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Abstract: This study aimed to assess the relationship between the histopathological and textural
features of perigastric adipose tissue (AT) on 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron
emission tomography/computed tomography (PET/CT) and to evaluate the prognostic significance
of perigastric AT textural features in predicting recurrence-free survival (RFS) in patients with
gastric cancer. Sixty-nine patients with gastric cancer who underwent staging [18F]FDG PET/CT
and subsequent curative surgery were retrospectively reviewed. Textural features of perigastric
AT were extracted from PET images. On histopathological analysis, CD4, CD8, and CD163 cell
infiltration and matrix metalloproteinase-11 and interleukin-6 (IL-6) expression in perigastric AT
were graded. The degree of CD163 cell infiltration in perigastric AT was significantly correlated
with the mean standardized uptake value (SUV), SUV histogram entropy, grey-level co-occurrence
matrix (GLCM) energy, and GLCM entropy of perigastric AT. The degree of IL-6 expression in the
perigastric AT was significantly correlated with the mean and median SUVs of perigastric AT. In
multivariate survival analysis, GLCM entropy, GLCM dissimilarity, and GLCM homogeneity of
perigastric AT were significant predictors of RFS. The textural features of perigastric AT on [18F]FDG
PET/CT significantly correlated with inflammatory response in perigastric AT and were significant
prognostic factors for predicting RFS in patients with gastric cancer.

Keywords: adipose tissue; F-18 fluorodeoxyglucose; positron emission tomography; stomach
neoplasm; textural feature

1. Introduction

Although the incidence and mortality rates of gastric cancer have been reported to
decline over the past decades, gastric cancer remains to be the fifth most prevalent cancer
and one of the leading causes of cancer-related death globally [1]. In gastric cancer patients
without distant metastasis, curative gastric resection and regional lymph node dissection are
the recommended standard treatments [2]. However, even in gastric cancer patients who have
undergone curative surgical resection, a significant number experienced cancer recurrence
after surgery, showing a 3-year disease-free survival rates of only 61.2–66.1% [3,4]. Therefore,
a number of studies have tried to identify clinicopathological and imaging biomarkers of
gastric cancer to predict the risk of recurrence [5]. Recently, several studies have focused
on the role of interactions between cancer cells and peritumoral adipose tissue (AT) cells
in cancer progression [6,7]. Through the interactions, adipocytes at the cancer invasion
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front transforme into cancer-associated adipocytes, which exhibit different morphological
and functional features compared with normal adipocytes, and these cancer-associated
adipocytes induce inflammatory responses in the AT and promote cancer cell proliferation
and progression [6–8]. Because gastric cancer cells grow in an adipocyte-predominant
environment, previous studies have demonstrated profound interactions between gastric
cancer cells and peritumoral AT [6]. In a histopathological analysis of surgical specimens,
AT adjacent to gastric cancer showed different features from AT that was distant from the
tumor [9]. Furthermore, adipocytes in visceral AT were found to enhance invasiveness and
metastasis and modulate the chemosensitivity of gastric cancer cells [10,11].

2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed
tomography (PET/CT) is an imaging modality that has shown clinical values for staging,
detecting recurrence and predicting prognosis in patients with gastric cancer [5,12–14]. In
addition to detecting malignant lesions, since [18F]FDG PET/CT can be used to evaluate glu-
cose metabolism in an organ, several studies have demonstrated the clinical use of [18F]FDG
PET/CT in estimating the host response to cancers [15,16]. In previous studies, PET imaging
parameters of AT were significantly associated with the presence of lymph node metastases
and clinical outcomes in diverse cancers, suggesting that PET imaging parameters of AT could
be used as surrogate markers of inflammatory response in AT [16–18]. Since gastric cancer
cells also have a substantial interrelationship with peritumoral AT, [18F]FDG PET imaging
features of peritumoral AT could reflect this interaction and have a significant association
with cancer progression in patients with gastric cancer. Recently, radiomic analysis, which
extracts a large number of quantitative features from diagnostic imaging examinations
through imaging processing methods, such as textural analysis, has been shown to provide
deep and valuable insights into malignant diseases [19]. In previous studies with malignant
diseases, first-order features based on standard uptake value (SUV) histograms, which
measured diverse parameters related with SUV distribution, and second-order grey-level
co-occurrence matrix (GLCM) features, which showed the SUV intensity level distribution
in a neighborhood, have been generally used as radiomic features of PET images [17,20].
These first-order and second-order features have demonstrated superior values in detect-
ing metastasis and predicting prognosis than conventional [18F]FDG PET/CT parameters
such as the maximum SUV [17,21,22]. Likewise, textural features of peritumoral AT ex-
tracted from [18F]FDG PET images could aid in further understanding the significance
of the imaging findings of peritumoral AT. However, to date, the prognostic value of
SUV of visceral AT has been only evaluated in patients with gastric cancer, and there is
no study that investigated the clinical significance of [18F]FDG PET textural features of
peritumoral AT [23]. Furthermore, the relationship between [18F]FDG PET textural features
and histopathological findings in peritumoral AT has not yet been reported.

