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Background: Pigs/bovines share with humans some of the antigens present on cardiac valves. Two such antigens
are: the major xenogenic Ag, “Gal” present in all pig/bovine very close to human B-antigen of ABO-blood-group
system; theminorAg, pig histo-blood-groupAH-antigen identical to humanAH-antigen and present by some an-
imals. We hypothesize that these antigensmaymodify the immunogenicity of the bioprosthesis and also its lon-
gevity. ABO distribution may vary between patients with low (b6 years) and high (≥15 years) bioprostheses
longevity.
Methods: Single-centre registry study (Paris, France) including all degenerative porcine bioprostheses (mostly
Carpentier-Edwards 2nd/3rd generation heart valves) explanted between 1985 and 1998 and some bovine
bioprostheses. For period 1998–2014, all porcine bioprostheses with longevity ≥13 years (follow-up
≥29 years). Important predictive factors for bioprosthesis longevity: number, site of implantation, age were col-
lected. Blood group and other variableswere entered into an ordinal logistic regression analysismodel predicting
valve longevity, categorized as low (b6 years), medium (6–14.9 years), and high (≥15 years).
Findings: Longevity and ABO-blood groupwere obtained for 483 explanted porcine bioprostheses. Mean longev-
itywas 10.2±3.9 years [0–28] and significantly higher for A-patients than others (P=0.009). Usingmultivariate
analysis, group A was a strong predictive factor of longevity (OR 2.09; P b 0.001). For the 64 explanted bovine
bioprosthesis with low/medium longevity, the association, with A-group was even more significant.
Interpretation: Patients of A-group but not B have a higher longevity of their bioprostheses. Future graft-host phe-
notyping and matching may give rise to a new generation of long-lasting bioprosthesis for implantation in
humans, especially for the younger population.
Fund: None.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Research in context
Evidence before this study

Cardiac valvular bioprosthesis are made from xenogenic tissue bo-
vine or porcine chemically reticulated by glutaraldehyde. Persistence
of immunogenicity and its real impact on bioprosthesis longevity after
pitals, Department of Cardiac
erland.
sler).

pen access article under the CC BY-N
implantation is still under discussion. The only clinical demonstration
of this putative effect is the nonspecific accelerated failure of the
bioprosthesis in children. Recently, it was shown that the major carbo-
hydrate xenoantigen alphaGal that is very structurally similar to
Human B antigenwas present on commercial bioprosthesis and elicited
an early specific immune response after implantation. Another minor
xenoantigen also carbohydrate has been shown to be also present in
some pig or bovine tissue: the human A antigen. Thus patients may
have a different reactivity against bioprosthesis based on their ABO
blood group that may influence bioprosthesis longevity.
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Added value of this study

We performed a single centre propective study evaluating a very
large number of porcine bioprosthesis dysfunctional and needing surgi-
cal replacement for intrinsic structural degeneration for a period of time
that exceed bioprosthesis classical longevity and evaluate classical risk
factor for bioprosthesis degeneration in addition to ABO blood group.
As anticipated, the distribution of ABO blood group changed between
early failing bioprosthesis b 6 year and late failing ≥ 15 year
bioprosthesis. Using multivariate analysis including all the classical
risk factor of longevity, the group A was the most predictive factor and
not B. This effect was also present for the need generation of bovine
bioprosthesis.

Implications of all the available evidence

The longevity of bioprosthesis depends of patient ABO blood group
with higher longevity in groupA patient. Immunogencity against carbo-
hydrates remaining on the bioprosthesis after reticulation maybe in-
volve in this effect. Better adequation between patient ABO blood
group and bioprosthesis carbohydrates especially regarding A antigen
may give rise to bioprosthesis with lower immunogenicity and thus
longevity.

1. Introduction

Approximately 200,000 patients worldwide undergo aortic valve re-
placement annually and 1/5 are aged between 40 and 60 years old [1].
The current trend is to use bioprostheses [2] to avoid anticoagulation
[1]. The main disadvantage of bioprostheses is their limited durability,
which is problematic in young patients [3]. Bioprosthesis failure is
mostly due to calcification [3], possibly caused by exaggerated immune
response [4] which has not been fully characterized yet [3] [5,6].

According to AHAGuidelines 2008, bioprostheses are recommended
for: patients with a relatively short life expectancy; patients who are al-
ready 65 years old ormore; implantation in the aortic rather thanmitral
position (higher success rate); patientswithout problems of atrialfibril-
lation; patients with no need for anticoagulation [7,8]. However, biolog-
ical factors such as immunological reactivity are not taken into account.

The possible influence of immune reactivity on bioprosthesis lon-
gevity is not well established. Humans and pigs share several carbohy-
drate antigens that are expressed in the bioprostheses even after
reticulation, which can trigger an immune response in the recipient.
One of these antigens is the “α-Gal” [9], the major antigen of xenogenic
rejection, which is expressed in the extracellularmatrix [10,11], is pres-
ent in all non-primate mammals such as pigs or bovines, and is still
present after chemical reticulation [12]. The α-Gal are present in the
commercially available bioprostheses [13] [14]. Theα-Gal titer antibod-
ies increase after bioprosthesis implantation [14] [15]. The α-Gal is
structurally almost identical to the human group B-antigen [16,17]
and, although the subject of some discussion [18–20], B-type patients
may have a better tolerance towards this and related antigens [21]
[19]. Bioprostheses obtained from Gal-Knockout pigs are possibly less
immunogenic in New World primates [22].

