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Abstract 
Background: Postnatal gestational age (GA) algorithms derived from 
newborn metabolic profiles have emerged as a novel method of 
acquiring population-level preterm birth estimates in low resource 
settings. To date, model development and validation have been 
carried out in North American settings. Validation outside of these 
settings is warranted.   
Methods: This was a retrospective database study using data from 
newborn screening programs in Canada, the Philippines and 
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China. ELASTICNET machine learning models were developed to 
estimate GA in a cohort of infants from Canada using sex, birth weight 
and metabolomic markers from newborn heel prick blood samples. 
Final models were internally validated in an independent sample of 
Canadian infants, and externally validated in infant cohorts from the 
Philippines and China.  
Results: Cohorts included 39,666 infants from Canada, 82,909 from 
the Philippines and 4,448 from China.  For the full model including 
sex, birth weight and metabolomic markers, GA estimates were within 
±5 days of ultrasound values in the Canadian internal validation (mean 
absolute error (MAE) 0.71, 95% CI: 0.71, 0.72), and within ±6 days of 
ultrasound GA in both the Filipino (0.90 (0.90, 0.91)) and Chinese 
cohorts (0.89 (0.86, 0.92)). Despite the decreased accuracy in external 
settings, our models incorporating metabolomic markers performed 
better than the baseline model, which relied on sex and birth weight 
alone. In preterm and growth-restricted infants, the accuracy of 
metabolomic models was markedly higher than the baseline model. 
Conclusions: Accuracy of metabolic GA algorithms was attenuated 
when applied in external settings.  Models including metabolomic 
markers demonstrated higher accuracy than models using sex and 
birth weight alone. As innovators look to take this work to scale, 
further investigation of modeling and data normalization techniques 
will be needed to improve robustness and generalizability of 
metabolomic GA estimates in low resource settings, where this could 
have the most clinical utility
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Introduction
Global- and population-level surveillance of preterm birth 
is challenging. Inconsistent use of international standards to  
define preterm birth and gestational age (GA) categories, the 
range of methods and timing used for GA assessment, and inad-
equate jurisdictional or national health data systems all hamper 
reliable population estimates of preterm birth1. As complications  
related to preterm birth continue to be the most common cause 
of mortality for children under five2, robust data on the bur-
den of preterm birth are needed to maximize the effectiveness  
of resource allocation and global health interventions.

Newborn screening is a public health initiative that screens  
infants for rare, serious, but treatable diseases. Most of the tar-
get diseases are screened through the analysis of blood spots 
taken by heel-prick sampling. Samples are typically collected  
within the first few days after birth. Newborn samples are ana-
lyzed for a range of diseases, such as inborn errors of metabo-
lism, hemoglobinopathies, and endocrine disorders, using tandem 
mass spectrometry, colorimetric and immunoassays, and high- 
performance liquid chromatography3. Postnatal GA algorithms 
derived from newborn characteristics and metabolic profiles 
have emerged as a novel method of estimating GA after birth.  
Using anonymized data from state and provincial newborn 
screening programs, three groups in North America have devel-
oped algorithms capable of accurately estimating infant GA to 
within ± 1 to 2 weeks4–6. Recent work to refine metabolic GA  
models7, as well as internally and externally validate their per-
formance in diverse ethnic groups and in low-income settings, 
has demonstrated the potential of these algorithms beyond  
proof-of-concept applications8,9.

Published approaches to model development and valida-
tion to date have been carried out in cohorts of infants in North  
American settings4–6. Although internal validation of these 
models has been conducted among infants from diverse eth-
nic backgrounds4,8, external validation of model performance  
outside of the North American context is essential to evalu-
ate the generalizability of models to low-income settings where 
they would have the most clinical utility. Birth weight, a signifi-
cant covariate in all published models, is strongly correlated with  
GA and varies significantly by ethnicity10. Metabolic varia-
tions in newborn screening profiles that result from variation 
in genetic and in utero exposures may also affect the perform-
ance of established algorithms across ethnic or geographic  
subpopulations11. Importantly, as innovators seek to take this 

work to scale, validation of metabolic models using data stem-
ming from different laboratories is warranted. In this study, 
we sought to validate a Canadian metabolic GA estimation  
algorithm in data derived from newborn screening databases  
based in the Philippines and China.

