed for EVPPI esti-
mates to converge in the case where j5 qM and com-
pares nested and single-step simulation. Sample sets
of increasing size were used to estimate EVPPI qM

� �
using the 1-step approach of method 3 and the 2-
step approach with 1000 or 2500 inner simulations
for each outer simulation. The (upward) bias result-
ing from an inadequate number of inner simulations

Table 4 Results of MCMC Simulation, with Unconditional Means and Correlations between Parameters

Posterior Mean and Variance Correlations

Parameter Description Mean Variance a dM
2 dM

3 dM
4 PB dS pL qM qS

a Baseline mortality (logit scale) –1.07 0.11 1 0 0 0 0 0 0 0 0

dM
2

Effect of albumin on mortality –0.31 0.51 0 1 0.64 0.44 0 0.25 0 0 0

dM
3

Effect of saline on mortality –2.34 0.64 0 0.64 1 0.51 0 0.27 0 0 0

dM
4

Effect of gelofusine on mortality –0.19 1.81 0 0.44 0.51 1 0 0.27 0 0 0

PB Baseline NS 0.10 0.04 0 0 0 0 1 0 0 0 0
dS Change to NS risk in ‘‘saved’’ patients 1.88 4.52 0 0.25 0.27 0.27 0 1 0 0 0
pL Probability that short-term

NS proves permanent
0.50 0.08 0 0 0 0 0 0 1 0 0

qM QALYs gained by those who survive
and are NS-free

19.99 24.97 0 0 0 0 0 0 0 1 0

qS QALY loss from NS 5.38 7.94 0 0 0 0 0 0 0 0 1

Note: MCMC = Markov chain Monte Carlo; NS = neurological sequelae; QALY = quality-adjusted life-year.

Table 5 Estimates of EVPPI for a Range of Parameter Subsets, Based on a Willingness-to-Pay Threshold of
$250/QALY

Focal Parameter Method for Single-Step Estimation EVPPI ($)

Computation Times

Nested 106 3 103
One StepAll NA 561 (EVPI) 22 s

dM, a, pB, dS, pL Method 1 546 26 min 9 s
dM, a, pB, dS, qM Method 2 415 26 min 10 s
qM Method 3 73 32 min 21 s
qS Method 3 0 32 min 25 s
pL Method 3 239 31 min 20 s
dM, dS Method 4 342 31 min 1 min 24 s
pB Method 5 87 31 min 46 s
a Method 5 0 31 min 44 s
dS Method 5 243 31 min 46 s

dM
2 (saline) Method 5 38 32 min 47 s

dM
3 (albumin) Method 5 $14 32 min 59 s

dM
4 (gelofusine) Method 5 $24 32 min 46 s

Note: Computation was carried out on a desktop PC with 8 Gb RAM and an Intel i5-2400 processor. EVPI = expected value of perfect information; EVPPI =
expected value of perfect parameter information; QALY = quality-adjusted life-year.
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can be clearly seen: with 1000 inner samples per out-
er simulation, the bias is about 3% of the total EVPPI.
Nested simulation is also far slower than 1-step

simulation; Table 5 gives computation times using
each approach, showing the former to be at least 25
times slower when it is based on 1000 simulations

Figure 2 Expected value of perfect information for the fluid resuscitation case study, as a function of the decision maker’s willingness-to-

pay threshold over the range $50 to $4000 per quality-adjusted life-year.

Figure 3 Monte Carlo estimates of the expected value of perfect parameter information of qM (quality-adjusted life-years gained through

neurological sequelae–free survival) derived using nested versus 1-step Monte Carlo simulation. Estimates were calculated from N values

sampled from the joint posterior distribution of all parameters. One-step estimation was carried out using method 3. Nested simulation was
carried out by subsampling (from the N samples) M values of the nonfocal parameters N times (once for each sampled value of the focal

parameter) to estimate conditional expected net benefit.
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in the inner loop, and no allowance is made for corre-
lations between parameters (any attempt to incorpo-
rate correlations into nested simulation would
further increase the speed advantage of the 1-step
approach).