Another possible immunogenic carbohydrate antigen is the Pig A-
antigen of the pig histo-blood group O system (i.e. locus EAO on pig
chromosome 6) corresponding to the orthologous site for the A trans-
ferase gene (OMIA 006089-9823) [23,24] and controlling A antigen ex-
pression in the tissue. Unlike theα-Gal, which is expressed by all pigs in
all their tissues, expression of the A-antigen is restricted to A-type pigs
[25–28]. The porcine A-antigen [27,29] [24,30] [31], is identical to the
human A-antigen of the ABO blood group [32] and is synthesized by
the same enzyme (A-transferase) [23]. Unlike humans, pigs can also
add the A-terminal antigen to other substances, but not necessarily
the H-substance, and thus A+ pigs may have the A + H+ or A + H–
phenotypes [25,28]. Furthermore, pig and human H-antigens are syn-
thesizedwith a shared enzyme (Fucozyl transferase (FUT1) [29,31] [23].

The AH histo-blood group system also exists in most mammals and
it is from bovine tissue [23] that most new generations of bioprotheses
are made. The fucozyl transferase FUT1 is a common gene in mammals
[31], including bovine (i.e. Bos Taurus) heart (FUT-1/NM_177499)
[31,33], and is very similar to that observed in humans [31]. Bovine A-
transferase has also been isolated and cloned (chr.11/BC126634)
[27,34], and it too has a high level of homology to that found in humans.

In this study, we hypothesize that human ABO blood groups and pig
AH systems share common antigens, A (human)/A (pig) and B
(human)/α-Gal (pig), that might influence patients' individual immu-
nological reactivity to bioprosthesis implantation, depending on the
match between patient ABO phenotype and the AH phenotype. This in
turn may influence the longevity of the bioprosthesis. We also sought
to determine whether there was any possible effect from the presence
of blood group A, given the early degeneration observed in new gener-
ations of bovine pericardial bioprosthesis.

2. Methods

2.1. Ethics statement

The ethics committee was not implicated due to the retrospective
nature of the study. All patients gave consent for the use of their data
for research at the University Hospital.

2.2. Study population

Single-centre study of patients requiring reoperation for degenera-
tive bioprostheses at Broussais-Hospital/Georges Pompidou European
Hospital in Paris, (Chairman Professor Alain Carpentier). Professor A.
Carpentier has developed the concept of valvular heart bioprothesis
[35] and several generations of porcine and bovine bioprostheses, and
a large number of cases, have undergone initial evaluation studies at
this centre [35,36].

Patients' characteristics before 1985 (1975–1980 [37–39] and
1980–1985 [40,41]) and the number of implanted bioprostheses in mi-
tral or aortic position in the Broussais Hospital have already been re-
ported in the literature [42]. Due to a mean longevity of heart valve
bioprosthesis of 10 years, the period 1985–1997 corresponded to CE-
2nd/3rd generations that were mostly implanted in the institution be-
tween 1975 and 1985. Unlike the 2nd-CE generation made from one
pig, the 3rd-CE was manufactured using the cusps of two pigs in order
to improve the hemodynamics [37] [42] [43],. New generations of CE-
bioprostheses made of xenogenic bovine pericardium [44,45], have
been implanted since 1980 [42] [40], and have almost totally replaced
porcine bioprotheses since 1985. Chemical fixation by glutaraldehyde
is still the main reticulating reagent. Patients' clinical conditions was
not taken into account for the choice between a porcine or bovine
bioprosthesis and after 1985 almost all patients did receive the new
generation of bovine bioprostheses.

All patients reoperated for degenerative porcine bioprosthesis dur-
ing the 13-year period from January 1985 to December1997 were eligi-
ble for the study and mainly comprised patients from our institution.

In addition, we included all patients reoperated on from January
1998 to January 2014who had a porcine bioprosthesis with exceptional
longevity (≥13 years). Since most porcine bioprostheses were im-
planted before 1985, we have a total follow-up period of 29 years for
most of them.

Criteria for inclusion: degenerative porcine bioprosthesis that
needs replacement during this period because of bioprosthetic valve
dysfunction due to intrinsic structural valve deterioration (i.e.
bioprosthesis degeneration (SVD)). Excluded are bioprosthetic re-
placements for another causes of valvular dysfunction such as non-
structural valve deterioration (i.e. any abnormality not intrinsic to
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the valve itself such as para-prosthetic regurgitation, malposition)
[46], endocarditis or thrombosis. The cause of valve replacement and
the type of intrinsic structural valve anomalies were prospectively
specified by the surgeon at the time of bioprosthesis replacement,
with observations on the presence of tears, fibrosis, calcification or
pannus. A standardized classification of bioprosthesis valve degenera-
tion in the aortic position has recently been proposed that excludes
bioprosthesis thrombosis [46–48]. In a recent prospective study evalu-
ating for 25 years Carpentier-Edwards bovine Bioprosthesis in aortic
position, the causes for valvular replacement were: SVD (73%), endo-
carditis (15%), nonstructural dysfunction (11%), thrombosis (excep-
tional) [49].

Additional recent factors leading to accelerated bioprosthetic valve
dysfunction, such as patient prosthesis mismatch or the small size of
some prostheses, were not specifically investigated.

In the case of multiple bioprosthesis implants, only degenerative
bioprostheses were considered.