Methods
Study design
This was a retrospective cohort study involving the second-
ary analysis of newborn screening data from three established 
newborn screening programs: Newborn Screening Ontario  
(Ottawa, Canada); Newborn Screening Reference Centre (Manila, 
the Philippines); and the Shanghai Neonatal Screening Center 
(Shanghai, China). Approval for the study was obtained from 
the Ottawa Health Sciences Network Research Ethics Board  
(20160056-01H), and research ethics committees at both the  
University of the Philippines Manila (2016-269-01), and the  
Xinhua Hospital, Shanghai (XHEC-C-2016). The need for 
express informed consent from participants was waived by the  
ethics committees for this retrospective study.

Study population and data sources
Newborn Screening Ontario (NSO): a provincial newborn 
screening program that coordinates the screening of all infants  
born in Ontario, Canada. The program screens approximately 
145,000 infants (>99% population coverage) annually for 29 rare 
conditions, including metabolic and endocrine diseases, sickle 
cell disease, and cystic fibrosis12. Newborn screening data col-
lected between January 2012 and December 2014 were used 
in model building and internal validation. Further details on  
sample analysis methodology can be found here13.

Newborn Screening Reference Center: coordinates screening 
across six operations sites in the Philippines. The program screens 
approximately 1.5 million infants (68%) annually, offering two 
screening panels: a basic panel of six disorders at no cost, or an 
expanded panel of 28 disorders paid for by families. Data from  
this study were obtained from one of the newborn screening 
centers, the National Institutes of Health at the University of the  
Philippines Manila. Data were included for infants born 
between January 2015 and October 2016 who were screened 
using the expanded panel of 28 disorders. Disorders screened  
included metabolic disorders, and hemoglobinopathies.

Shanghai Neonatal Screening Center, National Research Center 
for Neonatal Screening and Genetic Metabolic Diseases: coor-
dinates the screening of infants born in Shanghai, China.  
The program screens approximately 110,000 infants (>98%). 
Four screening tests - for phenylketonuria, congenital adrenal 
hyperplasia, hypothyroidism and Glucose-6-phosphate dehydro-
genase deficiency - are provided at no cost. Expanded newborn  
screening is available but must be paid for by families. Data  
collected from the Shanghai Jiaotong University School of 
Medicine Xinhua Hospital were used for this study. Infants born 
between February 2014 and December 2016 with expanded  
newborn screening results were included.

Reference GA assessment
In newborn cohorts from Ontario and China, GA was measured 
using gold-standard first trimester gestational dating ultrasound  
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in approximately 98% of cases, and was reported in weeks and 
days of gestation (for example 37 weeks and 6 days would be  
reported as 37.86 weeks). In the Philippines cohort, mothers 
who delivered in private hospitals generally received gestational 
dating ultrasounds while other infants’ GAs were generally  
measured using Ballard Scoring, however individual-level data 
identifying which GA measurement method was used was not 
available. GA was reported in completed weeks (for example  
37 weeks and 6 days would be recorded as 37 weeks). There-
fore, for the Philippines cohort only, model-based GA estimates 
were rounded down in the same way for comparison to reference  
GA in the presentation of validation results.

Specific data elements used in this study from each respective 
newborn screening program are provided in Table 1. All of the  
analytes used in our analyses were routinely collected, includ-
ing quantitative fetal and adult Hb levels. The Newborn Screen-
ing Ontario (Canada) disease panel included the greatest number 
of analytes. All analytes included in the newborn screen-
ing panels of the Newborn Screening Reference Centre (the  
Philippines) and the Shanghai Newborn Screening Program  
(China) were also available from Newborn Screening Ontario.