In the present study, we extracted textural features of perigastric AT from staging
[18F]FDG PET/CT images of retrospectively enrolled patients with gastric cancer and inves-
tigated whether these textural features had a significant relationship with the histopatho-
logical findings of perigastric AT and recurrence-free survival (RFS) after curative surgi-
cal resection.

2. Results
2.1. Patient Characteristics

The baseline characteristics of the 69 enrolled patients with gastric cancer are listed
in Table 1. Of all patients, 9 patients (13.0%) had early gastric cancer (pT1 stage), and
60 patients (87.0%) had advanced gastric cancer (pT2–T4 stages). On [18F]FDG PET/CT,
gastric cancer lesions in 52 patients (75.4%) showed an abnormally increased [18F]FDG
uptake compared with the surrounding normal gastric wall uptake. The median follow-up
duration was 46.8 months (range: 0.6–107.0 months). During the follow-up, 25 patients
(36.2%) had events (recurrence or death).
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Table 1. Characteristics of the 69 enrolled patients with gastric cancer.

Variables Number of Patients (%)

Age (years) 60 (34–80) *

Sex Men 39 (56.5%)
Women 30 (43.5%)

Tumor location Upper 7 (10.1%)
Middle 28 (40.6%)
Lower 34 (49.3%)

Histopathological
classification PAC/TAC 43 (62.3%)

PDAC 16 (23.2%)
Mucinous carcinoma/SRC 10 (14.5%)

Lauren classification Intestinal 30 (43.5%)
Non-intestinal 39 (56.5%)

pT stage T1 stage 9 (13.0%)
T2 stage 17 (24.6%)
T3 stage 23 (33.3%)
T4 stage 20 (29.0%)

pN stage N0 stage 29 (42.0%)
N1−N3 stages 40 (58.0%)

TNM stage Stage I 18 (26.1%)
Stage II 19 (27.5%)
Stage III 32 (46.4%)

Adjuvant treatment Yes 41 (59.4%)
No 28 (40.6%)

CD4 cell infiltration Grade 0 17 (24.6%)
Grade 1 17 (24.6%)
Grade 2 23 (33.3%)
Grade 3 12 (17.4%)

CD8 cell infiltration Grade 0 16 (23.2%)
Grade 1 17 (24.6%)
Grade 2 19 (27.5%)
Grade 3 17 (24.6%)

CD163 cell infiltration Grade 0 10 (14.5%)
Grade 1 20 (29.0%)
Grade 2 23 (33.3%)
Grade 3 16 (23.2%)

MMP-11 expression Grade 0 14 (20.3%)
Grade 1 22 (31.9%)
Grade 2 23 (33.3%)
Grade 3 10 (14.5%)

IL-6 expression Grade 0 28 (40.6%)
Grade 1 24 (34.8%)
Grade 2 12 (17.4%)
Grade 3 5 (7.2%)

* Expressed as a median (range). IL-6, interleukin-6; MMP-11, matrix metalloproteinase-11; PAC, papil-
lary adenocarcinoma; PDAC, poorly differentiated adenocarcinoma; SRC, signet ring cell carcinoma; TAC,
well-to-moderately differentiated tubular adenocarcinoma.

2.2. Correlation Analysis between PET Textural Features and Histopathological Results

A comparative analysis of the maximum SUV of gastric cancer and textural features
of perigastric AT according to the histopathological results of perigastric AT is shown
in Table 2, Tables S1–S5. The results of the analysis revealed that CD163 cell infiltration
grade was significantly correlated with the maximum SUV of the primary tumor and
SUV mean, SUV histogram entropy, GLCM energy, and GLCM entropy of perigastric AT
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(p < 0.05). Moreover, interleukin-6 (IL-6) expression grade was significantly correlated with
the mean and median SUVs of perigastric AT (p < 0.05). None of the PET imaging features
showed a significant relationship with CD4 and CD8 cell infiltration grades and matrix
metalloproteinase-11 (MMP-11) expression grade (p > 0.05). Post-hoc analysis showed that
patients with grade 3 CD163 cell infiltration exhibited significantly higher values of the
maximum SUV of the primary tumor and SUV mean, SUV histogram entropy, and GLCM
entropy of perigastric AT and significantly lower values of GLCM energy of perigastric
AT than those with grade 0 (p < 0.05; Table S3). Furthermore, patients with grade 3 IL-6
expression had significantly higher mean and median SUVs of perigastric AT than those
with grade 0 expression (p < 0.05; Table S5).

Table 2. Statistical significance of the Kruskal−Wallis test for comparing the maximum SUV of
primary tumor and perigastric AT imaging features according to the histopathological results of
perigastric AT.