Methods 4 and 5 involve constructing functions
that give approximate values for conditional means.
The accuracy of EVPPI estimates will therefore
depend on the goodness of fit of the approximating
function, which can be explored graphically. Figure
4 illustrates Taylor series approximations for

E
expða 1 dM

4
Þ

ð1 1 expða 1 dM
4
ÞÞ

h i
, the expected mortality with gelofu-

sine conditional on perfect information for 1) a known

treatment effect dM
4 and 2) a known baseline mortality

a. In the first case, the second-order approximation is
extremely accurate and cannot be discernibly
improved by higher-order terms or the use of inter-
quartile means. In the second case, the second-order
approximation is noticeably inaccurate, the fourth-
order approximation is still inaccurate but less so,
and the approximation based on interquartile means
is extremely accurate. However, using the more accu-
rate approximation changes estimated EVPPI by only
1%, from $345 to $342 per person (the latter figure,
based on the more accurate approximation, is the
one quoted in Table 5). Figure 5 illustrates, in the

case where j5 dS (example 5), how increasing the
number of knots in a spline improves its accuracy,
although the difference between 10 and 15 knots is
negligible. We found that estimates of EVPPI were
extremely stable as the number of knots increased;
results in Table 5 were calculated using 10 knots,
although results with 6 knots differed by less than
1% in all cases.

DISCUSSION

We have presented a range of methods to avoid the
need for nested simulation in EVPPI calculations.
The advantages of a 1-step simulation strategy for the
computation of EVPPI include unbiased estimation
and computational efficiency. It is well known that
the inner simulation step can be avoided when the
net benefit function is linear or multilinear in the
focal parameters (methods 1 and 2).4,9 We have
extended these methods to a broader range of net ben-
efit functions by identifying functions of the focal
parameters in which the net benefit function is (mul-
ti)linear (method 3), which has been used previ-
ously,17 but the conditions in which the method
can be used have not been set out before, and it is
not commonly employed. This may be because it

Figure 4 Taylor series approximations to expected mortality on gelofusine conditional on 1) treatment effect of gelofusine (Figure 4.1) and

2) baseline log-odds of mortality (Figure 4.2), for estimation of expected value of perfect parameter information using method 4. Circles
represent direct estimates of conditional means, and lines illustrate alternative Taylor series approximations (indistinguishable in the first

case).
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requires the net benefit function implied by the eco-
nomic model to be stated explicitly and to be manipu-
lated algebraically, whereas EVPPI analyses commonly
treat the model as a ‘‘black box’’ generating net benefit
estimates. Ades and others9 proposed the use of Taylor
series approximations to the inverse-logit to approxi-
mate conditional expectations. We have set out the sit-
uations in which a Taylor series approximation can be
used in general (method 4), adapted the approximation
for the inverse-logit to improve accuracy, and given the
formulae for other commonly used functions. We are
unaware of any previous work that has proposed using
spline techniques (method 5).

Our use of Taylor series expansions (method 4)
and splines (method 5) can be seen as conceptually
similar to existing statistical meta-modeling
approaches that have been advocated in place of
nested simulation, such as Gaussian process emula-
tion.20 Tappenden and others21 reviewed potential
meta-modeling methods and noted that although
they may permit flexible estimation of EVPPI with
reasonable accuracy, these methods require substan-
tial specialist expertise. The key difference between
meta-modeling and our approximation techniques
is that we model components of the net benefit func-
tion, rather than the entire economic model. As
a result, the methods we present require less techni-
cal expertise to implement and review. Furthermore,
these methods may be useful for models with a large

number of parameters, when Gaussian process emu-
lation can be unfeasible.7

The accuracy of approximations to the conditional
expectation of the net benefit function should always
be checked by comparing approximate with actual
values over a plausible range of the focal parameters,
as we illustrate in Figure 4. We found that Taylor
series expansion around the unconditional mean of
the nonfocal parameter could be markedly inaccurate
if that parameter had a high variance, even if higher-
order terms were included in the expansion. For such
situations, we outline an approach averaging over
Taylor series expansions around each of the inter-
quartile means, which greatly improves the accuracy
of this approach. We found spline regressions were
able to provide close approximations to the condi-
tional mean, particularly if enough knots were cho-
sen. The accuracy of spline approximations is
largely driven by the accuracy of the bin means to
which they are fitted and the coverage of bin means
across the plausible range of the focal parameter. In
particular, simulated values will be sparse for values
of the focal parameter that are less likely. If the opti-
mal treatment changes for these values, it is particu-
larly important to consider the accuracy of the
spline approximation of the expectation conditional
on these values. The density of conditional mean esti-
mates across the range of the focal parameter can be
increased by using more bins, although this will
lead to larger sampling errors for each bin mean if
the total number of samples is kept constant. The
number of samples Nu used for spline estimation
should be large enough to support enough bins across
the plausible range of the focal parameter while
ensuring sufficiently low standard errors for each
bin mean.

A particular challenge for EVPPI calculations
occurs when correlations exist between components
of jC and components of j.5 In this situation, values
at each inner simulation need to be sampled from the
conditional distribution ofjC ; otherwise, EVPPI esti-
mates will be downwardly biased. One approach
would be to carry out a separate MCMC simulation
for each realization from the outer simulation. This
will give samples of jC from the correct distribution
but at considerable computational expense. A more
efficient approach may be to assume a parametric
joint distribution for the correlated parameters, from
which a conditional sampling distribution can be
derived at each inner simulation. However, this
may introduce an additional source of bias. One-
step estimation of EVPPI using spline approxima-
tions allows us to side step this problem.