Statistical methods
Data preparation
Infants whose blood spot samples were collected more than 
48 hours after birth were excluded from model development 
in the Ontario cohort. The reasons for this were twofold. First,  
the recommended screening sample collection window in 
Ontario is 24 to 48 hours after birth, and samples collected  

beyond that window have increasingly heterogeneous analyte 
results influenced by multiple exogenous factors that cannot be 
statistically adjusted for. And second, our GA estimation mod-
els are intended to be applied in low to middle income countries  
(LMICs) where samples are expected to be collected almost  
exclusively within the first few hours after birth.

Infants who screened positive for one or more conditions 
(<1%) were excluded from model development and validation 
in all three cohorts, which had the effect of removing a large  
proportion of extreme outliers and atypical metabolic profiles.

In the China and Philippines cohorts, a larger proportion of 
samples were collected after 48 hours so we relaxed the exclu-
sion criteria to >72 hours, to avoid exclusion of an unacceptably  
large proportion of samples from the external validation cohorts. 
Even after relaxing the criteria, samples in preterm infants were 
more likely to have been collected later than 72 hours in both 
China and the Philippines, which resulted in an artificially  
lower prevalence of preterm infants in the external validation 
cohorts. Samples from all three cohorts were excluded if they 
had missing sex, birth weight, gestational age, or missing ana-
lyte values. The proportion of subjects with missing analyte or 
covariate data was very low so missing data imputation was not  
undertaken.

In preparation for use in modeling, newborn screening ana-
lytes from Ontario, the Philippines and China were winsorized 
using an adapted “Tukey Fence” approach14. For each analyte,  
this involves assigning values more than three interquartile ranges 

Table 1. Newborn screening data used in model development.

Newborn Screening Ontario, Canada Newborn Screening Reference  
Centre, the Philippines

Shanghai Newborn Screening  
Program, China

Sex, birth weight  
Hemoglobins 
F1, F, A  
Endocrine markers 
TSH, 17OHP 
Amino Acids 
alanine, arginine, citrulline, glycine, leucine, 
methionine, ornithine, phenylalanine, 
tyrosine, valine, 
Acyl-carnitines, Acylcarnitine ratios 
C0, C2, C3, C4, C5, C6, C8, C10, C12, C14, 
C16, C18, C10:1, C12:1, C14OH, C14:1, C14:2, 
C16OH, C16:1OH, C18OH, C18:1, C18:2,  
C18:1OH, C3DC, C4DC, C4OH, C5DC, C5OH, 
C5:1, C6DC, C8:1, 
Enzyme markers 
GALT, BIO 
Cystic fibrosis Markers 
IRT 

Sex, birth weight  
Hemoglobins 
F1, F, A 
Endocrine markers 
TSH, 17OHP  
Amino Acids 
alanine, arginine, citrulline, glycine, 
leucine, methionine, ornithine, 
phenylalanine, tyrosine, valine,  
Acyl-carnitines, Acylcarnitine ratios 
C0, C2, C3, C4, C5, C6, C8, C10, C12, C14, 
C16, C18, C10:1, C12:1, C14OH, C14:1, 
C16OH, C16:1OH, C18:1, C18:2, C3DC,  
C4DC, C4OH, C5DC, C5OH, C6DC, C8:1 

Enzyme markers 
BIO 
Cystic fibrosis Markers 
IRT

Sex, birth weight  
 
 
 
Endocrine markers 
TSH, 17OHP 
Amino Acids 
alanine, arginine, citrulline, glycine, leucine, 
methionine,  
ornithine, phenylalanine, tyrosine, valine 
Acyl-carnitines, Acylcarnitine ratios 
C0, C2, C3, C4, C5, C6, C8, C10,  
C12, C14, C16, C18, C10:1, C12:1, C14OH, 
C14:1, C14:2, C16OH, C18OH, C18:1, C18:2, 
C3DC, C4DC, C4OH, C5DC, C5OH, C5:1, 
C6DC, C8:1 