Some cases of early failure or intermediate longevity in the new gen-
eration of bovine bioprostheses were explanted during this period
(1985–1998) and analysed separately.
2.3. Study variables

The main outcome variable was the interval between valve implan-
tation and explantation (longevity). The main risk factor of interest
was the patient's blood type (ABO and rhesus). Other known classical
risk factors for structural degeneneration of bioprostheses, and for
which data were prospectively collected at replacement, were as fol-
lows: patient's age at the moment of implantation, sex, valve location
and number of bioprostheses implanted initially. Some additional risk
factors in bioprosthesis degeneration, especially in the aortic position,
have also been reported recently and include factors that increase he-
modynamic stress (larger body surface area, small prosthesis size,
prosthesis-patient mismatch, left ventricle hypertrophy) and cardio-
vascular risk factors such as smoking, hypertension, metabolic syn-
drome, diabetes melitus, dyslipidemia [47,48]. Chronic dialyses and
hyperparathyroidism have also been shown to be associated with
early structural valve degeneration, although patients presenting
these characteristics are rare in this study. None of these factors have
been shown to be related to the ABO blood group of patients and
could not therefore explain the different levels of bioprosthesis longev-
ity between the different ABO blood groups.
2.4. Data collection

A prospective database for bioprosthetic heart valves has been de-
veloped since 1985. Thus data were collected prospectively and valve
information was recorded in the operating room from 1985 to 1998.
Information collected on other variables included: bioprosthetic
valve degeneration and other factors resulting in bioprosthesis re-
placement (e.g. thrombosis, endocarditis, non-dysfunction valve);
date of implantation; longevity; site of implantation; number, origin
(bovine or porcine) and type of bioprosthesis. The patient's blood
group information was obtained from the blood bank (2/3 of cases)
and patients' records (1/3 of cases). If the information was not avail-
able in the blood bank, patients' medical records were consulted for
those patients with the highest (≥13 years) and lowest longevity
(≤7 years).

After 1998, all porcine bioprostheses with a longevity of ≥13 years
were systematically sent to the laboratory for further analysis. This en-
abled us to go back to a patient's name and chart.

Since 1985 the new generations of bioprostheses made from bovine
tissue have replaced porcine prostheses, so that for the year 2014 we
have at least 29 years of follow-up for porcine bioprostheses.
2.5. Statistical analysis

Weobtained frequency distributions for all study variables, for all re-
placed valves, and for all patients. For the main outcome variable, i.e.
valve longevity, discrete categories were defined: the approximate
lower and upper deciles were isolated (early and late failure), and the
remainder was split into 3 classes resulting in the following 5 longevity
categories (years): 0–5.9, 6–8.9, 9–11.9, 12–14.9 and 15–28. We cross-
tabulated the 5-levels of longevity variable with ABO and rhesus blood
types. This analysis suggested that the threemiddle categorieswere ho-
mogenous, so for simplicity we continued the analysis with a 3-level
longevity variable (0–5.9, 6–14.9, 15–28). We cross-tabulated this vari-
able with blood types and other valve and patient characteristics. We
did not choose the class of longevity initially, but these classes of longev-
ity appear to be clinically relevant.

Since we were not convinced that risk factors for low longevity
(b6 years) would be similar (but opposite in their effect) to risk factors
for high longevity (≥15 years), we conducted separate analyses compar-
ing short versus medium longevity, and long versus medium longevity.
Each of these analyses excluded the group at the opposite extreme of
longevity. These analyses were conducted using logistic regression.
Blood group and known predictors of longevity were included as pre-
dictors in the models.

Because these models turned out to be similar, especially for blood
type, we obtained an ordinal logistic regression model, where the de-
pendent variable was longevity based on 3 categories. The odds ratios
obtained from this model corresponded to the odds ratio of being in a
higher outcome category, averaged over the 2 transitions (medium vs
low and high vs medium longevity).

The analyses were conducted using the SPSS-version18.

3. Results

3.1. Patient and valve characteristics

Between 1985 and 1998, 828 porcine bioprostheses were
explanted from 641 patients. From 1998 to 2014, 32 additional por-
cine bioprostheses with longevity ≥13 years were removed. The lon-
gevity and blood groups were known in 426 patients (483 porcine
bioprostheses) and constitute the study cohort. For these patients
we do have all the variables.

Types of explanted porcine bioprostheses were as follows: CE-2nd
49.4%, 3rd 35.4%, 1rst 1.8%, Hancock-II™ 7.5%, Liotta™ 3.2%, others
2.7%. During the period 1987–1998, we also explanted 66 additional
new generations of bovine bioprostheses (CE bovine pericardium) for
degenerative reason, the majority of which (n = 64) exhibited short
or intermediate longevities of b15 years.

Demographic data and porcine valve characteristics are shown in
Table 1A. 22.2% of patients had more than one porcine bioprosthesis.
The distributions according to age, sex, and blood group were similar
for valves and patients. Mean age at implantation was 40.9 ±
14.0 years, the time elapsed before reoperation for degenerative porcine
bioprosthesis was 10.2 years ± 3.9 [0–28] and the quartiles were 8/10/
12 years. Most valves lasted between 6 and 15 years. About 10.6% failed
after b6 years and another 12.2% failed after ≥15 years. In our group of
reoperations for failing bioprosthesis, a significant number of young pa-
tients (36.6%) were ≤ 35 years old at implantation and only 10.8% were
≥ 60 years old. The prevalence of ABO in this small cohort was: (A:
38.2%, 95% CI +33.3 to +42.8; B: 14.2%, 95% CI +10.9 to +17.5; AB:
4.9%, 95% CI, +2.9 to +6.9; O: 42.7%, 95% CI +38.0 to 47.4) and Rhesus
(−): 10.8%, 95% CI +7.9 to 13.7.

3.2. Porcine valve longevity and blood type

Themean bioprosthetic valve longevity varied significantly between
blood types and was highest for patients in group A (Table 1B). Mean



Table 1A
Characteristics of 483 explanted bioprothesis in 426 patientsTable 1.