Variables CD4 Cell Infiltration CD8 Cell Infiltration CD163 Cell
Infiltration

MMP-11
Expression IL-6 Expression

Maximum SUV of
primary tumor 0.078 0.149 0.006 0.458 0.094

First-order PET features
of perigastric AT

SUV mean 0.163 0.072 0.037 0.099 0.042
SUV std 0.469 0.949 0.402 0.583 0.343

SUV median 0.189 0.062 0.095 0.122 0.025
SUV histogram kurtosis 0.699 0.911 0.330 0.714 0.869

SUV histogram skewness 0.470 0.387 0.496 0.226 0.170
SUV histogram energy 0.191 0.661 0.095 0.596 0.261
SUV histogram entropy 0.320 0.537 0.030 0.392 0.493

Second-order PET
features of perigastric AT

GLCM contrast 0.700 0.556 0.216 0.687 0.638
GLCM correlation 0.386 0.072 0.356 0.469 0.292

GLCM dissimilarity 0.648 0.622 0.097 0.721 0.830
GLCM energy 0.122 0.145 0.023 0.752 0.066
GLCM entropy 0.106 0.192 0.035 0.296 0.097

GLCM homogeneity 0.612 0.325 0.115 0.721 0.927

AT, adipose tissue; GLCM, grey-level co-occurrence matrix; IL-6, interleukin-6; MMP-11, matrix metalloproteinase-
11; PET, positron emission tomography; std, standard deviation; SUV, standardized uptake value.

2.3. Survival Analysis for RFS

The prognostic significance of PET imaging parameters for predicting RFS was as-
sessed along with the clinicopathological factors. Of the PET textural features in perigastric
AT, SUV mean, SUV median, SUV histogram energy, SUV histogram entropy, GLCM
contrast, GLCM dissimilarity, GLCM energy, GLCM entropy, and GLCM homogeneity
were significantly associated with RFS in the univariate analysis (p < 0.05; Table 3). In
addition, the maximum SUV of the primary tumor, pT stage, pN stage, and TNM stage
were significant predictors of RFS (p < 0.05).

For the textural features of perigastric AT that showed statistical significance in uni-
variate analysis, the prognostic values for predicting RFS were further evaluated using
multivariate analysis (Table 4). Because all the perigastric AT imaging features selected
for multivariate analysis showed significant correlations with each other (p < 0.05), the
prognostic significance of each perigastric AT imaging feature was assessed on separate
models. Considering the numbers of variables as compared with the number of patients
with recurrence, only age, sex, TNM stage, and the maximum SUV of primary tumor were
additionally included in the multivariate analysis as covariates. Among the second-order
GLCM PET features, GLCM dissimilarity, GLCM entropy, and GLCM homogeneity re-
mained significant predictors of RFS in multivariate analysis (p < 0.05; Table 4). In contrast,
none of the first-order PET features showed statistical significance (p > 0.05). An increase
in GLCM dissimilarity and GLCM entropy was associated with an increased risk of recur-
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rence, whereas an increase in GLCM homogeneity was associated with a decreased risk of
recurrence.

Table 3. Results of univariate analysis for recurrence-free survival.

Variables p-Value Hazard Ratio (95% CI)

Age (for 1-year increase) 0.997 1.00 (0.97–1.04)
Sex (women vs. men) 0.295 1.63 (0.65–4.10)

Histopathological classification (PAC/TAC vs.) PDAC 0.234 1.71 (0.71–4.13)
Mucinous/SRC 0.196 1.42 (0.86–4.38)

Lauren classification (intestinal vs. non-intestinal) 0.553 1.27 (0.57–2.84)
pT stage (T1–T2 vs. T3–T4) 0.003 20.95 (2.83–155.14)

pN stage (N0 vs. N1–3) <0.001 12.36 (2.90–52.61)
TNM stage

(stages I−II vs. stage III) <0.001 14.88 (4.41–50.20)

Maximum SUV of primary tumor (for 1.0 increase) 0.001 1.10 (1.04–1.16)

First-order PET features of perigastric AT (for a
0.10 increase) SUV mean <0.001 1.27 (1.12–1.46)

SUV std 0.464 1.17 (0.77–1.75)
SUV median 0.001 1.29 (1.13–1.47)

SUV histogram kurtosis 0.785 1.00 (0.98–1.03)
SUV histogram skewness 0.157 0.94 (0.86–1.02)

SUV histogram energy 0.017 0.61 (0.41–0.91)
SUV histogram entropy 0.019 1.11 (1.02–1.21)

Second-order PET features of perigastric AT (for a
0.10 increase) GLCM contrast 0.004 1.13 (1.04–1.23)

GLCM correlation 0.087 0.82 (0.65–1.03)
GLCM dissimilarity 0.007 1.36 (1.14–1.62)

GLCM energy 0.022 0.58 (0.36–0.92)
GLCM entropy <0.001 1.12 (1.05–1.20)

GLCM homogeneity 0.003 0.40 (0.24–0.65)

AT, adipose tissue; CI, confidence interval; GLCM, grey-level co-occurrence matrix; PAC, papillary adenocar-
cinoma; PDAC, poorly differentiated adenocarcinoma; PET, positron emission tomography; SRC, signet ring
cell carcinoma; std, standard deviation; SUV, standardized uptake value; TAC, well-to-moderately differentiated
tubular adenocarcinoma.