TSH, thyroid stimulating hormone; 17OHP, 17 hydroxyprogesterone; GALT, galactose-1-phosphate uridyl transferase; IRT, Immuno-reactive trypsinogen, BIO, 
biotinidase. Analytes in bold italics are not available in one or more of the external validation cohorts. Further details on the Ontario newborn screening 
metabolites can be found here15.
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above the third quartile (the upper Tukey fence) or below the 
first quartile (the lower Tukey fence), to the Tukey fence value. 
This approach preserves much of the “extremeness” of outliers 
but prevents extreme values from disproportionately impact-
ing model fitting and GA estimation. The majority of measured  
analytes exhibit strongly right-skewed distributions, which was 
addressed though natural log transformation, which also sta-
bilizes the variance, reducing the impact of heteroskedastic-
ity. Finally, analyte levels and birth weight were normalized 
by subtracting the mean and dividing by the square root of the  
standard deviation for each variable (pareto scaling)16,17 which 
centers all predictors to have a mean of zero, and scales them to 
reduce the impact of variations in dispersion of individual analytes  
across cohorts. 

Statistical modelling
Model Development in the Ontario, Canada model derivation 
cohort
The Ontario cohort was randomly divided into three sub-cohorts: 
1) a model development sub-cohort (50%); 2) an internal  
validation sub-cohort (25%); and 3) a test sub-cohort (25%). 
Stratified random sampling was used to ensure that these three 
sub-cohorts retained the same distribution of GA and sex as the  
overall cohort.

A total of 47 newborn screening analytes, as well as sex, 
birth weight were used in the original Ontario model devel-
opment. Model development included a ratio of fetal to adult  
hemoglobin calculated as (HbF+HbF1)/(HbF+HbF1+HbA), 
to measure the proportion of normal fetal hemoglobin, rela-
tive to the proportion of total normal fetal + adult hemoglobin 
types. GA at birth (in weeks) determined by first trimester gesta-
tional dating ultrasound was the dependent variable. A subset of  
screening analytes were not available in the external cohorts  
(Table 1). Three main models were developed and internally vali-
dated in the Ontario cohort (Table 2). We developed restricted 
models including only the covariates available in each of the 
two external cohorts (Figure 1). All models were trained and 
internally validated within the Ontario datasets but deployed  
in the external cohorts.

For Models 1 and 3, birth weight was the strongest predictor 
and was modeled using a restricted cubic spline with five knots 
to allow for non-linearity of the association of birth weight with  

gestational age. For Models 2 and 3, we included all pre-specified 
covariate main effects in the models, however we additionally 
identified the most predictive analytes using the metric of gen-
eralized partial Spearman correlation that detects non-linear 
and non-monotonic associations with GA, mutually adjusted 
for all other analytes and clinical covariates. Based on this par-
tial Spearman correlation analysis there were seven analyte  
covariates that had distinctly stronger partial correlations with 
GA compared to all others. These seven analytes were mod-
eled using restricted cubic splines with 5 knots. These were  
(in order of strength of partial spearman correlation): fetal-to-adult 
hemoglobin ratio, 17-OHP, C4DC, TYR, ALA, C5, and C5DC. 
For birthweight, and the seven strongest analyte predictors, knot 
placement was at the 5th, 27.5th, 50th, 72.5th, and 95th per-
centiles based on the Ontario population distribution of these  
analytes18. Hemoglobin measurements were unavailable in 
the China cohort, so the China restricted models included  
restricted cubic splines for the other top six analytes.

