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Unilateral symptomatic Achilles 
tendinopathy has limited effects on bilateral 
lower limb ground reaction force asymmetries 
and muscular synergy attributes when walking 
at natural and fast speeds
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Abstract 

Background:  Achilles tendinopathy (AT) may affect ground reaction force (GRF) and muscle synergy (MS) during 
walking due to pain, biological integrity changes in the tendon and neuroplastic adaptations. The objective of this 
study was to compare GRF asymmetries and MS attributes between symptomatic and asymptomatic lower limbs (LL) 
during walking at natural and fast speeds in adults with unilateral AT.

Methods:  A convenience sample consisting of twenty-eight participants walked on an instrumented treadmill at 
natural (1.3 m/s) and fast (1.6 m/s) speeds. Peak GRF were measured in mediolateral, anteroposterior and vertical direc-
tions. Individualized electromyography (EMG) activation profiles were time- and amplitude-normalized for three con-
secutive gait cycles and MS were extracted using non-negative matrix factorization algorithms. MS were characterized 
by the number, composition (i.e., weighting of each muscle) and temporal profiles (i.e., duration and amplitude) of 
the MS extracted during walking. Paired Student’s t-tests assessed peak GRF and MS muscle weighting differences 
between sides whereas Pearson correlation coefficients characterized the similarities of the individualized EMG and 
MS activation temporal profiles within sides.

Results:  AT had limited effects on peak GRF asymmetries and the number, composition and temporal profiles of MS 
between symptomatic and asymptomatic LL while walking on a level treadmill at natural and fast speeds. In most 
participants, four MS with a specific set of predominantly activated muscles were extracted across natural (71 and 
61%) and fast (54 and 50%) walking speeds for the symptomatic and asymptomatic side respectively. Individualized 
EMG activation profiles were relatively similar between sides (r = 0.970 to 0.999). As for MS attributes, relatively similar 
temporal activation profiles (r = 0.988 to 0.998) and muscle weightings (p < 0.05) were found between sides for all 
four MS and the most solicited muscles. Although the faster walking speed increased the number of merged MS for 
both sides, it did not significantly alter MS symmetry.
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Introduction
The Achilles tendon is the longest and most powerful 
tendon in the human body [1]. Tensile forces are trans-
mitted through the tendon following contraction of the 
triceps surae muscles and enable ankle plantar flexion 
and related movements. Active plantar flexion is required 
for propulsion of the foot when generating functional 
movements, such as those required during walking and 
running [2]. To optimize the transmission of force dur-
ing these functional movements, the Achilles tendon uses 
its potential to store and release elastic energy during the 
stretching and shortening phases, respectively [3]. For 
optimal function, a healthy tendon is crucial to withstand 
high tensile forces and to protect the triceps surae mus-
cles from injury [2]. These high, repetitive and rapidly 
rising tensile forces transiting through the AT increase 
the risk of altering the biological integrity of the Achilles 
tendon [4]. In many cases, failure to achieve adaptive and 
restorative healing responses over time following Achilles 
tendon injury causes symptomatic and chronic Achilles 
tendinopathy (AT) [5–7].

The presence of localized pain, changes in the biologi-
cal integrity of the Achilles tendon, and central adapta-
tions typically characterize a symptomatic and chronic 
AT that can affect lower limb (LL) movement strategies 
during walking and running [8–11]. Runners with AT 
showed altered amplitude and duration of EMG activity 
at the lower limbs muscles during the different phases of 
running [12–16]. These muscular recruitment changes 
may also interact with changes in LL ground reaction 
forces (GRF) measured under the feet [11]. However, no 
significant differences in magnitude or timing of GRF 
were previously reported between adults with symp-
tomatic AT and healthy counterparts [12, 16]. Overall, 
these movement strategy changes may consolidate over 
time and prompt cortical alterations related to central 
nervous system (CNS) motor planning, such as recruit-
ment of a protective strategy with altered movements or 
reorganization of cortical regions [17–19].

To gain insight into the potential relationship between 
the above-mentioned changes in movement strategies 
and the CNS, a well-established hypothesis must be 
considered, namely that the CNS does not control each 
muscle individually, but instead adopts strategies that 

simplify the control of complex movements [20]. This 
hypothesis stipulates that the CNS has an organizational 
structure that synchronizes the amplitude, timing and 
duration of muscle activity to support coordinated move-
ments [21]. In fact, the CNS initiates motor commands to 
select specific muscles to be activated at different inten-
sities and in a coordinated way (i.e., motor modules or 
“muscle synergies” (MS)) by activating specific groups of 
motor neurons. These MS are thought to ease the poten-
tial complexity of the distinct neuronal activation of sev-
eral individual muscles during coordinated movements.

Characterizing MS in terms of the number of motor 
modules, composition (i.e., weighting of each muscle per 
motor module) and temporal profile (i.e., duration and 
amplitude) during different functional activities is fea-
sible, using non-negative matrix factorization (NNMF) 
algorithms [22, 23]. Such a methodological approach 
has allowed researchers to identify four MS typically 
observed during walking in healthy adults [24–26]. Each 
of these MS is activated at distinct phases of the gait 
cycle, ensuring a specific biomechanical function (Fig. 1): 
During weight acceptance, the gluteus medius, vastus 
medialis and rectus femoris are activated for leg stabili-
zation (MS1). During pushoff, the soleus and medial gas-
trocnemius are activated for forward propulsion (MS2). 
During the early swing phase, the tibialis anterior and 
rectus femoris are activated for swing initiation (MS3). 
During the terminal swing phase, the semitendinosus and 
biceps femoris are activated for leg deceleration (MS4).