Characteristic Bioprosthesis n (%) Patients n (%)

n 483 426
Male sex, n (%) 257 (53.5) 232 (54.4)
Age at first implantation, y, mean ± SD 40.9 ± 14.0 40.9 ± 14.0

[7–29] n (%) 128 (26.5) 107 (25.1)
[30–39] 100 (20.7) 89 (20.9)
[40–49] 106 (21.9) 93 (21.8)
[50–59] 97 (20.1) 88 (20.7)
[60–82] 52 (10.8) 49 (11.5)

Age at replacement, y, mean ± SD 51.3 ± 14.4 51.2 ± 14.3
[18–39] n (%) 116 (24.0) 95 (22.3)
[40–49] 112 (23.2) 98 (23.0)
[50–59] 94 (19.4) 84 (19.7)
[60–69] 113 (23.4) 105 (24.6)
[70–87] 48 (10.0) 44 (10.3)

Valve replacement
Mitral n (%) 281 (58.2)
Aortic 190 (39.3)
Tricuspid 11 (2.3)
Pulmonary 1 (0.2)

Number of valve replaced
n = 1 n (%) 375 (77.8)
n = 2 92 (19.1)
n = 3 15 (3.1)

Blood Type
A n (%) 173 (35.8) 164 (38.2)
B 75 (15.5) 61 (14.2)
AB 27 (5.6) 21 (4.9)
O 208 (43.1) 183 (42.7)

Rhesus
Positive n (%) 430 (89.2) 383 (89.5)

Bioprosth. Longevity, y, mean ± SD 10.2 ± 3.9
[0–5.9] n (%) 51 (10.6)
[6–8.9] 132 (27.3)
[9–11.9] 155 (32.1)
[12–14.9] 86 (17.8)
[15–28] 59 (12.2)
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longevity (years) was: for A group 10.7± 3.9, for B group 9.33± 4.3, for
AB group 9.5± 3.2, and for O group 9.9 ± 3.6 (P = 0.008). This differ-
ence in longevity is in the range of what we observed when we consid-
ered the difference in mean longevity between the aortic position 10.6
± 4.3 and the mitral position 10.0 ± 3.2 (P = 0.081), a difference that
is known to be clinically relevant.

The prevalence of blood typeAwas low among early failures (b20%),
higher, at around 30–40%, in the intermediate categories of valve lon-
gevity, and highest (N50%) for valves with longevity of 15 years or
more (Table 1B and Fig. 1). There was no strong association between
longevity and Rhesus positivity. Prevalence of ABO blood group in
Table 1B
Association between bioprosthesis longevity and patient ABO/Rhesus blood group.

Variable ABO Blood group P Value

A B AB O

Longevity, y mean ± SD 10.7 ± 3.9 9.93 ± 4.3 9.5 ± 3.2 9.9 ± 3.6 0.009
[0–5.9] n (%) 9 (17.6) 12 (23.5) 4 (7.8) 26 (51.0) 0.097
[6–8.9] 49 (37.1) 19 (14.4) 7 (5.3) 57 (43.2)
[9–11.9] 57 (36.8) 21 (13.5) 9 (5.8) 68 (43.9)
[12–14.9] 28 (32.6) 13 (15.1) 7 (8.1) 38 (44.2)
[15–28] 30 (50.8) 10 (16.9) 0 (0.0) 19 (32.2)

Variable Rhesus blood group P Value

Positive Negative

Longevity, y mean ± /SD 10.0 ± 3.8 11.0 ± 3.5 0.068
[0–5.9] n (%) 48 (94.1) 3 (5.9) 0.12
[6–8.9] 121 (91.7) 11 (8.3)
[9–11.9] 139 (89.1) 17 (10.9)
[12–14.9] 69 (81.2) 16 (18.8)
[15–28] 54 (91.5) 5 (8.5)
France or Caucasian populations is around 45% for Group A, 43% for
Group O, 9% for Group B, 3% for Group AB, and 15% for Rhesus negative
[50]. Thus the distribution for Group A matched the expected preva-
lence only for the intermediate longevity category, and was lower for
the early group and higher for the group with high longevity.

3.3. Characteristics associated with porcine valve longevity

Valve longevitywas not associatedwith the sex of patients (Table 2).
Older age at the time of implantation was associated with early failure,
but the oldest patients were likely to die before they needed a valve re-
placement. For the 377 patients aged b60 years, there was a significant
positive linear association between category of age at the time of im-
plantation and bioprosthesis longevity.

Blood group frequencies differed significantly according to the class
of longevity. The A-blood type was rare among early failures and more
common among late failures. The same trend was observed if we con-
sidered the presence of A-antigen. The B-antigen was not associated
with valve longevity. Single-valve replacement was associated with
high longevity. Aortic valves were somewhat more common among
late failures.

3.4. Predictors of short porcine longevity

Older age at implantation was a significant predictor of long-term
survival. A-blood group and single-valve replacement appeared to be
protective against short-term valve durability (i.e., more common in
the medium longevity group) but the site of implantation was not pre-
dictive (Table 3A). The B-group was more common both in the early
failure group (OR: 1.42; P = 0.064) and the higher longevity group
(OR: 1.62; P = 0.23), but these differences were not statistically signif-
icant. Themultivariatemodel confirmed these risk factors. Therewas no
evidence of confounding, in particular regarding blood type.

3.5. Predictors of high porcine longevity

Significant predictors of greater longevity were the aortic valve loca-
tion and single-valve replacement. A-blood type was also associated
with high longevity (Table 3B).

TheB-antigenwas also potentially associatedwith increased longev-
ity. Using a multivariate logistic regression model, the effect was pro-
nounced in aortic vs mitral position and single vs multiple
bioprosthesis and also for the A-blood group (vs others).