For Model 1, all covariates and pairwise interactions were 
included in the model without variable selection or regularization.  
For Models 2 and 3 we employed Elastic Net regularization, 
which employs two forms of penalization (called L1 and L2  
regularization) to simultaneously estimate regression coeffi-
cients while also shrinking them towards zero to penalize the 
increase in model complexity from each additional term included 
in the model19. The Elastic Net regression methodology allows  
models to be fit with a large number of predictors, and allows 
models to be fit even in situations where models where the 
number of predictors exceeds the number of observations (p>>n). 
This regularization strategy provides strong protection against  
overfitting, and against the instability inherent in fitting mod-
els with a large number of predictors relative to the number of  
observations available for model fitting19,20. 

Validation of GA estimation models
We applied the identical approach in validating models  
internally (in Ontario test cohort) and externally (China and  
Philippines cohorts). Final regression model equations derived 
from the Ontario model development sub-cohort were used to 
calculate an estimated gestational age in the independent Ontario  
test cohort and in the China and Philippines cohorts. Model 
accuracy metrics were based on residual errors: the differ-
ence between model-estimated GA and reference GA. Although 

Table 2. Summary of models developed and validated.

Model Description

Model 1 Multivariable regression model including sex, birth weight and their interaction 

Model 2 ELASTIC NET multivariable regression model including sex, analytes and pairwise interactions among predictors*

Model 3 ELASTIC NET multivariable regression model including sex, birth weight, analytes and pairwise interactions among*  
predictors 
 
*Restricted versions of Models 2 and 3 were derived based on the analyte measurements available in both the China 
and Philippines cohorts.
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mean square error (MSE) is typically the loss function used in  
maximum-likelihood model fitting for continuous outcomes, 
it is not necessarily the best metric for assessing average agree-
ment in model validation, as it is based on sum of squared dif-
ferences, and hence is sensitive to large and small residuals. 
Therefore, the primary metric we have presented is the mean  
absolute error (MAE). MAE is the average of absolute values 
of residuals (values of the model estimate minus the reference 
GA) across all observations. MAE reflects the average devia-
tion of the model estimate compared to the reference estimate,  
expressed in the same units as GA (weeks).

1

1 n

i i
i

ref estMAE GA GA
n =

= −∑
For completeness, as well as for comparability to other pub-
lished validations, we also report the square root of the MSE  
(RMSE). Also known as the standard error of estimation, RMSE  
is also expressed in the same units as GA (weeks). 

1
21

( ) .n
i i iref estRMSE GA GA

n
== −∑

Lower values of both MAE and RMSE reflects more accu-
rate model estimated GA. For example, a reported MAE of  
1.0 week reflects that the average discrepancy between model 
estimated GA and reference GA was 7 days. We also calcu-
lated the percentage of infants with GAs correctly estimated  

within ±7 and ±14 days of reference GA. We assessed model 
performance overall and in important subgroups: preterm birth  
(<37 weeks GA), and small-for-gestational age: below the 
10th (SGA10) and 3rd (SGA3) percentile for birth weight 
within categories of gestational week at delivery and infant 
sex based on INTERGROWTH-21 gestational weight for GA  
percentiles21. Parametric standard error estimates were not read-
ily calculable for our performance metrics, therefore we cal-
culated 95% bootstrap percentile confidence intervals based  
on the 2.5th and 97.5th percentiles over 1000 bootstrap rep-
licates for each validation cohort22. Replication code is  
available as Extended data23. To assess the overall calibration of 
our models we produced residual plots to visually assess accu-
racy across the spectrum of observed and estimated GA. To  
assess calibration in the large, we estimated the overall pre-
term birth rate using estimated GA derived from each model 
and compared this to the true preterm birth rate based on  
observed GA in each validation cohort.

Results
Cohort characteristics
Cohort characteristics are presented in Table 3. In all, the final 
infant cohorts for model validation included 39,666 infants from  
Ontario, Canada, 82,909 infants from the Manila, Philippines 
cohort and 4,448 infants from the Shanghai, China cohort. Mean 
(SD) of clinically reported GAs for the Ontarian, Filipino and 
Chinese cohorts were 39.3 (1.6), 38.5 (1.4) and 38.9 (1.4) weeks,  
respectively. Preterm infants (GA <37 weeks) comprised 

Figure 1. Full model vs restricted models.
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2,226/39,666 (5.6%) of the Ontario cohort, 3,832/82,909 (4.6%) 
of the Philippines cohort, and 215/4,448 (4.8%) of the China  
cohort.