Some MS attributes (i.e., number, composition and 
temporal profile) are now considered to be potential 
determinants and predictors of intermuscular coordina-
tion and gait performance among adults with neurologi-
cal [27–29] or musculoskeletal impairments [30–32]. In 
adults with neurological impairments (i.e., stroke or spi-
nal cord injury), some authors have observed that fewer 
MS are required to account for muscle activation during 
walking, suggesting a reduction in overall motor activa-
tion complexity. In adults with musculoskeletal impair-
ments, authors have observed that adults with gluteal 
tendinopathy had changes in MS composition with the 
gluteus minimus, gluteus medius, and tensor fascia 
latae, notably contributing to the MS related to single 
leg support [33]. Authors have observed that adults with 

Conclusion:  Faster walking speed increased peak GRF values but had limited effects on GRF symmetries and MS 
attribute differences between the LL. Corticospinal neuroplastic adaptations associated with chronic unilateral AT may 
explain the preserved quasi-symmetric LL motor control strategy observed during natural and fast walking among 
adults with chronic unilateral AT.
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unilateral anterior cruciate ligament deficiency have 
altered MS activation profiles when stabilizing the knee 
joint with a longer activation period of the tibialis ante-
rior, quadriceps, and hamstring muscles during stance 
[32]. To our knowledge, no study has characterized the 
effect of chronic pain and changes in the Achilles ten-
don on GRF and MS during walking in adults with uni-
lateral AT.

Hence, the primary objective of this study was to com-
pare GRF symmetries (i.e., mediolateral, posteroanterior 
and vertical components) and MS attribute differences 
(i.e., number, composition and temporal profile) between 
symptomatic and asymptomatic LL during walking in 
adults with unilateral symptomatic AT. The secondary 
objective was to verify if increased walking speed would 
reveal additional or larger differences in terms of GRF 
asymmetries and MS attributes between LL. For the pri-
mary objective, it was hypothesized that peak GRF in 
the mediolateral, posteroanterior and vertical directions 
would be reduced at the symptomatic LL compared to 
the asymptomatic LL [10]. It was also anticipated that 
the number of synergies would be reduced at the symp-
tomatic LL compared to the asymptomatic LL to reflect 
changes in motor control complexity due to AT [34]. In 
addition, a change in the motor recruitment strategy of 
the hip (gluteus medius) and knee (vastus medialis) sta-
bilizer muscles was anticipated and expected to translate 
into MS1 composition and temporal profile differences 
with the asymptomatic LL. For the secondary objective, it 
was hypothesized that peak GRF asymmetries would be 
greater at fast speed compared to natural speed whereas 
MS attribute differences between the asymptomatic and 

symptomatic LL previously described would be amplified 
at fast speed compared to natural speed [26].

Methodology
Participants
A convenience sample consisting of twenty-eight (n = 28) 
adults with unilateral, symptomatic AT of the Achilles 
tendon participated in this cross-sectional study. The 
convenience sampling technique was selected based on 
previous LL studies evaluating changes in muscles syner-
gies following induced or acquired pain [30, 32, 33]. To be 
included, potential participants had to report unilateral, 
localized pain at the insertion or midportion of the Achil-
les tendon for more than 3 months [7], experience pain 
on palpation at the enthesis or midportion of the Achil-
les tendon, and obtain a score lower than 90 out of 100 
on the Victorian Institute of Sport Assessment-Achilles 
Questionnaire (VISA-A) [35]. Presence of AT was con-
firmed by both the presence of pain upon palpation of 
the tendon and the observation of tendon alteration (e.g., 
increased tendon thickness, reduced echogenicity) dur-
ing musculoskeletal ultrasound imaging. Potential partic-
ipants who reported bilateral pain during sport activities, 
had a body mass index (BMI) greater than 30.0 kg/m2, 
reported a history of Achilles tendon rupture or repair, 
were diagnosed with a metabolic, neurologic or systemic 
inflammatory disease, or had received any type of injec-
tion at the Achilles tendon in the past year were excluded.

Questionnaires
Basic sociodemographic data (e.g., age, sex), anthro-
pometric data (e.g., height, mass) and AT-related 

Fig. 1  Muscular synergies identified by NNMF during walking among healthy adults
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information (e.g., affected side, time since onset of symp-
toms, etc.) were initially collected. Participants then 
completed two patient-reported outcome measures ques-
tionnaires: the VISA-A and the Lower Extremity Func-
tional Scale (LEFS). The VISA-A includes eight questions 
targeting three dimensions: localized pain at the Achil-
les tendon, function in daily life and participation in 
sports activities [35–37]. The VISA-A questionnaire 
scores range from 0 to 100, with a low score indicating 
greater severity. The questionnaire is available in English 
and French and is valid, reliable, and sensitive to change 
with a minimal clinically important difference between 6 
and 20 points [35, 38]. The LEFS questionnaire assesses 
function in adults with musculoskeletal disorders affect-
ing the LL, including AT [39]. It includes 20 questions 
measuring the level of difficulty encountered when per-
forming activities of daily living and sports. The LEFS 
has a maximum score of 80, with a high score indicating 
a high functional level. The LEFS, which is also available 
in English and French, is valid, reliable, and sensitive to 
change with a minimal clinically important difference of 
9–12 points [38]. The VISA-A and LEFS were completed 
by participants either on paper or electronically via Lime 
Survey® in the language of their choice (i.e., French or 
English).