Figure 5 Restricted cubic splines approximating the expectation

of h(jC, dS) conditional on dS (impact of successful treatment on

risk of neurological sequelae) to allow 1-step estimation of
EVPPI dS

� �
(example 5). Circles represent estimates of the condi-

tional expectation across the plausible range of dS. Error bars rep-

resent 95% confidence intervals for each sample mean. The graph

shows best-fit splines using 5, 10, and 15 knots.
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The purpose of VoI is to guide decisions on
research prioritization, so that it is necessarily con-
ducted in situations in which current information is
inadequate and assumptions may be proven quite
wrong by later research. The goal is to reflect as fairly
as possible current information, however sparse that
might be. The credibility of VoI estimates therefore
depends on the credibility of the cost-effectiveness
model on which they are based and how accurately
prior distributions reflect prestudy parameter uncer-
tainty, which requires guidance from clinicians and
decision makers regarding assumptions made in the
model and plausible alternatives. Decision makers
might require the model to be extended to allow for
different severities of NS or the health utility loss
due to short-term NS to be included. We have
assumed fixed treatment effects across studies and
used pilot study data to estimate them. These data
were the only evidence available to us and were
insufficient to estimate less restrictive models; thus,
it is possible that we have underestimated uncer-
tainty in treatment effect estimates. Furthermore,
use of pilot study data may introduce bias, as their
design and conduct may not be as rigorous as a full
RCT. Very little information was available on the
long-term costs and health consequences of NS, and
the values chosen for this analysis were therefore
not evidence based but chosen to ensure nonzero
EVPPI estimates for these parameters. When existing
evidence is sparse and/or of poor quality, as with
long-term NS in our case study, it is important to be
able to somehow characterize the extent of the uncer-
tainty, as VOI will be highly sensitive to this. One
possibility is to incorporate formal expert elicitation
of plausible parameter values, together with opinion
on the possible degree of bias in the existing evidence
base.22 Finally, we would advocate the use of sensi-
tivity analyses to explore the sensitivity of VoI results
to modeling assumptions,17 as would be conducted
as standard practice for cost-effectiveness analysis.23

The focus of this article is to illustrate methods for
1-step estimation of EVPPI. Because of the limitations
set out above, we do not intend to draw conclusions
about research priorities in the area of fluid resuscita-
tion. Nevertheless, the case study illustrates how
EVPPI calculations can be informative when consid-
ering the relative merits of efficacy trials compared
with longer-term epidemiological studies or when
selecting outcome measures and treatments to include
in a proposed trial. For example, there was consider-
able debate following the pilot studies around the
inclusion of albumin in the FEAST trial, driven by per-
ceptions that this treatment was too costly for use in

Africa. Our EVPPI analysis suggests that there was
considerable value to including this arm, although
the caveats mentioned above apply. The results from
the FEAST trial have recently been published,16 with
robust but unexpected findings (harm was demon-
strated in the fluid resuscitation arms).

A key limitation of our approach is that the meth-
ods rely on being able to explicitly state the net bene-
fit function implied by the model. We would argue
that there are clear benefits in explicitly setting out
the net benefit function, in terms of transparency,
understanding, and communication of assumptions,
as well as the reduced computational burden for
VoI calculations, and would always recommend
doing this unless the decision model is unavoidably
too complex to allow it. We have presented the use
of univariate splines in our case study, which can
be used only if there are no nonlinear functions of
multiple correlated focal parameters in the net bene-
fit function. When this is not the case (for example, if
we were to consider 2- or 3-arm trials in the fluid
replacement example), then the spline approach
(method 5) could be implemented through the use
of multivariate adaptive regression splines.7

In this article, we have focused on EVPPI; how-
ever, the methods presented here can also be used
in the calculation of the expected value of sample
information (EVSI). EVSI is more computationally
intensive than EVPPI because it requires an extra
layer of simulation required to simulate new data
from a given new study design. Furthermore, if we
wish to optimize over potential new study design fac-
tors, then EVSI will need to be evaluated repeatedly,
which will substantially increase the computational
burden. Ades and others9 set out algorithms for the
estimation of EVSI in a number of situations, all of
which require nested Monte Carlo simulation unless
the net benefit function satisfies the conditions
required for use of methods 1 and 2. The methods pre-
sented here extend the circumstances in which we
can avoid the inner simulation step for EVSI, hence
improving computing times and thereby making the
use of EVSI feasible in a wider range of situations.
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