Model performance in Ontario, Canada
The most predictive individual analytes in Models 2 and 3 
were fetal-to-adult hemoglobin ratio, 17-OHP, C4DC, TYR, 
ALA, C5, and C5DC. Modeling this subset of analytes using  
restricted cubic splines further increased their predictive power. 
Sensitivity analyses were conducted modeling the most pre-
dictive analytes using linear terms versus restricted cubic  
splines, as well a sensitivity analysis comparing models devel-
oped with only main effects versus allowing pairwise inter-
actions, and in both cases model performance in terms of  
MAE/RMSE and adjusted R-square was markedly improved. 
Therefore, final models included splines and pairwise  
interactions.

Estimation of GA using Model 1 (including only sex and birth 
weight) yielded an MAE (95% CI) of 0.96 (0.96, 0.97) weeks 
in the Ontario cohort, indicating that the model provided GA  
estimates that were accurate to within ± 7 days of reference 
GA. Model 2, (including sex and metabolomic markers), was 
accurate within an average of ± 6 days (MAE 0.79 (0.79, 0.80)  

weeks). Model 3, which included sex, birth weight and metabo-
lomic markers was the most accurate, estimating GA within about 
± 5 days of ultrasound-assigned GA (MAE 0.71 (0.71, 0.72)  
weeks), and estimated GA within ± 1 week in 74.6% of infants 
overall. Model 3 was the best performing model in preterm 
infants (GA<37 weeks), with an MAE (95% CI) of 1.03 (0.99, 
1.06) compared to MAE of 1.78 (1.73, 1.82) for Model 1 and  
1.25 (1.21, 1.29) for Model 2. In contrast, Model 2, which 
did not include birth weight, performed the best in growth  
restricted infants, with MAE of 0.90 (0.85 to 0.94) in SGA10 
infants and 1.03 (0.92, 1.13) in SGA3 infants, and was slightly 
better than Model 3, which did include birth weight. However, 
Model 1, including only sex and birth weight, was extremely  
inaccurate in both SGA10 and SGA3 infants with MAE of  
2.71 (2.66, 2.76) and 3.84 (3.75, 3.95) respectively (Table 4).

Restricted models including the subset of analytes available in 
the Philippines and China cohorts performed comparably to 
the unrestricted Ontario models overall. When applied to the  
Ontario internal validation cohort, accuracy of both the China- 
and Philippines-restricted models was slightly lower overall 
and lower in important subgroups, most notably in preterm and 
growth restricted infants for cohort (Model 2 and Model 3 China  
restricted and Philippines restricted) (Table 4).

Table 3. Cohort Characteristics.

Canada  
n=39,666 (Ontario  
test cohort)

Philippines  
n=82,909

China  
n=4,448

Sex, n (%) 

Male 19,536 (49.3%) 42,867 (51.7%) 2,351 (52.9 %)

Female 20,130 (50.7%) 40,042 (48.3%) 2,097 (47.1 %)

Birth weight (g), mean±SD 

Overall 3,379 ± 530 3,001 ± 452 3,337 ± 437

Term infants only 3,431 ± 476 3,044 ± 414 3,369 ± 407

Preterm infants only 2,504 ± 623 2,250 ± 539 2,710 ± 536

Low birth weight (<2500g), n (%) 1812 (4.6%) 8423 (10.2%) 128 (2.9%)

SGA (<10 th Centile), n (%) 1,561 (3.9%) 11,295 (13.6%) 123 (2.8%)

SGA (<3 rd Centile), n (%) 363 (0.9%) 3,407 (4.1%) 19 (0.4 %)