Musculoskeletal ultrasound imaging
One trained evaluator (ML), who is an experienced phys-
ical therapist, performed all components of both the clin-
ical and imaging evaluations. For the latest, all ultrasound 
images of the Achilles tendon were recorded with a HD 
11XE 1.0.6 ultrasonography system (Phillips Medical 
Systems, Bothell, WA), using the brightness mode and a 
5–12 MHz linear array transducer with a 5-cm wide foot-
print. A previously described standardized protocol [40] 
was used for image acquisition. All parameters affecting 
image quality remained constant for all participants dur-
ing each data collection session (i.e., probe frequency set 
at 12 MHz; depth = 2 cm; gain = 85; unique focus zone 
adjusted to 0.5 cm at the Achilles tendon; neutral time 
gain compensation). The most painful area along the 
symptomatic tendon was first located by palpation before 
being marked on the skin and mirrored on the asympto-
matic side. Three (n = 3) images centered on the marked 
site were acquired in the longitudinal plane per side.

All images were analyzed using a custom program 
developed using MATLAB’s Image Processing Toolbox™ 
(MathWorks Inc., Natick, Ma, USA) [40, 41] to extract 
a standardized dataset of ultrasound biomarkers (i.e., 
mean thickness, echogenicity, skewness, mean homo-
geneity, and homogeneity at 0° and 90°) [42]. Images of 
symptomatic tendons were expected to show increased 
thickness, decreased echogenicity, increased skewness, 

increased mean homogeneity, and increased homogene-
ity at 90° compared to asymptomatic tendons [42].

Ground reaction forces
GRF were recorded in mediolateral (GRFML), posteroan-
terior (GRFPA) and vertical (GRFV) directions by a fully 
instrumented dual-belt treadmill with separate embed-
ded force plates (Bertec, Columbus, USA; TM-09). 
Selected peak GRFML, GRFPA and GRFV were based on 
curves previously described among healthy adults [43] 
(Fig.  2). The GRFML curve for normal walking contains 
one lateral and two medial peaks: the lateral thrust force 
(LTF) at heel contact, followed by the medial impact 
force (MIF) during weight acceptance, and lastly the 
medial propulsive force (MPF) during terminal stance. 
The GRFPA curve for normal walking contains two peaks: 
the horizontal braking force (HBF) upon weight accept-
ance and the horizontal propulsive force (HPF) during 
the pushoff phase. The GRFV curve for normal walking 
contains two peaks and a trough: the vertical impact 
force (VIF) during weight acceptance, the minimal ver-
tical peak (MVP) during midstance and the vertical pro-
pulsive force (VPF) during pushoff.

Surface electromyography
Bilateral surface EMG of the rectus femoris, vastus 
medialis, tibialis anterior, medial gastrocnemius, soleus, 
semitendinosus, biceps femoris and gluteus medius was 
recorded using a portable telemetric system (NORAXON 
USA Inc., Scottsdale, Arizona; Telemyo 900) with a fre-
quency of 1200 Hertz (Hz). Self-adhesive surface elec-
trodes (Ag/AgCl; Ambu_BlueSensor M) were placed 
in a bipolar configuration with a 1-cm inter-electrode 
distance over the muscle belly, perpendicular to muscle 
fibers orientation. Each skin site was previously shaved 
and cleaned with alcohol [44] in accordance with the 
SENIAM recommendations (refer to www.​seniam.​org). 
EMG signals were visually inspected during static volun-
tary contractions performed against manual resistance 
according to a standardized protocol [45]. The recorded 
EMG was filtered using a fourth-order, Butterworth, 
zero-lag bandpass filter with cut-off frequencies set at 
20 Hz and 400 Hz. Subsequently, EMG signals were root 
mean squared with a centered 250 msec moving window 
to finally generate linear envelopes.

Gait assessment
Participants walked on the above-described instru-
mented treadmill. After a 3-minute familiarization walk-
ing period on the treadmill during which participants 
were asked to walk at a self-selected comfortable speed, 
participants walked at a natural speed (1.3 m/s) for 60 s 
and thereafter at a fast speed (1.6 m/s) for 60 s. Since 

http://www.seniam.org
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the mean self-selected comfortable speed (1.3 ± 0.1 m/s) 
of participants was similar to the prescribed natural 
speed (1.3 m/s), only the latest natural speed was con-
sidered for the analyses. A rest period was provided if 
required between the tasks. Pain was monitored for the 

symptomatic and asymptomatic tendons while walk-
ing using a 10-point visual analog scale with the ethical 
perspective of not increasing pain to a level greater than 
5/10 in accordance with the principle of nonmaleficence 
[46]. EMG and GRF data were collected for the last 40 s 
of each trial, and an average of 3 consecutive gait cycles 
(two consecutive heel strikes for the same leg) were 
selected according to the minimal EMG variation coef-
ficient and then used for analysis [26]. Each GRF value 
and EMG envelope was time-normalized (0 to 100% in 
1% increments) relative to each full gait cycle, then aver-
aged together. Each GRF value was then normalized for 
each participant’s body weight (BW). The amplitude of 
each muscle was also normalized from its peak value (0 
to 1), resulting in an 8 X 101 experimental EMG (EMG-
exp) matrix. The mean and standard deviation (SD) of the 
BW-normalized GRF and amplitude-normalized EMG 
during the time-normalized gait cycle were calculated 
across subjects.

Muscle synergies analysis
MS during walking were extracted by a NNMF algorithm 
using the Gamma model based on J divergence, a reli-
able method found to generate high coefficients of cor-
relation and confidence levels [22] and used in previous 
studies to extract MS during various walking conditions 
[26, 47]. For each participant, the EMGexp data matrix 
was subjected to the NNMF algorithm. The NNMF algo-
rithm broke down the EMGexp into two matrices and a 
reconstruction error (ε) (Eq.  1). The first matrix repre-
sents the muscle weighting (W), consisting of the con-
tribution of each muscle (m) within each muscle synergy 
(s) (Eq.  2). The second matrix represents the activation 
timing profile (H), consisting of the muscle synergy (s) 
during the gait cycle for each time-normalized point (t) 
(Eq.  3). Agreement between EMGrec and EMGexp was 
then evaluated using the variance accounted for (VAF) 
criterion (Eq. 4).