3.6. Ordinal regression model for porcine bioprostheses

This analysis combines the 2 previousmodels into one, but forces the
same effect for the transition from short to medium longevity and for
the transition from medium to high longevity (Table 3C). In this analy-
sis, older age at the time of implantation (OR: 3.05; P b 0.001), a single-
valve replacement (OR: 2.56; P=0.001), and A-blood type (vs. others)
(OR: 2.09; P b 0.001) were all significantly associated with higher valve
longevity but not the site of implantation (OR: 1.28; P = 0.31). The
model was unchanged when patients of 60 years or more were ex-
cluded from the analysis.

In a post-hoc analysis, we compared 2nd (n = 218) and 3rd gener-
ation (n=156) CE valves, which are derived from one and two pigs re-
spectively [2]. The prevalence of blood type A according to valve
longevity (0–5; 6–14.9; 15–28 years) was 16.7%, 31.6% and 55.6% for
the 2nd generation vs. 23.1%, 40.2% and 30.8% for the 3rd generation.
In the ordinal logistic regression, the association between blood type A
and longevity appeared to be stronger for CE 2nd (OR: 2.79; 95% CI,
1.15 to 6,77; P = 0.024) than for CE 3rd (OR: 1.45, 95% CI, 0.68 to 3.1;
P = 0.33).
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Table 2
Association between patient /valve characteristics and categories of bioprosthesis
longevity.

Characteristic Bioprosthesis longevity, y P Value

[0–5.9] [6–14.9] [15–28]

Sex, n (%) 0.60
Women 28 (12.4) 171 (75.6) 27 (12.0)
Men 24 (9.3) 200 (77.8) 33 (12.8)

Age at first implantation, n (%) 0.035
[7–29] 13 (10.1) 103 (80.5) 12 (9.4)
[30–39] 9 (8.9) 80 (79.2) 12 (11.9)
[40–49] 13 (11.9) 81 (73.4) 15 (14.7)
[50–59] 5 (5.4) 72 (77.4) 16 (17.2)
[60–82] 11 (21.1) 37 (71.1) 4 (7.8)

Age at first implantation, n (%) 0.003
[7–59] 39 (9.1) 336 (78.5) 53 (12.4)
[60–82] 12 (23.1) 37 (71.2) 3 (5.8)

Blood type, n (%) 0.008
A 9 (5.2) 134 (77.5) 30 (17.3)
B 12 (16.0) 53 (70.7) 10 (13.7)
AB 4 (14.8) 23 (85.2) 0 (0.0)
O 26 (12.5) 163 (78.4) 19 (9.1)

Antigen A, n (%) 0.008
Positive (A or AB) 13 (6.5) 157 (78.5) 30 (15.0)
Negative (B or O) 38 (13.4) 216 (76.3) 29 (10.2)

Antigen B, n (%) 0.14
Positive (B or AB) 16 (15.7) 76 (74.5) 10 (9.8)
Negative (A or O) 35 (9.2) 297 (78.0) 49 (12.9)

Rhesus, n (%) 0.73
Positive 48 (11.1) 329 (76.3) 54 (12.6)
Negative 3 (5.8) 44 (84.6) 5 (9.6)

Valve replaced,n(%) 0.46
Mitral 29 (10.3) 226 (80.4) 26 (9.3)
Aortic 22 (11.6) 138 (72.6) 30 (15.8)
Tricuspid or pulmonary 1 (8.3) 10 (83.4) 1 (8.3)

Number of valves replaced, n (%) 0.001
1 31 (8.2) 292 (77.6) 53 (14.2)
2 or 3 20 (18.7) 82 (76.6) 5 (4.7)
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3.7. Distribution of ABO blood group among early and intermediate failing
degenerative bovine or porcine bioprostheses

A new generation of bovine pericardium has been implanted at our
institution since 1980 but most of the implanted bovine bioprostheses
have been implanted since 1985 so that, for the period of observation,
we had only bovine bioprostheses explantedwith short or intermediate
longevity available for separate analysis. The results are shown in
Tables 4A and 4B. Of the eleven early failing degenerative bovine
bioprostheses, none of them was observed in a patient of the A group
(P=0.0005). The P valuewas evenmore significant than that observed
for the porcine valve (P = 0.011).
4. Discussion

In this study, we have demonstrated that the presence of the ABO
blood group in a patient may influence the outcome of an implanted
bioprosthesis. The effect of group A was independent of all other
known predictive factors.

We hypothesize that, on average, A-patientsmay have a better com-
patibility with bioprosthesis, and are therefore less likely to experience
early failure and thus more likely to experience bioprosthesis longevity
of N15 years.
4.1. Human ABO blood group and xenogenic tissue carbohydrate antigens

The human A antigen has been shown to be present in some pig car-
diac tissue [25,27,51] and also, less frequently, associated with H sub-
stances. As in the case of the human heart [32,52], and probably the
bovine heart, the pig A antigen has been shown to be expressed in the
same locations, such as: the endocardium and the endothelial cells of
myocardium and mesothelial cells and capillaries on the surface of the
cardiac epicardium [51]. The adherent cardiac pericardium is in conti-
nuity with, and has the same origin as, the free cardiac pericardium
[53]. The pericardium is widely used for manufacturing the new gener-
ation of bovine bioprostheses that are used for surgical implantation but



Table 3A
Association between short valve longevity (b6 years) and valve characteristics.