LGA (>90 th Centile), n (%) 8734 (22.0%) 4780 (5.8%) 741 (16.7%)

Completed gestational age  
(wks), mean±SD 

39.3±1.6 38.5±1.4 38.9±1.4

Term (≥37 wks), n (%) 37,440 (94.4%) 79,077 (95.4%) 4,233 (95.2%)

Late Preterm (32–36 wks), n (%) 2,049 (5.2%) 3,566 (4.3%) 197 (4.4 %)

Very Preterm (28–31 wks), n (%) 126 (0.3%) 233 (0.3%) 11 (0.3 %)

Extremely Preterm (<28 wks), n (%) 51 (0.1%) 33 (0.0%) 7 (0.2 %)
SGA, small for gestational age (lowest 10 and 3 centiles within gestational age and sex strata, calculated 
in the Ontario cohort using Intergrowth-21 centiles and applied uniformly in the Ontario, China and 
Philippines cohorts)
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External validation of model performance in the 
Philippines cohort
When applied to infant samples from the Philippines cohort,  
Model 1 yielded a MAE (95% CI) of 0.96 (0.95, 0.97). Accuracy 
was slightly decreased for Model 2, with MAE of 1.02 (1.02, 
1.03). Model 3 which included sex, birth weight and screen-
ing analytes available in the Philippines database performed the  
best, with an MAE of 0.90 (0.90, 0.91). Model 3 was also the best 
performing model in preterm infants, with MAE of 1.49 (1.45, 
1.53) compared to 1.87 (1.83, 1.92) for Model 1 and 1.96 (1.91, 
2.01) for Model 2. Model 3 also yielded the most accurate GA 
estimates in growth restricted infants, with MAE of 0.97/1.27 for  
SGA10/SGA3 infants compared to 1.47/2.65 for Model 1 and 
1.08/1.18 for Model 2 for SGA10/SGA3 infants (Table 4).

Based on GA estimates from Model 3, the estimated preterm 
birth prevalence was 4.2% (95% CI: 4.1%, 4.4%), compared to 
the true prevalence of 4.3% using reference GA in the Philippines  
cohort. Both Model 1 and Model 2 overestimated the preterm 
birth rate, at 5.1% (4.9%, 5.4%) and 5.0%(4.9%, 5.2%),  
respectively.

External validation of model performance in the China 
cohort
In the China cohort, Model 1 estimated GA to within 6 days  
overall, with an MAE of 0.90 (0.87, 0.92). Model 3 demonstrated 
similar accuracy to Model 1 with MAE of 0.89 (0.86, 0.91), and 
Model 2 performed the worst with MAE of 1.07 (1.04, 1.10). 
Model 3 performed the best in preterm infants, with MAE of 1.74  
(1.49, 2.05) versus 2.49 (2.21, 2.80) for Model 2 and 2.02 (1.76, 
2.33) for Model 1. In growth restricted infants, Model 2 was 
the most accurate, with MAE of 1.00/1.03 in SGA10/SGA3 
infants compared to 1.48/2.04 for Model 3 and 2.72/3.90 for  
Model 1.

Based on GA estimates from Model 3, the estimated preterm 
birth prevalence was 4.2% (95% CI: 3.7%, 4.8%), and Model 
1, which demonstrated similar overall accuracy, estimated a  
rate of 4.9% (4.3%, 5.6%). Model 2, the least accurate of the 
three in the China cohort, underestimated the preterm birth 
rate to be 3.6% (2.9%,4.3%), compared to the actual preterm  
birth rate of 4.8% based on reference GA in the China cohort.

Model performance across spectrum of GA
Scatter plots of observed GA versus estimated GA for all 
three models in the Ontario, Philippines and China cohorts are  
presented in Figure 2, which shows that in general, lower  
(preterm) GAs tend to be overestimated by all three models 
when applied to all cohorts. In all models applied to both exter-
nal validation cohorts, GA estimates were most accurate in term 
infants and accuracy tended to be lower in preterm infants. Across 
the spectrum of ultrasound-assigned GA, Model 3 provided  
the most accurate estimates overall Figure 3).