The number of MS was determined by the least num-
ber of synergies that could explain a VAF for each muscle 
(VAFm) greater than 90% and a global VAF (VAFg) greater 
than 80% [48]. Whenever these criteria were reached, the 
reconstruction was deemed valid and the computation 

(1)EMGexp = W ×H + ε

(2)W = m× s

(3)H = s × t

(4)
VAF = 1− EMGexp − EMGrec

2
/ EMGexp

2

Fig. 2  Selected ground reaction forces (GRF) in the a medio-lateral 
(GRFML), b postero-anterior (GRFPA) and c vertical (GRFV) directions



Page 6 of 16Lalumiere et al. Journal of Foot and Ankle Research           (2022) 15:66 

stopped. When the absolute difference of the coefficient 
of determination between the current and last pass was 
lower than 1 ×  e− 8 for 20 consecutive passes, or after 
500 passes were run without convergence, the algorithm 
stopped. This procedure was done 20 times, and the 
result of the lowest reconstruction error with the lowest 
number of synergy modules within the validation criteria 
were considered adequate.

Muscle synergies were sorted out based on similari-
ties in muscle weighting across participants and walking 
speeds using cosine similarity [49]. The inner product of 
the compared muscle synergy vectors were calculated, 
and the cosine angle between those synergies were meas-
ured. Sorting was performed by grouping muscle syn-
ergies based on the values of cosine similarity against a 
healthy reference [24–26]. The sequence of two muscle’s 
weightings values to be compared are viewed as vectors 
and the dot product of the vectors are divided by the 
product of their length providing an index of similarity 
with a maximal unitary value. Whenever the cosine simi-
larities of W between the reference and other MS were 
over 0.80, MS were considered similar [50, 51]. Likewise, 
whenever two MS at the same walking speed were clas-
sified into the same MS group, these two synergies were 
considered to be merged together. The MS with the low-
est cosine similarity was considered to be merged to the 
main MS presenting the highest correlation value.

Statistical analysis
Descriptive statistics (i.e., mean, standard deviation (SD), 
proportion, range) synthesized the sociodemographics, 
anthropometrics, questionnaires and ultrasound-related 
outcomes. To describe AT-related changes at the Achil-
les tendon, ultrasound biomarkers (i.e., mean thickness, 
echogenicity, skewness and homogeneity) were com-
pared between the asymptomatic and symptomatic LL 
using paired Student’s t-tests. To test the first hypothesis, 
GRF measures were compared using paired Student’s 
t-tests between the asymptomatic and symptomatic LL. 
Effect sizes were also computed using Hedges’ g [52] to 
determine the absolute magnitude of the estimates. Thus, 
an effect size > 0.2 was considered small, > 0.5 was consid-
ered medium, and > 0.8 was considered large [53]. There-
after, the relative difference between the symptomatic 
and asymptomatic LL was computed (Eq. 5) and used to 
test the second hypothesis as described hereunder.

To test the first hypothesis further, cosine similari-
ties were compared between LL using paired Student’s 
t-tests. In addition, the weighting of each muscle within 

(5)

Difference (%) =

(

Symptomatic − Asymptomatic
)

(Asymptomatic)
× 100

a MS was also compared using Student’s t-tests. To ver-
ify the extent to which the MS activation timing profile 
and EMG activation profiles were similar between LL at 
natural and fast speed, Pearson product–moment cor-
relation coefficients (r) were calculated. Strength of cor-
relation coefficients were considered negligible between 
0.00 and 0.30, low between 0.30 and 0.50, moderate 
between 0.50 and 0.70, high between 0.70 and 0.90, and 
very high between 0.90 and 1.00 [54]. To test the second-
ary hypothesis, the difference in GRF measures between 
walking speed (i.e., Fast – Natural) as a percentage of BW 
was compared using paired t-tests between LL. To assess 
the change in MS attributes when going from natural to 
fast speed, Pearson product-moment correlation coeffi-
cients (r) of MS activation timing profiles between natu-
ral and fast speeds for both LL were calculated. Statistical 
analyses were carried out with SPSS v25 software and the 
statistical significance threshold was set at 0.05.

Results
Characteristics of participants
A summary of the characteristics of the participants and 
scores achieved on the VISA-A and LEFS questionnaires 
are presented in Table 1.

Ultrasound biomarkers
A summary of Achilles tendon ultrasound biomark-
ers is presented in Table 2. The mean thickness revealed 
a significant (p < 0.001) and large between-side differ-
ence (g = 1.21), reaching + 29.7% for the symptomatic 
tendon when compared to the asymptomatic one. 
The echogenicity revealed a significant (p < 0.001) and 
large between-side difference (g = − 0.81), reaching 
− 13.9% for the symptomatic tendon when compared 
to the asymptomatic one. Skewness revealed a signifi-
cant (p = 0.012) and medium between-side difference 

Table 1  Mean (standard deviation) characteristics of participants

Measures Units Mean (SD)

Age, mean (SD) years 42.5 (8.1)

Sex, Male/Female number 19 /9

Height, mean (SD) cm 1.74 (0.07)

Mass, mean (SD) kg 78.2 (15.4)

BMI, mean (SD) kg/m2 26.5 (5.0)

Symptomatic Side, Left/Right number 18 / 10

Time since injury months 34.1 (30.5)

VISA-A, mean (SD) /100 60.9 (18.2)

VISA-A, range Min - Max 13 - 82

LEFS, mean (SD) /100 64.7 (11.2)

LEFS, range Min - Max 38 - 78
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(g = 0.67), reaching a difference of + 85.5% for the symp-
tomatic tendon compared to the asymptomatic one. The 
mean global homogeneity and perpendicular homoge-
neity (90°) respectively revealed a significant (p < 0.001 
and p < 0.001) and only small between-side differences 
(g = 0.23 and 0.28), reaching + 2.2% to 2.9% for the symp-
tomatic tendon compared to the asymptomatic one.