Characteristic Univariate Multivariate

OR [95% CI] P Value OR [95% CI] P Value

Women (versus men) 1.32 [0.74–2.38] 0.35 1.20 [0.63–2.26] 0.58
Older age at first operation
(≥60 y versus younger)

2.79 [1.35–5.80] 0.006 3.45 [1.57–7.57] 0.002

Blood type 0.064 –
A 0.42 [0.19–0.93]
B 1.42 [0.67–3.01]
AB 1.09 [0.35–3.41]
O 1.0 (reference)

Antigen A 0.47 [0.24–0.91] 0.026 –
Blood type A (versus other) 0.38 [0.18–0.81] 0.012 0.44 [0.20–0.95] 0.037
Rhesus positive (versus negative) 2.15 [0.64–7.18] 0.21 2.70 [0.79–9.23] 0.11
Aortic valve (versus other) 1.30 [0.72–2.35] 0.38 1.43 [0.75–2.72] 0.28
Single valve replaced 0.44 [0.24–0.81] 0.008 0.45 [0.23–0.93] 0.016
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also for all the new generation of porcine and bovine pericardial
bioprostheses used in percutaneous implantation (i.e. TAVI) [54].

The fucozyl transferase FUT1 involved in H core synthesis is a wide-
spread gene in mammals with high homomlogy [31]. H substance
[25,55] and FUT1 [27] are present in some pig cardiac tissue. Pig FUT1
is located on chromosome 6 gene U70883 [23,31].

A transferase expression in pig tissue is regulated by the genetic
locus EAO on pig chromosome 6 corresponding to the orthologous site
for the A transferase gene (OMIA 006089-9823) [23,24]. There are
four genotypes for the “pig O histo-group system” coding for A histo
group antigenicity: AA, AO, OO, and negative [24,26–28]. This locus cod-
ing is different from that for the A transferase gene coding for the A an-
tigen expression on pig erythrocyte (i.e. locus EAA) and located on
another chromosome (i.e. pig chr.1) [29,56].

The genetic determination of allele A frequency and genotype for the
histo groupwas determined recently in a large series in commercial pigs
of different strains as well as mini-pigs. In commercial pigs used for
bioprotheses, the A allele frequency varies from 0.15 to 0.67 [57]. Cur-
rently, the bioprosthetic tissue phenotype is not checked during fabrica-
tion. The A-allele frequency depends on the breed and varies from 0.15
to 0.67 [26–29,58] [57]. According to Oriol et al., [51%] of pigs are A+
and [12%] A + H+ [25]. For A-patients, this advantage is only present
if by chance a corresponding A-phenotype is present on the implanted
bioprosthesis.

Multivariate analysis showed that theABO groupwas not only a new
additional risk factor, but also one of themost predictive. Moreover, we
may also underestimate its positive influence for several reasons. First,
we did not have information about the AH phenotype of the pig. Since
the prevalence of A-allele in pig varies from 0.15 to 0.67 [29,58] [57],
only a fraction of A-patients could randomly receive the corresponding
A-bioprosthesis. This probability is further decreased by the fact that
Table 3B
Associations between long valve longevity (≥15 years) and valve characteristics.

Characteristic Univariate

OR [95% CI]

Women (versus men) 0.93 [0.53–1.61]
Younger age at first operation (b60 y versus older) 1.96 [0.58–6.67]
Blood type

A 1.92 [1.04–3.56]
B 1.62 [0.71–3.70]
AB (not estimated)*
O 1.0 (reference)

Antigen A 1.42 [0.82–2.47]
Blood type A (versus other) 1.84 [1.06–3.21]
Rhesus positive (versus negative) 1.45 [0.55–3.82]
Aortic valve (versus other) 1.91 [1.08–3.38]
Single valve replaced 2.99 [1.16–7.72]
only a fraction of A-pigs express the A-antigen in the heart
[28,32,51,55,59].

This reasoning if supported by our observation that for
bioprostheses made from two pigs' valves, patient blood type A was
less strongly associated with valve longevity. If the prevalence of A+
is 0.4 among pigs, the probability that two randomly selected pigs are
A+ is only 0.16, and the likelihood of a match between an A+ valve
and an A+ patient is similarly reduced.

In some bovines, as in some pigs, the human A/H-type2 antigen has
been shown to be present in saliva, gut epithelial cells, the urinary tract
and respiratory tract cells [60,61], and has a similar role to that ofα-Gal
[62] in the general control of virus infection, amechanism that has been
well preserved throughout the evolution of the species.

Several of the main carbohydrate antigens have been identified as
being themajor antigens of xenograft tissue recognition. These antigens
areα-Gal,N-glycolylneuramic acid (Neu5Gc), and the Forshsmannanti-
gen [20,63]. All these antigens, andespeciallyα-Gal, have structural sim-
ilarities with the B antigen but not the A antigen [64]. Theα-Gal epitope
is structurally related to thehisto-bloodgroupB type2 sincebothsharea
terminal galactose in 1,3 linkage and the type 2 backbone structure
(Galα4GlcNAC). They only structural difference is the fucose residue of
the B antigen, which allows some reagents, such as certain anti-B mAbs
or GS1-isolectin that recognise α-Gal, to cross-react. This cross-
reactivity does not exist between A and B antigens mAbs. One of the
main factors in xenograft rejection is the binding of antibodies on xeno-
graft antigen and the activation of the complement by IgG mAbs or the
destruction of cells by NK cells [65]. Although some cross reactivity
may exist betweenα-Gal and B antigen, the reactivity toα-Gal is gener-
ally the same for the different ABO blood groups inmost studies [18,20].