Table 4. Results of multivariate analysis of PET textural features for recurrence-free survival after
adjustment for age, sex, TNM stage, and the maximum SUV of primary tumor.

Variables p-Value Hazard Ratio (95% CI)

First-order PET features
of perigastric AT (for a

0.10 increase)
SUV mean 0.147

SUV median 0.090
SUV histogram energy 0.222
SUV histogram entropy 0.409

Second-order PET
features of perigastric
AT (for 0.10 increase)

GLCM contrast 0.464

GLCM dissimilarity 0.013 1.31 (1.06–1.62)
GLCM energy 0.099
GLCM entropy 0.019 1.07 (1.02–1.15)

GLCM homogeneity 0.012 0.42 (0.21–0.82)
AT, adipose tissue; CI, confidence interval; GLCM, grey-level co-occurrence matrix; PET, positron emission
tomography; SUV, standardized uptake value.

In the Kaplan−Meier analysis, enrolled patients were classified into two groups
according to the optimal cut-off values of GLCM dissimilarity (0.54), GLCM entropy (2.74),
and GLCM homogeneity (0.76), as determined by the receiver operating characteristics
(ROC) curve analysis. The results of the analysis demonstrated that patients with high
values of GLCM dissimilarity and GLCM entropy had significantly worse 2-year RFS than
those with low values (p < 0.001, 40.5% vs. 89.1% for GLCM dissimilarity; p = 0.001, 58.6%
vs. 91.2% for GLCM entropy; Figure 1a,b). Patients with high GLCM homogeneity values
showed a significantly better 2-year RFS than those with low values (p = 0.001, 92.9% vs.
43.6%; Figure 1c).



Int. J. Mol. Sci. 2022, 23, 11985 6 of 14

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 15 
 

 

Table 4. Results of multivariate analysis of PET textural features for recurrence-free survival after 

adjustment for age, sex, TNM stage, and the maximum SUV of primary tumor. 

Variables p-Value Hazard Ratio (95% CI) 

First-order PET features of 

perigastric AT (for a 0.10 

increase) 

SUV mean 0.147  

 SUV median 0.090  

 SUV histogram energy 0.222  

 SUV histogram entropy 0.409  

Second-order PET features of 

perigastric AT (for 0.10 

increase) 

GLCM contrast 0.464  

 GLCM dissimilarity 0.013 1.31 (1.06–1.62) 

 GLCM energy 0.099  

 GLCM entropy 0.019 1.07 (1.02–1.15) 

 GLCM homogeneity 0.012 0.42 (0.21–0.82) 

AT, adipose tissue; CI, confidence interval; GLCM, grey-level co-occurrence matrix; PET, positron 

emission tomography; SUV, standardized uptake value. 

In the Kaplan−Meier analysis, enrolled patients were classified into two groups ac-

cording to the optimal cut-off values of GLCM dissimilarity (0.54), GLCM entropy (2.74), 

and GLCM homogeneity (0.76), as determined by the receiver operating characteristics 

(ROC) curve analysis. The results of the analysis demonstrated that patients with high 

values of GLCM dissimilarity and GLCM entropy had significantly worse 2-year RFS than 

those with low values (p < 0.001, 40.5% vs. 89.1% for GLCM dissimilarity; p = 0.001, 58.6% 

vs. 91.2% for GLCM entropy; Figure 1a,b). Patients with high GLCM homogeneity values 

showed a significantly better 2-year RFS than those with low values (p = 0.001, 92.9% vs. 

43.6%; Figure 1c). 

 

Figure 1. Cumulative recurrence-free survival curves based on the GLCM dissimilarity (a), GLCM 

entropy (b), and GLCM homogeneity (c) of perigastric AT. 

3. Discussion 

Recently, ample evidence has been shown that the cross-talk between cancer cells 

and neighboring adipocytes significantly contribute to tumor growth and metastasis [6,7]. 

Upon interaction with cancer cells, adipocytes actively secrete proinflammatory and pro-

tumor adipokines, which induce inflammatory cell infiltration in the AT and destroy the 

extracellular matrix [6,8,9,24]. In terms of metabolic alterations, adipocytes lose their in-

tracellular lipid content and provide exogenous fatty acids to cancer cells [7]. Since these 

morphological and functional modifications of adipocytes and inflammatory responses in 

the AT would bring qualitative changes in AT, a number of studies have tried to investi-

gate whether the parameters of AT on diagnostic imaging examinations could represent 

these changes and could therefore be used as predictive factors for cancer progression 

Figure 1. Cumulative recurrence-free survival curves based on the GLCM dissimilarity (a), GLCM
entropy (b), and GLCM homogeneity (c) of perigastric AT.