Ground reaction forces
During walking at natural speed (1.3 m/s), the mean stride 
length was 1.39 ± 0.08 m and cadence was 56.1 ± 3.1 
strides/minute for both the symptomatic and asympto-
matic sides. During walking at fast speed (1.6 m/s), the 
mean stride length was 1.59 ± 0.09 m and cadence was 
60.5 ± 3.5 strides/minute for both the symptomatic and 
asymptomatic sides. A summary of the mean and stand-
ard deviation (SD) of GRFML, GRFPA and GRFV during 
the gait cycle and the selected peak GRF for the asymp-
tomatic and symptomatic LL during natural and fast 
speed walking are presented in Table 3 and Fig. 3, respec-
tively. Among the peak GRF, only the medial propulsive 
force during natural and fast walking speeds respectively 
revealed a significant (p < 0.001 and p = 0.022) and small 
between-side difference (g = 0.23 and g = 0.23), reach-
ing − 5.46% and − 5.49% difference for the symptomatic 
LL compared to the asymptomatic one. Peak GRF differ-
ences between natural and fast speed were similar for the 
symptomatic tendon versus the asymptomatic one.

Number of muscle synergies and cosine similarity
Two to five MS were extracted to characterize gait using 
NNMF for all eight muscles for each LL (Table  4 & 
Fig. 4). Overall, four MS with a specific set of predomi-
nantly activated muscles (Fig.  1) were extracted among 
the majority of participants during natural (71% and 61%) 
and fast (54% and 50%) walking speeds respectively, for 
the symptomatic and asymptomatic LL. Specifically, MS1 

was identified in most participants on the symptomatic 
LL at natural speed (93%) but in fewer participants at fast 
speed (86%). MS1 was also identified in most participants 
on the asymptomatic LL at natural speed (79%) but in 
fewer participants at fast speed (75%). MS2 was identi-
fied in all participants (100%) across all conditions. MS3 
was identified in most participants on the symptomatic 
LL at natural speed (82%) but in fewer participants at fast 
speed (75%). MS3 was also identified in most participants 
on the asymptomatic LL at natural speed (93%) but in 
fewer participants at fast speed (75%). MS4 was identi-
fied in all participants on the symptomatic LL at natu-
ral speed (100%) but in fewer participants at fast speed 
(93%). MS4 was also identified in most participants on 
the asymptomatic LL at natural speed (89%) and at fast 
speed (89%). Hence, the number of merged synergies 
was higher with the asymptomatic LL compared to the 
symptomatic LL, with this phenomenon being accentu-
ated further by an increase in walking speed. Additional 
analysis revealed that MS1 and MS3 merged more often 
into other synergies than MS2 and MS4. This is also 
confirmed by the cosine similarity values in which MS1 
and MS3 have generally lower values than MS2 and MS4 
(Fig. 4b). Also, the cosine similarity values were compara-
ble (p > 0.05) between LL during natural and fast walking 
speeds for each MS (Fig. 4b).

Muscle synergies activation timing profile
Activation timing profiles, demonstrating how activation 
of each MS (i.e., MS1 to MS4) varies over the gait cycle, 
are shown in Fig. 5a. For each of the four main MS, the 
global VAF and the Pearson coefficient of correlation (r) 
between the symptomatic and asymptomatic LL for the 
natural and fast speed were marked on each graph. In 
general, the activation timing profiles for all conditions 
were remarkably similar for all four MS. MS1 confirms 
that the activation of the vastus medialis and gluteus 

Table 2  Mean (standard deviation) of ultrasound variables in the longitudinal plane

* Paired Student’s t-tests statistically significant at a level of p < 0.05

Symptomatic Asymptomatic Diff (%) Effect size (g) p-value*

Musculoskeletal ultrasound biomarkers
Geometric

  Mean thickness (mm) 6.18 (1.24) 4.76 (1.06) 29.7 1.21 < 0.001*
Composition

  Echogenicity (/255) 66.82 (11.43) 77.62 (14.73) −13.9 −0.81 < 0.001*
  Skewness 0.320 (0.250) 0.173 (0.178) 85.5 0.67 0.012*
Texture

  Mean homogeneity 0.691 (0.064) 0.676 (0.064) 2.2 0.23 0.001*
  Homogeneity at 0° 0.778 (0.062) 0.775 (0.060) 0.4 0.05 0.524

  Homogeneity at 90° 0.665 (0.067) 0.646 (0.069) 2.9 0.28 < 0.001*
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medius predominantly contributes to the synergistic pat-
tern observed between 0% and 20% of the gait cycle. 
MS2 confirms the activation of the soleus and medial 
gastrocnemius between 30% and 50% of the gait cycle. 
MS3 confirms the activation of the tibialis anterior, vas-
tus medialis and rectus femoris with two peaks of activ-
ity occurring at the beginning and at approximately 60% 
to 75% of the gait cycle. MS4 confirms the activation of 
the tibialis anterior, semitendinosus and biceps femoris 
between 85% and 100% of the gait cycle. The global VAS 
was equal to 0.978, 0.966, 0.991 and 0.973 for MS1, MS2, 

MS3 and MS4, respectively. Correlation between the acti-
vation profiles of the asymptomatic and symptomatic LL 
were very high (r > 0.973) in all comparisons.

