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ABSTRACT

Intrinsically disordered proteins have long stretches
of their polypeptide chain, which do not adopt a
single native structure composed of stable second-
ary and tertiary structure in the absence of binding
partners. The prediction of intrinsically disordered
regions in proteins from sequence is increasingly
becoming of interest, as the presence of many such
regions in the complete genome sequences are dis-
coveredand important functional rolesareassociated
with them. We have developed a machine learning
approach based on two support vector machines
(SVM) to discriminate disordered regions from
sequence. The SVM are trained and benchmarked
on two sets, representing long and short disordered
regions. A preliminary version of Spritz was shown to
perform consistently well at the recent biannual
CASP-6 experiment [Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP),
2004]. The fully developed Spritz method is freely
available as a web server at http://distill.ucd.ie/
spritz/ and http://protein.cribi.unipd.it/spritz/.

INTRODUCTION

Over the last couple of years there has been growing experi-
mental and theoretical interest into what has come to be known
as intrinsic disorder in proteins (1–11). Some proteins appear
to have long stretches of their polypeptide chain which do not
adopt a single native structure. These disordered fragments
instead appear to exist in a state that is unstructured but dif-
ferent from unfolded proteins. Frequently such disordered
fragments interact with other proteins and can become struc-
tured under certain conditions, such as ligand binding or

phosphorylation. Recent studies have determined the func-
tional classes of signal transduction and transcription to be
overrepresented among disordered proteins (12,13). Perhaps
linked to this functional bias is a higher percentage of dis-
ordered regions in Eukaryotes compared to Prokaryotes and
Archea, since the former require a more sophisticated control
of communication (12,13). From a structural point of view,
disordered regions frequently do not appear on the electron
density map in X-ray crystallographic studies and are highly
flexible according to NMR data. While disorder is not overly
represented in the PDB for the above reasons, long ‘loopy’
regions have also been observed in some structures (13).
Predicting the location of such unstructured regions is
therefore important in protein structure prediction, as these
disordered fragments cannot and should not be predicted.
This has prompted the inclusion of a disorder prediction
session in the last Critical Assessment of techniques for pro-
tein Structure Prediction (CASP) experiments (14), starting
with CASP-5 in 2002.

Perhaps due to the inclusion in CASP, there has been
recently increased interest in predicting disorder and associ-
ated features from sequence (12,15–25). The most prominent
feature of many, in particular long, disordered sequences is
low sequence complexity. This has been used for a long time
to filter sequence database searches with the SEG filter (26).
Long disordered regions show a high net charge and have few
hydrophobic residues (1,2). A similar trend has also recently
been observed for short disordered sequence patterns (21).
This sequence bias has been used to develop machine learning
based predictors in analogy to secondary structure prediction.
A training set of long and/or short disordered regions is used to
train a neural net or support vector machine to discriminate
disordered from ordered sequence fragments. The results are
quite encouraging, as disorder appears to be easier to predict
than secondary structure (27). Long disordered regions in par-
ticular are consistently predicted by most methods. The per-
formance on short disordered regions is subject to higher
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fluctuations. Overprediction is still an issue with most meth-
ods, i.e. more residues are predicted to be disordered than is
really the case. However, at least some of these residues cor-
respond to the more flexible parts of the protein structure,
pointing at an intuitive correlation between disorder and flex-
ibility. In analogy to secondary structure prediction (28–30),
recently some of the best performing disorder predictors have
started to use a combination of predictors. Probably because
short and long disordered regions may be the result of different
processes, and both may be further classified into different
‘flavours’ (22), approaches relying on multiple specialized
predictors have led to improved performances. In this paper
we present our novel server for the prediction of intrinsically
disordered region in proteins, based on two separate support
vector machines (SVM), one specialized to recognize long
disordered regions, one short disordered regions. The server,
called Spritz, can be accessed from http://distill.ucd.ie/spritz/
and http://protein.cribi.unipd.it/spritz/.

PROGRAM DESCRIPTION

Overview

The server Spritz is implemented using two specialized binary
classifiers, one for short regions of disorder and the other for
long disordered fragments. The purpose of doing so is to
develop different, disjoint expertize by taking advantage of
the different class distributions in the two cases. These clas-
sifiers are derived from independent datasets as discussed in
the following.

LD dataset

We first assemble a subset of completely disordered
sequences, each with over 45 disordered residues, from
DISPROT release 1.2 (31) by removing sequences containing
errors of annotations and then using the most up to date GI
accession numbers. The final set is completed by incorporating
an equal sized subset of chains classified as having no dis-
ordered fragments and derived from the PDBselect25, March
2002 release. The filtered and balanced set contains 293
sequences corresponding to 34 159 residues, 17 001 (49.7%)
of which are classified as belonging to long regions of
disorder.