3. Discussion

Recently, ample evidence has been shown that the cross-talk between cancer cells and
neighboring adipocytes significantly contribute to tumor growth and metastasis [6,7]. Upon
interaction with cancer cells, adipocytes actively secrete proinflammatory and protumor
adipokines, which induce inflammatory cell infiltration in the AT and destroy the extracel-
lular matrix [6,8,9,24]. In terms of metabolic alterations, adipocytes lose their intracellular
lipid content and provide exogenous fatty acids to cancer cells [7]. Since these morphologi-
cal and functional modifications of adipocytes and inflammatory responses in the AT would
bring qualitative changes in AT, a number of studies have tried to investigate whether
the parameters of AT on diagnostic imaging examinations could represent these changes
and could therefore be used as predictive factors for cancer progression [16,18,23,25]. On
[18F]FDG PET/CT, the mean SUV of visceral AT was proposed to be an imaging parameter
that could reflect these qualitative changes in AT [16,18,23,26,27]. In previous studies,
the mean SUV of visceral AT demonstrated significant positive associations with tumor
stage and survival after treatments in patients with various intra-abdominal malignancies
including colorectal cancer, gastric cancer, and pancreatic cancer [16,23,26,27]. In addition
to the mean SUV, we also measured the first-order and second-order textural features
of perigastric AT and evaluated the relationship between these imaging features and
histopathological findings, which could provide a relevant basis for using textural features
of perigastric AT as imaging biomarkers. In the correlation analysis with histopathological
findings, macrophage infiltration showed significant positive correlations with SUV mean,
SUV histogram entropy, and GLCM entropy and significant negative correlations with
GLCM energy. Furthermore, the mean and median SUVs showed significant positive corre-
lations with IL-6 expression. Entropy measures the randomness of the intensity distribution
in an image, and a high level of entropy represents randomly distributed intensities of
voxels [17,28]. In contrast, energy measures the uniformity of the intensity distribution
and is the opposite of entropy [28]. Therefore, the results of our study indicated that
patients with increased macrophage infiltration and Il-6 expression in the perigastric AT
had significantly higher values of [18F]FDG uptake and increased metabolic heterogeneity
in the perigastric AT.

Macrophages are the most abundant immune cells in the tumor microenvironment [29].
The majority of macrophages in peritumoral AT are M2 macrophages, which exhibit high
levels of CD163 expression [8,29]. M2 macrophages are known to promote progression and
metastasis of gastric cancer cells [29,30]. A recent study demonstrated a positive feedback
loop between gastric cancer cells and M2 macrophages, in which gastric cancer cells induce
M2-type polarization and M2 macrophages promote cancer progression and immune
suppression in the tumor microenvironment [29]. IL-6 is a proinflammatory cytokine
secreted by cancer cells, cancer stromal cells, and adipocytes as well as immune cells [24,31].
IL-6 secreted by dysfunctional adipocytes recruits macrophages in the AT, which leads
to an inflammatory response in the AT, and IL-6 derived from tumor tissue plays an
important role in the M2-subtype polarization of macrophages in peritumoral tissue [24,30].
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M2 macrophages recruited to the tumor microenvironment can also release IL-6, which
promotes programmed cell death-ligand 1 (PD-L1) expression and proliferation of gastric
cancer cells [32]. Hence, macrophages and IL-6 are hypothesized to play crucial roles in the
cross-talk between gastric cancer cells and the immune microenvironment, and they also
showed significant prognostic value in patients with gastric cancer [33,34]. Considering the
significant relationships of [18F]FDG PET/CT textural features with macrophage infiltration
and IL-6 expression as shown in our study, [18F]FDG PET/CT textural features of perigastric
AT might be potential imaging biomarkers for assessing immune microenvironment status
in gastric cancer. Further immune profiling studies using multiplex immunohistochemistry
analysis or flow cytometry analysis are needed to validate the use of textural features of
perigastric AT as imaging biomarkers. Currently, M2 macrophages are potential therapeutic
targets for treating gastric cancer, and several attempts have been made to limit macrophage
recruitment or repolarize M2 macrophages in the tumor microenvironment [30,35]. The
textural features of perigastric AT might be used to select optimal candidates and assess
treatment effects in future clinical studies targeting M2 macrophages.