Muscle weightings
For each MS selected, muscle weightings were calculated 
to indicate the strength of representation of each muscle 
among each LL and condition (Fig. 5b). When comparing 
the muscle weighting between the LL, only two compari-
sons were found to be significantly different. For MS1, the 
muscle weighting of the biceps femoris was found to be 

Table 3  Mean (standard deviation) kinetic variables

*Paired Student’s t-tests statistically significant at a level of p < 0.05, GRF Ground Reaction Forces. g: Hedges’ g

Symptomatic Asymptomatic Diff (%) Effect size (g) p-value*

Medio-Lateral GRF
Lateral Thrust Force (LTF)

  Natural (% of BW) 2.68 (1.46) 2.95 (1.31) −9.24 0.19 0.211

  Fast (% of BW) 3.31 (1.58) 3.53 (1.68) −6.15 0.13 0.413

  Difference (% of BW) 0.63 (0.82) 0.57 (0.87) 9.8 −0.07 0.795

Medial Braking Force (MBF)

  Natural (% of BW) 8.57 (1.62) 7.99 (1.62) 7.21 −0.35 0.024*
  Fast (% of BW) 9.97 (1.66) 9.26 (1.66) 7.67 −0.42 0.003*
  Difference (% of BW) 1.40 (1.34) 1.27 (1.34) 10.6 0.10 0.522

Medial Propulsive Force (MPF)

  Natural (% of BW) 6.80 (1.75) 7.19 (1.65) −5.46 0.23 0.001*
  Fast (% of BW) 6.47 (1.63) 6.85 (1.58) −5.49 0.23 0.022*
  Difference (% of BW) −0.33 (1.02) −0.34 (1.17) −5.0 0.02 0.897

Postero-Anterior GRF
Horizontal Breaking Force (HBF)

  Natural (% of BW) 19.97 (1.89) 20.26 (1.73) −1.43 0.16 0.421

  Fast (% of BW) 25.59 (2.27) 25.73 (2.20) −0.55 0.06 0.800

  Difference (% of BW) 5.64 (1.92) 5.49 (1.60) 2.7 −0.08 0.722

Horizontal Propulsive Force (HPF)

  Natural (% of BW) 21.10 (1.95) 20.91 (1.95) 0.91 −0.10 0.487

  Fast (% of BW) 26.03 (2.76) 26.33 (2.76) −1.12 0.11 0.389

  Difference (% of BW) 4.96 (1.66) 5.38 (1.66) −7.9 0.25 0.126

Vertical GRF
Vertical Impact Force (VIF)

  Natural (% of BW) 114.34 (6.88) 114.00 (7.99) 0.30 −0.04 0.670

  Fast (% of BW) 125.42 (8.06) 125.83 (8.47) −0.33 0.05 0.684

  Difference (% of BW) 11.09 (4.17) 11.84 (3.69) −6.3 0.19 0.403

Minimal Vertical Peak (MIP)

  Natural (% of BW) 73.58 (4.80) 73.12 (4.35) 0.63 −0.10 0.388

  Fast (% of BW) 62.03 (7.67) 59.63 (6.46) 4.02 −0.33 0.220

  Difference (% of BW) −11.55 (8.37) −13.49 (8.37) −14.3 −0.23 0.299

Vertical Propulsive Force (VPF)

  Natural (% of BW) 110.13 (4.72) 110.36 (4.92) −0.21 0.05 0.752

  Fast (% of BW) 115.17 (6.42) 116.46 (4.79) −1.11 0.22 0.234

  Difference (% BW) 5.05 (4.64) 6.10 (2.87) −17.2 0.27 0.235
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significantly lower for the symptomatic LL (p = 0.008) 
compared to the asymptomatic LL. For MS4, the mus-
cle weighting of the soleus was found to be lower for 
the symptomatic side (p = 0.03) when compared to the 
asymptomatic LL.

Individualized EMG activation profiles
Individualized experimental EMG activation profiles 
were illustrated to demonstrate the muscle activation 
pattern of each muscle over the gait cycle (Fig.  6). For 
each individualized EMG profile, the correlation between 
the symptomatic and asymptomatic LL for natural and 
fast speeds were marked on the graph. The correlation 
between the asymptomatic and symptomatic LL was 
found to be very high (r > 0.970) for all comparisons.

Discussion
The effects of unilateral AT pain and Achilles tendon 
integrity changes on GRF asymmetries and MS attributes 
during walking were investigated. Overall, the results 
revealed that the presence of AT had limited effects on 
bilateral GRF asymmetries, muscle weightings and MS 
activation profiles between the symptomatic and asymp-
tomatic LL during walking at natural and fast speeds. In 
most participants, four MS (i.e., MS1 to MS4) were suf-
ficient to explain the majority of the VAF (i.e., > 90% of 
the VAF for each muscle and > 80% of the global VAF). 
For all conditions, MS demonstrated relatively similar 
temporal activation profiles and muscle weightings to 
those reported in previous studies among healthy adults 
[25, 34, 55], with very few key differences. Increasing the 
walking speed from a natural pace (1.3 m/s) to a fast pace 
(1.6 m/s) increased some peak GRF values and increased 
the number of merged MS for both LL, but neither sig-
nificantly altered MS temporal activation profiles nor 
muscle weighting between the symptomatic and asymp-
tomatic LL.