SD dataset

A collection of short disordered sequence fragments is com-
piled from the November 2004 release of the PDB (32). We
filter out proteins that are not solved by X-ray diffraction, are
less than 30 AA and have resolution worse than 2.5 s. In order
to obtain non overlapping entries with the LD set, we finally
select those chains having no more than 20 disordered amino
acids and sharing at most 25% sequence similarity. The final
set contains 1017 sequences corresponding to 278 600 resi-
dues, 8824 (3.2%) of which are classified as belonging to short
regions of disorder. There is strong unbalance towards the
ordered class, reflecting the PDB distribution.

Specialized SVM classifiers

The LD and SD datasets are used independently to derive two
binary classifiers. These classifiers are both implemented with

Figure 1. The Spritz web server interface.
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probabilistic soft-margin SVM or C-SVMs (33,34) mounted
with a Gaussian kernel. Note that differently from (12), we use
a non linear kernel which is less biased (i.e. more expressive)
than the linear one but also more prone to overfitting.
We tackle the overfitting problem by running model selection
on independent validation data (35). An additional problem
is represented by the strong unbalance of class distribution
in the SD set. To mitigate this problem, we train SVMs
using asymmetric costs, i.e. a larger penalty for disorder
misclassifications. This penalty is equal to the ratio of the
number of negative (i.e. ordered) to positive examples in
the training set.

Both classifiers use as inputs residue attributes extracted
from a window of k residues. For each of the k residues,

20 amino acid frequencies are input into the SVM, computed
from multiple alignments obtained from three runs of PSI-
Blast (36) against the non-redundant NCBI sequence database
redundancy reduced at 90%. For each amino acid in the
window, we consider also secondary structure information
predicted by the Porter server (37) in the form of three prob-
ability values. In our tests secondary structure information
leads to gains of roughly 3% in two-state classification accur-
acy. After initial bootstrapping, all the experiments and the
final stage (the server) are implemented using a window of size
five (respectively three) for the LD (respectively SD) set
predictor.

SERVER DESCRIPTION

The web server has two interfaces, one for single and one for
multiple queries (see also Figure 1). The former takes as input
a bare protein sequence while the latter accepts input in
FASTA format with multiple entries for batch querying. Sub-
missions of up to 32 768 characters are accepted. The user has
the option to adjust the classifier output according to the estim-
ated false positive rate (FPR). The fraction of disordered
amino acids that are expected to be recovered can be estimated
from the FPR and the ROC curve provided in the help page.
The user can select either predictor from the interface and may
provide an FPR (default 0.05).

The server outputs the following sequences: (i) the predic-
tion of secondary structure in three classes (C ¼ coil; E ¼
strand; H ¼ helix), obtained using Porter (37); (ii) the predic-
tion of protein disorder in two classes (O ¼ ordered; D ¼
disordered). The results in plain ASCII text format are sent
by email.

Figure 2. ROC curve of both the long disorder (SVM LD) and the short disorder (SVM SD) experts as computed from the CASP-6 targets.

Table 1. Results of SVM trained on SD and LD dataset

C AUC Q2 (5% FPR)

SD
5-fold CV 0.44 0.82 93.2
CASP-6 0.44 0.79* 91.5
LD 0.14 0.6 53.9

LD
5-fold CV 0.59 0.85 72.2
CASP-6 0.35 0.85 91.5
SD 0.21 0.8 92.6

CaspIta
CASP-6 0.41 0.73 93.2

VSL-1
CASP-6 0.32 0.88 82.4

*An indicates a probable underestimation of the AUC due to insufficient data
in subintervals of [0,1]. The official results for two top scoring CASP-6 groups
are shown for comparison.
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DISCUSSION

To assess the performance of our method we run a 5-fold cross
validation (5-fold CV) procedure with both predictors. CV
performance for both short and long disorder experts is
given in Table 1 together with an independent assessment
of both final predictors (i.e. trained on the whole respective
dataset) on the set represented by the DR category targets of
the most recent CASP-6 competition (38). We report Mat-
thews correlation coefficient (C), the area under the ROC
curve (AUC) and the two state (ordered/disordered) classifica-
tion accuracy Q2 for a false hit rate set to 5%. To show
that these results are competitive with state-of-the-art meth-
ods, Table 1 also reports the performance of two top ranking
CASP-6 methods. VSL-1 (group id 193) (39) and a prelimin-
ary version of Spritz used in CASP-6, participating as group
CaspIta (group id 096). We also report the performances of the
short disorder expert on the LD set, and of the long disorder
expert on the SD set. In both cases the specialized predictor
performs significantly better on its own class of disorder,
justifying the choice of distinct experts.

Figure 2 shows the ROC curve of both the long disorder
(SVM LD) and the short disorder (SVM SD) experts as comp-
uted from the CASP-6 targets. This plot is very similar to what
we obtain on the 5-folds CV experiments and suggests a
threshold switch between the experts, since it shows the
long disorder expert consistently outperforming the alternative
above 5% FPR. Nonetheless, the choice of the expert is left to
the user, to increase the flexibility of the method. To help the
user’s choice, in the web help page we provide the expected
fraction of disordered residues recovered for a given FPR, for
both experts.
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