Based on the results of the correlation analysis with histopathological findings, we
further investigated the prognostic significance of textural features of perigastric AT for
predicting RFS. Among the textural features that had a significant relationship with the
histopathological findings, only GLCM entropy was significantly associated with RFS in
multivariate analysis, showing worse survival in patients with high GLCM entropy. GLCM
entropy is shown to have high robustness, irrespective of the iteration number, noise, image
reconstruction algorithm, and matrix size of PET images; therefore, it is suggested as a suit-
able textural feature for use in multi-scanner studies [36]. Furthermore, in a previous study
of breast cancer patients, GLCM entropy measured from peritumoral breast AT reflected
the degree of the host response to metastatic lesion burden and showed a high diagnostic
accuracy in predicting axillary lymph node metastasis [17]. Hence, GLCM entropy could
be the most suitable imaging biomarker for representing the metabolic heterogeneity of
peritumoral AT and could be preferentially recommended in future studies that investigate
the clinical significance of peritumoral AT textural features. Along with GLCM entropy,
GLCM dissimilarity and GLCM homogeneity were also significant predictors of RFS in
multivariate analysis, although these two features had no significant relationship with
the histopathological results. Dissimilarity-measured local contrasts and low dissimilarity
values indicate that the intensities of neighboring voxels are very similar [28]. Homogeneity
refers to the uniformity of a voxel pair, and a high value of homogeneity indicates that
the image has many voxels with similar intensities or repetitive structures [28]. Since
patients with high values of GLCM entropy and GLCM dissimilarity had a worse prognosis
and patients with high values of GLCM homogeneity had a better prognosis, our results
indicated that increased metabolic heterogeneity in the perigastric AT had a significant
association with worse survival in patients with gastric cancer. In contrast, parameters
regarding the degree of metabolism in perigastric AT, such as SUV mean, failed to show
prognostic significance in multivariate survival analysis. On histopathological analysis,
only the intensity of the inflammatory response in perigastric AT was assessed, and the
distribution of the inflammatory response could not be evaluated [16]; this could be the
reason for the insignificant relationship between histopathological results and GLCM dis-
similarity and GLCM homogeneity. Therefore, a new histopathological analytical method
that could estimate the distribution of immune responses in peritumoral AT might pave
the way for a new perspective on the interactions between cancer and host cells.

In addition to the textural features of perigastric AT, the maximum SUV of gastric
cancer showed a significant positive association with macrophage infiltration and a border-
line significant association with IL-6 expression in perigastric AT. The maximum SUV of
primary tumor is known to be related to histopathologic types and biological characteristics
of gastric cancer, and a significantly increased maximum SUV was shown in gastric cancers
with positive PD-L1 expression when compared to those with negative expression [5,37,38].
The results of our study suggest that gastric cancers with aggressive biological features had
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a more enhanced immune response in perigastric AT. Furthermore, considering that M2
macrophages promote PD-L1 expression in gastric cancer cells through IL-6 secretion [32],
our results suggest the possibility of a significant correlation between the maximum SUV
and PD-L1 expression, which needs to be thoroughly assessed in future studies.

The present study had several limitations. First, our study was retrospectively per-
formed at a single medical center. Hence, there might be a certain risk of bias. Moreover,
because this study enrolled only a small number of patients, other significant relationships
between [18F]FDG PET/CT textural features and histopathological findings in peritumoral
AT might be found in studies with a larger population. Second, although a large number
of studies have reported the clinical implication of [18F]FDG PET/CT textural features,
general applications of textural features in the real clinical world are still limited mainly
due to the lack of standardization [39]. In previous studies, various factors including the
voxel size, the image acquisition, and the reconstruction method, segmentation, and image
analysis software can affect the reproducibility of textural features [39–41]. Third, a certain
volume of perigastric AT is required to extract PET/CT textural features; therefore, the ap-
plication of our imaging analytic method is limited to patients with extremely low volumes
of perigastric AT. Fourth, although previous studies on breast and colorectal cancers also
used a 1 cm distance to the tumor margin for measuring peritumoral AT imaging features,
there is still no established methodology for defining peritumoral AT on [18F]FDG PET/CT
images [16,17]. Finally, because up to 24% of patients with gastric cancer can have tumor
deposits in the perigastric AT [42], the possible presence of tumor deposits might have
affected the results of our study.

4. Materials and Methods
4.1. Patient Selection

We retrospectively reviewed the medical records and images of patients who had
histopathological diagnosis of gastric cancer and underwent [18F]FDG PET/CT for staging
work-up of gastric cancer between March 2012 and March 2020 at our medical center.
A total of 69 patients who underwent curative surgical resection for gastric cancer were
enrolled in our study. We excluded the following patients: (1) patients who showed distant
metastasis on staging imaging examinations or peritoneal seeding metastases on surgical
exploration, (2) patients who received any kind of neoadjuvant treatment before the surgery
or received palliative curative surgical resection, (3) patients who had a previous history
of another malignant disease or major abdominal surgery, (4) patients who showed an
insufficient perigastric AT volume for calculating textural features, (5) patients who had
inadequate surgical specimens for analyzing histopathology of perigastric AT, and (6)
patients who were lost to follow-up without recurrence or death within 24 months after
the surgery.