Limited effects on bilateral LL GRF asymmetries and MS 
attributes
The primary objective of this study was to compare GRF 
symmetries and MS attributes between the asympto-
matic and symptomatic LL during walking in adults with 
unilateral symptomatic AT. The results partially sup-
ported the first hypothesis, which stated that peak GRF 
would be reduced at the symptomatic LL compared to 
the asymptomatic LL. First, only the two GRFML peaks 
were significantly different between the symptomatic and 
asymptomatic LL at natural and fast speeds. An increase 
in the GRFML peak during midstance on the sympto-
matic side may be explained, in part, by an increase in 
vastus medialis and medial gastrocnemius muscle activ-
ity to promote medial braking force [56]. A decrease in 

Fig. 3  Group average (full line) and average + 1SD (dotted lines) of 
GRF in the a medio-lateral, b postero-anterior and c vertical directions 
for the symptomatic (Sympt) and Asymptomatic (Asympt) sides at 
natural and fast walking speeds
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peak GRFML during terminal stance on the symptomatic 
side may also be explained, in part, by a reduction in 
hip adductor and medial gastrocnemius contractions to 
lower medial propulsive forces [56]. Because the abso-
lute medial propulsive force differences between LL were 
ultimately very small (< 0.5% BW), it is also plausible 
that these potential muscle contraction differences dur-
ing walking could not be detected or that they predomi-
nantly related to measurement errors associated with the 
treadmill or EMG recording system or both. Peak GRF in 
the postero-anterior and vertical directions were similar 

between LL at natural and fast walking speeds, which can 
be explained by the similar muscle activation patterns 
observed among all eight muscles analyzed [57].

Contrary to our hypothesis for MS, no unilateral 
change in the motor recruitment strategy of the hip or 
knee muscle stabilizers was observed during the sup-
port phase (i.e., MS1) for the symptomatic LL. Likewise, 
no motor recruitment strategy difference was observed 
at the ankle during the pushoff phase (i.e., MS2) for 
the symptomatic LL. Such an adaptation was antici-
pated to reduce the tensile force transiting through the 

Table 4  Muscle synergies detected and merged among walking conditions

✓ = main synergy detected, ∼ CX = synergy merged with synergy number X

Natural (1.3 m/s) Fast (1.6 m/s)

Symptomatic Asymptomatic Symptomatic Asymptomatic

Synergy Synergy Synergy Synergy

Participant C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ∼C1 ✓ ∼C4 ✓ ✓ ✓ ∼C4 ✓ ✓ ✓ ∼C4 ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C4 ✓
7 ✓ ✓ ∼C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C3

8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C1 ✓ ✓ ✓ ✓ ✓
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C1 ✓ ✓ ✓ ✓ ✓
11 ✓ ✓ ∼C4 ✓ ✓ ✓ ∼C4 ✓ ✓ ✓ ∼C4 ✓ ∼C4 ✓ ∼C4 ✓
12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C3 ✓ ✓ ✓ ✓ ✓ ✓ ✓
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C3

15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C1 ✓ ✓ ✓ ∼C1 ✓ ✓ ✓ ✓
16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
17 ✓ ✓ ✓ ✓ ✓ ✓ ∼C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C1 ✓
18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C3

19 ✓ ✓ ✓ ✓ ∼C4 ✓ ✓ ✓ ∼C4 ✓ ✓ ✓ ∼C4 ✓ ✓ ✓
20 ∼C3 ✓ ✓ ✓ ∼C3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C3 ✓ ✓ ✓
21 ✓ ✓ ✓ ✓ ∼C3 ✓ ✓ ✓ ✓ ✓ ∼C4 ✓ ∼C4 ✓ ∼C4 ✓
22 ∼C3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C4 ✓ ∼C4 ✓ ∼C4 ✓ ∼C4 ✓
23 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C1 ✓ ✓ ✓ ✓ ✓
24 ✓ ✓ ∼C1 ✓ ∼C3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C1 ✓
25 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
26 ✓ ✓ ∼C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C3 ✓ ✓ ✓ ✓
27 ✓ ✓ ✓ ✓ ∼C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C4 ✓ ✓ ✓
28 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼C1 ✓ ✓ ∼C1 ✓ ✓ ✓ ∼C4 ✓
Synergies merged (nb) 2 0 5 0 6 0 2 3 4 0 7 2 7 0 7 3

(%) 7% 0% 18% 0% 21% 0% 7% 11% 14% 0% 25% 7% 25% 0% 25% 11%

Total (nb)
(%)

7/112
6.3%

11/112
9.8%

13/112
11.6%

17/112
15.2%
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symptomatic Achilles tendon and ultimately decrease the 
peak GRFV. Still contrary to our hypothesis, the number 
of merged synergies was slightly higher at the asympto-
matic LL than the symptomatic one. Considering the 
bilateral nature of walking and the required adjustments 
of the CNS, these results may highlight potential motor 
control adaptations of the asymptomatic LL over time 
(i.e., chronic AT) to preserve symmetry during walking. 
As such, it was previously suggested that following a uni-
lateral chronic musculoskeletal injury, neuroplastic adap-
tations and their effects on the CNS can explain changes 
in sensory and motor cortical representation, result-
ing in bilateral perceptual changes of body image and 
motor control [18]. Similarly, a relatively recent system-
atic review confirms the presence of sensory and motor 
alterations on the non-injured side of adults with unilat-
eral tendon pain and related disability [58]. These central 
adaptations add to the peripheral adaptations highlighted 
in previous studies that have shown histological structure 
changes in the asymptomatic contralateral tendon [16, 
59, 60]. Overall, the results of the present study align with 
evidence supporting the bilateral nature of tendinopathy 
and the involvement of CNS mechanisms.

MS attributes difference with respect to healthy adults
During walking at natural and fast speeds, the twenty-
eight participants in our study had relatively similar 
individualized EMG activation profiles and MS attrib-
utes (i.e., activation timing profiles and muscle weight-
ings) (MS1 to MS4) compared to those previously 
reported in the literature [26, 32, 34, 61–63]. However, 
some MS attribute differences in comparison with 

healthy adults warrant attention. For MS1, the gluteus 
medius and vastus medialis weightings were lower in 
this study. For MS4, the biceps femoris and semiten-
dinosus weightings were lower, whereas the tibialis 
anterior weighting was greater. These differences could 
be explained bilaterally by a decrease in hip and knee 
stability during stance and an increase in tibialis ante-
rior co-contractions during terminal swing, which has 
been previously described among adults with unilateral 
acute pain in the calf muscles [30]. Such changes could 
be interpreted as an adaptation of the muscle activation 
pattern in response to the injured tendon or aetiologi-
cal causative factor of AT.