Recently, several approaches have been developed to reduce the
immuno-reactivity of bioprostheses by controlling the expression of
Multivariate

P Value OR [95% CI] P Value

0.79 1.36 [0.61–2.60] 0.35
0.28 1.79 (0.52–6.25] 0.36
0.23

–

0.21 –
0.030 1.81 [1.00–3.28] 0.049
0.45 1.41 [0.48–4.20] 0.53
0.026 2.20 [1.15–4.19] 0.017
0.025 2.62 [0.98–6.96] 0.054



Table 3C
Associations between long valve longevity in 3 categories (b6 years, [6–14.9], ≥15 years) and valve characteristics

Characteristic Univariate Multivariate

OR [95% CI] P Value OR [95% CI] P Value

Women (versus men) 0.82 [0.54–1.26] 0.37 1.02 [0.64–1.61] 0.95
Younger age at first operation (b60 y versus older) 2.82 [1.45–5.50] b0.001 3.05 [1.52–6.09] b0.001
Blood type A (versus other) 2.29 [1.45–3.62] b0.001 2.09 [1.29–3.38] b0.001
Rhesus positive (versus negative) 0.89 [0.45–1.56] 0.74 0.75 [0.37–1.52] 0.42
Aortic valve (versus other) 1.28 [0.82–1.99] 0.27 1.28 [0.80–2.05] 0.31
Single valve replaced 2.76 [1.63–4.67] b0.001 2.56 [1.48–4.44] 0.001
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carbohydrate antigens, especially α-Gal. Two approaches have been
used to reduce the expression ofα-Gal. The first uses a specific enzyme,
alpha Galatoctosidase, but this treatment has a negative impact on the
physical characteristics of the pericardium [66]. In the second approach,
valves can be prepared from genetically-modified pigs (α-galactozyl-
transferase gene–knockout-pigs (GTKO)) that do not express Gal
[67–69]. Tissues from GTKO-pigs are still immunogenic [70] [71] with
increased reactivity against minor antigens derived from the same
Gal-αframework [70] [17] [71,72], including the N-glycolylneuramic
acid (Neu5Gc) [70]. Interestingly, the reactions against unrelated
minor antigens such as A/H are also increased in GTKO-pigs [55,73].

As forα-Gal, the binding and functionality of human serumof differ-
ent ABO blood groups has been evaluated recently against Neu5Gc, but
no difference has been found between ABO blood group for the type of
antibodies, the amount of binding, and functionality [19]. There is also
no correlation between the reactivity againstα-Gal or Neu5Gc [19]. Fur-
thermore it has recently been shown that reactivity with regard to anti-
body binding could be further decreased by targeting glycan products of
β4GalNT2 in the pericardium [74].

The immunogenicity of the bovine pericardium has been evaluated
by affinity chromatography and the immunoproteomic approach to de-
termine the reactivity of rat serum before and after subcutaneous im-
plantation of pericardial patches [75]. 133 antigens have been
identified, many of whichwere associatedwith the extracellular matrix
[75]. This may limit the possibility of reducing tissue antigenicity just by
cell removal [76,77].

The ABO system in other contexts, such as allotransplantation, can
be defined by the presence of alloantibodies. In our study, A-patients
with circulating anti-B antibodies or immune cells (potentially reactive
with αGal) had a better compatibility with bioprosthesis, while B-
patients with anti-A antibodies or immune cells had a lower valvular
bioprosthesis survival rate. Cross reactivity of alloantibodies or immune
cells, because of shared carbohydrate antigens between humans and an-
imals, could explain part of the valve survival difference observed in this
study. Moreover, apparent autoantibodies can be found in healthy do-
nors [78]. There is some clinical evidence for a higher antigenicity of
the A-antigen compared with the B-antigen in human diseases. Indeed,
red blood cell transfusion requirements after major ABO-mismatched
hematopoietic progenitor cell transplantation (HPCT) differed depend-
ing on the donor ABO blood group. This suggests that the ABO blood
group antigens themselves are major determinants in the immunologi-
cal process [79]. Higher antigenicity of the A-antigen can also be ob-
served in ABO hemolytic disease of the newborn infants [80]. Thus,
the increased immunogenicity of A antigen, unlike B-type antigens, is
in line with these clinical observations.
Table 4A
Characteristics of explanted bovine bioprosthesis with longevity b 15 years.

n = 64 ABO Blood group P Value

Longevity, y Non A group, n (%) A group, n (%)

[0–5.9] 11 (27.5) 0 (0.0) 0.005
[6–14.9] 29 (72.5) 23 (100.0)
4.2. Limitations of the present study

The main limitation was that the tissue antigens borne by the
bioprosthesis were unknown, unlike the patient's blood group. There-
fore, we could not directly demonstrate that biocompatibility was asso-
ciated with long-term valve durability.

Another limitation was that we only had access to patients whose
bioprostheses failed, thus requiring replacement, and not to the full co-
hort of patients who initially received a bioprosthesis. For this reason,
we were not able to compute risks of failure or to construct Kaplan-
Meier time-to-failure curves.

This probably also explains why we observed that older age at the
time of implantation was associated with a shorter survival of the
bioprosthesis. Older patients were more likely to die before their valve
prosthesis failed, and therefore to be excluded from this analysis. Age
was not associated with valve survival among patients younger than
60 years at the time of implantation while the order of magnitude and
significance of other risk factors remained stable (results not shown).

Today, we can access N29 years of observations, since most of the
porcine bioprostheses were implanted before 1985. This interval ex-
ceeds the mean longevity of bioprostheses in published prospective
studies and in our cohort of patients followed prospectively after mi-
tral implantation (12-year longevity of mitral bioprosthesis (patient
survival [48%] [39], and valve failures [31%] [39], most of which
were due to degeneration [39]). Thus, we can expect to have recov-
ered all the bioprostheses that have failed, but to have “missed”
bioprostheses of patients who have died before their bioprostheses re-
quired replacement.