All enrolled patients underwent blood tests, gastroduodenoscopy, contrast-enhanced
abdominopelvic CT, and [18F]FDG PET/CT for staging work-up of gastric cancer. Based on
the results of the staging examinations, curative subtotal or total gastrectomy with at least
D1 lymphadenectomy was performed. The median interval between [18F]FDG PET/CT
and surgery was four days (range: 1–28 days). Following curative surgical resection,
adjuvant chemotherapy was recommended for patients with TNM stages II–III disease.
After the treatment, a regular clinical follow-up was performed at intervals of 6–8 months
during the first 3 years and 10–12 months thereafter, with routine examinations including
blood tests, gastroduodenoscopy, and contrast-enhanced abdominopelvic CT.

4.2. [18F]FDG PET/CT and Image Analysis

All enrolled patients fasted for at least 6 h prior to the [18F]FDG PET/CT scan, and
the blood glucose levels measured before the injection of [18F]FDG were <200 mg/dL.
One hour after the intravenous administration of [18F]FDG (approximately 4.07 MBq
per kg), [18F]FDG PET/CT scans were obtained using a dedicated scanner (Biograph
mCT 128 scanner, Siemens Healthineers, Knoxville, TN, USA) from the skull base to the
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proximal thigh. Initially, a non-contrast-enhanced CT scan was performed for attenuation
correction (100 mA and 120 kVp with an automated dose modulation, a slice thickness of
5 mm, and a slice increment of 2.5 mm). Afterwards, a PET scan was performed with a
1.5 min per bed position in the three-dimensional acquisition mode. An ordered subset
expectation maximization reconstruction algorithm including time-of-flight information,
point-spread-function based resolution recovery (TrueX), and attenuation correction was
used for the PET image reconstruction on a 128 × 128 matrix (21 subsets and 2 iterations).

Two nuclear medicine physicians separately reviewed the [18F]FDG PET/CT images
and measured the imaging features of primary gastric cancer and perigastric AT using the
LIFEx software (version 7.0.0; www.lifexsoft.org, accessed on 1 May 2022) [43]. During
image analysis, the two reviewers were unaware of the clinical and histopathological
results of the patients. First, the volume of interest (VOI) was manually constructed over
the primary gastric cancer lesion, and then, the highest value of [18F]FDG uptake in the VOI
(the maximum SUV of the primary tumor) was measured. In patients with gastric cancer
lesions that could not be differentiated from the surrounding normal gastric wall uptake, the
VOI of the primary tumor lesion was drawn in accordance with the tumor location observed
on endoscopy and contrast-enhanced CT images. Subsequently, a VOI that covered the
area within a 1 cm distance to the margin of the primary gastric cancer lesion was manually
drawn. Within the VOI, an area of CT-attenuation ranging from −190 Hounsfield unit
(HU) to −30 HU was selected and defined as perigastric AT (Figure 2) [16,17,44]. Before
extracting imaging features, all perigastric AT areas were manually scrutinized to prevent
spillover [18F]FDG activity of primary cancer lesions in the areas. From the perigastric
AT area, 13 textural features of PET images including seven first-order features and six
second-order features derived from the GLCM were extracted for each patient. GLCM
considers the spatial distribution of intensity levels in pairs of voxels [28]. Seven first-order
features comprised of the mean (SUV mean), standard deviation (SUV std), and median
(SUV median) SUV of perigastric AT and kurtosis (SUV histogram kurtosis), skewness
(SUV histogram skewness), energy (SUV histogram energy), and entropy (SUV histogram
entropy) based on the SUV histogram. The GLCM was calculated from 13 directions in
three-dimensional space, and six GLCM features (contrast, correlation, dissimilarity, energy,
entropy, and homogeneity) were extracted from the PET images.
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Figure 2. Maximal intensity projection image (a) and transaxial images (b,c) of [18F]FDG PET/CT
illustrating VOI for measuring textural features of perigastric AT. A 59-year-old man underwent
[18F]FDG PET/CT for staging work-up of gastric cancer in the stomach body. The gastric cancer lesion
showed intensely increased [18F]FDG with the maximum SUV of 17.99 (arrows on (a,b)). A VOI that
covers the area within a 1 cm distance to the margin of primary gastric cancer was manually drawn, and
perigastric AT was defined as an area of CT-attenuation range between −190 HU and −30 HU within
the VOI (red area in (c). The mean SUV, GLCM homogeneity, GLCM entropy, and GLCM dissimilarity
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of the perigastric AT were 1.05, 0.74, 3.01, and 0.49, respectively. The patient underwent total
gastrectomy and was diagnosed with pT2N0 stage moderately differentiated tubular adenocarcinoma.
The patient had cancer recurrence 23.9 months after the surgery.