Increasing the walking speed did not alter GRF 
asymmetries and MS attributes differences between LL
The secondary objective was to verify if increasing the 
walking speed revealed additional differences in terms 
of GRF asymmetries and MS attributes between LL. 
The results only partially supported the hypothesis. 
Thus, increasing the walking speed from 1.3 m/s to 
1.6 m/s resulted in higher peak GRF values The same 
phenomenon has been observed in healthy adults in 
previous studies [49, 56, 64, 65]. However, increased 
walking speed had limited effects on GRF and MS dif-
ferences between LL. Also, the number of synergies 
merged to a greater extent at fast speed compared to 
natural speed, yet merged equally on both LL. An 
increase in some peak GRF values during fast speed is 
more likely associated with adjustments in the mechan-
ical output of the MS rather than differences in the pro-
file and activation timings.

Fig. 4  a Number of synergies is determined by the VAF (variance accounted for) criterion for each walking condition. b Cosine similarity values (r) 
for the weightings of each muscle synergy
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Translating evidence into tendon rehabilitation clinical 
practice
Current AT rehabilitation in clinical practice focuses 
predominantly on tendon loading, as it stimulates the 

physiological adaptation of the muscle-tendon com-
plex [4, 7]. In clinical practice, eccentric plantarflexor 
strengthening exercises and heavy-slow plantarflexor 
resistance training has been shown to reduce pain 

Fig. 5  Group average (n = 28) for each of the four muscle synergies at natural and fast walking speeds. a Activation timing profiles for each synergy 
over the gait cycle with corresponding global VAF (variance accounted for). Group average (full line) and average + 1SD (dotted lines). b Muscle 
weightings average and SD of the four synergies. RF = rectus femoris, VM = vastus medialis, TA = tibialis anterior, MG = medial gastrocnemius, 
SO = soleus, ST = semitendinosus, BF = biceps femoris, GM = gluteus medius
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and improve function among adults with AT [66–68]. 
Based on the high recurrence rate of AT and potential 
persistent motor changes following AT, current clini-
cal practice may fail to adequately address contributing 
peripheral or central factors that may impact motor con-
trol. On one hand, CNS cortical representation, inter-
hemispheric inhibition and motor cortex excitability may 

warrant additional attention during rehabilitation [69, 
70]. Accordingly, tendon loading exercises that would 
be externally paced could be an interesting complement 
to rehabilitation protocols to best modulate tendon pain 
and CNS motor control [71]. On the other hand, focusing 
solely on the symptomatic AT during rehabilitation may 
attenuate the potential beneficial effects given potential 

Fig. 6  Individual EMG activation profiles over the gait cycle. Each muscle activity was normalized by maximum activation across each walking 
speed. Group average (full line) and average + 1SD (dotted lines)
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tendon changes on the asymptomatic tendon. Rehabili-
tation protocols may therefore also need to involve the 
asymptomatic LL to prompt beneficial tendon integrity 
and CNS motor control adaptations over the long term 
[4, 69].

Limitations
Some limitations associated with the present study 
require discussion. The relatively modest sample of par-
ticipants (n = 28) with AT and the heterogeneity of the 
participants in terms of symptom duration and pain 
intensity may have reduced the statistical power and lim-
ited subgroup analysis. Also, the activity-specific muscle 
EMG amplitude normalization approach used may have 
limited the ability to compare peak EMG activation pro-
file differences between conditions. As previously men-
tioned, the fact that the asymptomatic tendon was used 
as the comparator to assess the impact of AT may also 
have attenuated the magnitude of MS changes since both 
LL may have been affected in adults with unilateral AT 
[12, 58, 59]. Investigating adults with chronic AT and 
comparing them to healthy counterparts may have pro-
vided additional insights. As a mitigation strategy, sup-
plementary materials present a cosine similarity analysis 
of the muscle weightings between our data and previ-
ously published normative data of healthy adults [34]. 
Caution remains advised if attempting to generalize the 
current findings with other tendons (e.g., patellar tendon, 
supraspinatus tendon), other walking speeds (e.g., slow 
speed, self-selected speed) [72], or other walking condi-
tions (e.g., overground walking) [73]. Personal charac-
teristics also known to influence walking (e.g., gender, 
height, leg length, body weight) would also need addi-
tional attention if within-subject comparisons were to 
be performed in the future. Finally, higher impact activ-
ity soliciting a greater amount of force or generating a 
higher pain level compared to walking, such as running 
and jumping, might have detected greater differences in 
peak GRF and MS attributes given the higher loading at 
the Achilles tendon [4, 11, 74].

Conclusion
The presence of AT had limited effects on peak GRF 
and MS number, composition and temporal profiles 
between the symptomatic and asymptomatic LL for 
level treadmill walking at natural and fast speeds. 
Peripheral (i.e., changes in the asymptomatic tendon) 
or central adaptations (i.e., corticospinal neuroplastic 
changes) related to chronic unilateral AT may explain 
the preserved quasi-symmetric LL motor control dur-
ing natural and fast walking among adults with chronic 
unilateral AT. Increasing LL muscular demand further 

(e.g., running, jumping) may have altered the ability 
of adults with chronic AT to modulate excitatory and 
inhibitory control of their LL muscles. The paradigm 
shift in current tendon-focused rehabilitation strate-
gies deserves continued attention to best address corti-
cospinal neuroplasticity adaptations.
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