In this study in agreement with literature we exclude dysfunctional
valvular replacement for thrombosis. Bioprosthesis thrombosis leading
to surgical valvular replacement as in our series is a very rare complica-
tion in prospective surgical studies with b0.54% (8/1463) for porcine
bioprosthesis and an even lower rate for bovine bioprosthesis 0/3031
[81]. In 90% of the cases, bioprothesis thrombosis leading to surgical re-
placement occurs in the first 2 years [81]. In surgery, the incidence of
bioprosthesis thrombosis leading to valvular replacement is N10 times
lower than that observed for bioprosthesis degeneration [82,83]. After
25 years, N90% of the bioprostheses fail from structural degeneration if
the patients are b60 years old at the time of implantation [49]. Early val-
vular thrombosis not needing surgical replacementhas been reported in
10 to 15% of bioprostheses [84]. It is even possible that this may be re-
lated to the immunogenicity of the tissue that might trigger inflamma-
tion and subsequent fibrocalcic remodeling of valve leaflets leading to
late structural bioprosthesis degeneration [48]. In the aortic position, it
was shown that an increased risk of thrombosis of the mechanical
Table 4B
Characteristics of explanted porcine bioprosthesis with longevity b 15 years.

n = 424 ABO Blood group P Value

Longevity, y Non A group, n (%) A group, n (%)

[0–5.9] 42 (14.9) 9 (6.3) 0.011
[6–14.9] 239 (85.1) 134 (93.7)
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valve in A group patients due to coagulation annomalies [85] was not
able to explain the improved longevity of the bioprosthesis reported
in this location.

Some studies have shown a possible association between longevity
and the ABO blood group [86]. In Japan, the B antigen has been shown
to be possibly associated with higher longevity [87]. On the other
hand, the A antigenhas been shown to be associatedwith higher cardiac
mortality, including ischemic events [88,89]) and strokes. ‘A' patients
have a higher level of circulating vWF and factor FVIII [90,91] and possi-
bly higher circulating cholesterol levels [92]. The A antigen has also re-
cently been found to be associated with an increased risk of
mechanical cardiac valve thrombosis [85]. In patients with chronic
heart failure, the ABO blood group appears to have no impact on patient
outcome [93].

In A patients, there does not appear to be an overall highermortality
rate from cancer, but there is a specific association with some types of
cancer, such as gastric or pancreatic cancers [89].

All these factors cannot explain the overall representation of A pa-
tients in the group with the best survival rates following bioprosthetic
valve implantation. Censoring due to patient deaths should not bias
the association between blood type and valve longevity in explaining
the increased prevalence of A patients in the group with high longevity
rates, given that the literature shows that A patients should have an in-
creased mortality rate especially from cardiac problems.

Another limitation of the study is that we do not have data on all the
parameters that have been recently identified as influencing
bioprosthetic heart valve degeneration. Furthermore, most of these fac-
tors have been shown to exist for aortic sites but not for the mitral po-
sition. The meta-analysis of prospective study data reporting the rate
of bioprosthesis degeneration have shown that the risk is very low
(21.4% at 15 years and 51.5% at 20 years) [94]. Following 2758 patients
for 20 years with Carpentier-Edwards bioprosthetic valves in the aortic
position, Bourguinon T. et al. reported only 123 patients requiring reop-
eration after 20 years [49]. This has to be compared with the 426 pa-
tients of the present study. Large size populations as in our study will
allow for an equal distribution of confounding factors. The low fre-
quency of bioprosthetic valve degeneration could alsomake it more dif-
ficult to properly evaluate all the clinical parameters that have been
reported as possible influences on bioprosthetic valve degeneration in
prospective studies.
4.3. Clinical implications

Our results show that persistent immunological reactions might de-
termine the future of an implanted bioprosthetic valve. Thus the design
of bioprostheses that aremore resistant to hosts' immune response sys-
tems would be a major improvement in valvular heart surgery [95].

For the first time, we have identified a patient-related immunologi-
cal variable that may determine the outcome of bioprosthesis. Up to
now the only variable that has been shown to be possibly related to im-
munological parameters is the accelerated bioprosthesis degeneration
in younger age patients [48]. In addition, no targeted antigen has been
identified.

Our data show that the patient's ABO blood type influences
bioprosthesis longevity. Our hypothesis is that shared carbohydrate an-
tigens between humans and animals may determine patient immune-
response upon implantation and subsequent bioprosthesis longevity.

Nowadays, both bovine and porcine valves are being used. New gen-
erations of valves, includingmost stentless valves and some percutane-
ous valves, are being made from porcine or bovine tissues. However, to
date, none of them is superior to any others and there are no specific
clinical guidelines for a particular bioprosthesis [2].

Moreover, the issue of blood-type compatibility may be extended to
other species such as bovines. Human A-transferase has also been iso-
lated and cloned [27,34], in bovine species and enzymes that are
involved in the synthesis of human H antigen are widely expressed in
animals [33], including bovine heart [31,33].

In our study, when we performed a sub-analysis for patients under
60 years old at implantation, the patient's age category was no longer
a risk factor in valve longevity. Usingmultivariate analysis, the only fac-
tor identifiedwasmultiple valve replacement (OR 2.56 P=0.001 in the
same range of values as blood type A (OR 2.09; P b 0.001)), which was
far more important than the implantation site (aortic versus mitral)
(OR 1.26; P=0.31). This observation could be particularly relevant clin-
ically in terms of bioprosthesis attribution. Since we are measuring this
effect on the basis of a purely arbitrary adequate allocation between pig
AH tissue and human A, we would probably be able to multiply it by a
factor of 2 to 5 if we deliberately matched patient and prosthesis
phenotypes.

5. Conclusions

In the near future, we propose checking the phenotypes of the ani-
mals used in bioprostheses, especially with regard to A and H antigens,
and matching them accordingly with the patient's ABO blood group.
This will give rise to a new generation of bioprostheses with less risk
of early failure and hence better longevity.
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