4.3. Histopathological Analysis

The surgical specimens of the patients were retrospectively reviewed by two patholo-
gists. Gastric cancer lesions were histopathologically classified into five subtypes: papillary
adenocarcinoma, well-to-moderately differentiated tubular adenocarcinoma, poorly differ-
entiated adenocarcinoma, mucinous carcinoma, and signet ring cell carcinoma [23]. The
microscopic growth patterns of gastric cancers were categorized into two subtypes based on
the Lauren classification: intestinal and non-intestinal types. Non-intestinal types included
diffuse, mixed, and non-classifiable types [23]. The histopathological T and N stages of
gastric cancers were assessed according to the eighth edition of the American Joint Com-
mittee on Cancer staging guidelines. To evaluate inflammatory response of perigastric AT,
infiltrations of immune cells, such as T cells and macrophages, and expressions of protein
and cytokine related to inflammatory response, such as MMP-11 and IL-6, were assessed
with immunohistochemical analysis. For immunohistochemical analysis of perigastric AT,
hematoxylin and eosin-stained slides were made from formalin-fixed, paraffin-embedded
tissue blocks, and they were reviewed under a light microscope to select perigastric AT
(immediately close to the cancer cells). The corresponding areas of each paraffin block
were cored twice with a 2 mm-diameter cylinder and assembled into a recipient paraffin
block using a tissue microarray (TMA) instrument (Unitma, Seoul, Korea). We performed
immunohistochemical staining of individual 4-µm thick slide sections derived from TMA
blocks using the Ventana Benchmark XT automated staining system (Ventana Medical
Systems, Tucson, AZ, USA) according to the established protocol of the manufacturer. For
immunohistochemical analysis, we used the following anti-bodies: monoclonal rabbit
anti-human CD4 (clone SP35, Catalog no. 7904423, Ventana Medical System), monoclonal
mouse anti-human CD8 (clone C8/144B, Catalog no. IR623, Dako, Carpinteria, CA, USA),
monoclonal mouse anti-human CD163 (clone OTI2G12, Catalog no. ab156769, Abcam,
Cambridge, UK), monoclonal rabbit anti-human MMP-11 (clone SN74-08, Catalog no.
NBP2-67670, Novus Biologicals, Centennial, CO, USA), and polyclonal rabbit anti-human
IL-6 (Catalog no. ab6672, Abcam). Three representative areas under a high-power optical
microscope (magnification: 400×) were selected from each core of TMA. The numbers of
CD4+, CD8+, and CD163+ infiltrating cells were rated as follows: 0, (absent); 1, (1–25 cells);
2, (26–50 cells); and 3, (>50 cells) (Figure 3). To score the expression of MMP-11 and IL-6,
the intensity score was based off this system: 0, negative; 1, focal light brown (weak); 2,
light brown (moderate) and 3, brown (marked) (Figure 3).
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score range of 0–1 are shown in (a–e), and examples of a score range of 2–3 area shown in (f–j). The
magnifications of all images were 200×.
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4.4. Statistical Analysis

The overall workflow in the present study is presented in Figure 4. The Kruskal−Wallis
test with post-hoc analysis using Dunn’s test was performed to evaluate the relationship
between PET imaging parameters and the histopathological results of perigastric AT. The
prognostic value of PET textural features of perigastric AT for RFS was assessed using
univariate and multivariate Cox proportional hazard regression models. Survival time was
defined as the time from the day of surgical resection to the day of cancer recurrence (or
death). Patients with no events were censored on the day of the last follow-up visit. PET
textural features of perigastric AT that showed statistical significance in predicting RFS on
univariate analysis were selected for multivariate survival analysis. In multivariate survival
analysis, the prognostic significance of each perigastric AT imaging feature was assessed
by adding age, sex, TNM stage, and the maximum SUV of primary tumor as covariates
for the analysis. PET imaging features that were significantly correlated were evaluated
using a separate model. For the Kaplan−Meier analysis, the specific cut-off values of PET
textural features of perigastric AT were selected using ROC curve analysis. The optimal
cut-off values were determined by using the Youden index. Based on the cut-off values, the
patients were dichotomized, and the cumulative RFS curve for each group was estimated
using the Kaplan−Meier method. Statistical analyses were performed using MedCalc
Statistical Software version 20.110 (MedCalc Software Ltd., Ostend, Belgium). Statistical
significance was set at p < 0.05.
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5. Conclusions

In conclusion, textural features of perigastric AT on [18F]FDG PET/CT were signifi-
cantly associated with macrophage infiltration and IL-6 expression in perigastric AT; addi-
tionally, these were significant predictors of RFS in patients with gastric cancer. Increased
metabolic heterogeneity in perigastric AT was associated with a severe inflammatory re-
sponse in the perigastric AT and an increased risk of recurrence after curative surgery.
Our results suggested that textural features of perigastric AT on [18F]FDG PET/CT might
be potential imaging biomarkers for evaluating status of perigastric AT and predicting
prognosis of patients with gastric cancer; however, further validations of the results in
future prospective studies are necessary.
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