Discussion
In this study, we demonstrated that the performance of  
gestational dating algorithms developed in a cohort of infants 
from Ontario, Canada including newborn screening metabolomic 

markers from dried blood-spot samples was attenuated  
when the models were applied to data derived from exter-
nal laboratories and populations. When these Canadian-based 
models were tailored to the analytes available from newborn  
screening programs in Shanghai, China and Manila, Philippines, 
the models were less accurate in estimating absolute GA in 
infant cohorts from these locations than when the same models 
were applied to an Ontario infant cohort. Models including ana-
lytes generally demonstrated improved accuracy over those  
relying on sex and birth weight alone, but the added benefit of 
models including blood-spot metabolomic markers (Model 2 and 
Model 3) was not substantial when looking at overall accuracy.  
However, our models that included metabolomic markers did 
demonstrate markedly improved accuracy over sex and birth 
weight in important subgroups (preterm and growth restricted 
infants), with Model 3 which included sex, birth weight and  
metabolomic markers demonstrating the best performance in 
almost all settings. The exception to this observation was in 
growth restricted infants (SGA10 and SGA3), where Model 2 
often performed the best. This is not surprising, as birth weight is  
clearly a misleading predictor of GA in growth restricted infants, 
and although Model 3 still outperformed Model 1, its accu-
racy was impacted by the inclusion of birth weight in addition 
to metabolomic markers. Therefore, the decision of whether 
to prefer Model 2 or Model 3 may hinge on whether the  
prevalence of growth restriction is known to be high in the set-
ting where the GA estimation algorithm is to be deployed. When 
we compared preterm birth rates (<37 weeks GA) calculated 
based on model estimates, to those calculated based on refer-
ence GA in each cohort, the model-based estimates from the best  
performing model (Model 3) agreed reasonably well with the 
reference preterm birth rates (4.2% vs 4.8% for China and 4.2% 
vs 4.6% for the Philippines). Unfortunately, as with any dichot-
omization of a continuous measure (GA), there are significant  
edge effects that can contribute to perceived misclassification 
(e.g. GA of 36.9 weeks is classified as preterm while a GA of 
37.1 weeks is classified as term, despite a difference in GA of  
only about 1 day).

There are several reasons why the metabolic gestational dating 
algorithm we developed from a North American newborn 
cohort may not have performed as well using data derived  
from other infant populations. First, as observed in the differences  
in Model 1’s performance across the three cohorts, the predic-
tive utility of anthropomorphic measurements for estimating  
GA may vary across populations. Second, metabolic profiles 
may be influenced by the differences in genetic and environmen-
tal exposures experienced by each cohort. Previous validation of 
our models among infants born in Ontario to landed-immigrant  
mothers from eight different countries across Asia and North 
and Sub-Saharan Africa suggested that inherent biological dif-
ferences may not be a significant contributor to newborn meta-
bolic data and the performance of our algorithms8. However in an  
external validation of previously developed GA estimation 
models in a prospective cohort from South Asia9, the drop in 
performance was more pronounced, despite the centralized  
analysis of samples in the Ontario Newborn Screening lab. Third, 
variations in the clinical measures of GA used across the cohorts 
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may have impeded the accuracy of our algorithms. Our GA 
models were developed with first trimester ultrasound-assigned  
GA as the dependent variable. Whereas first trimester ultra-
sounds were the gold standard in the Ontario and China cohorts, 
GAs for the Philippines cohort were determined by a mixture of  
gestational dating ultrasound and Ballard scores, and were 
only available to the nearest completed week of GA. Ballard 
tends to overestimate gestational age with a wide margin of 
error, particularly in preterm infants24. Lastly, and perhaps most  
importantly, variations in the collection procedures and ana-
lytical methods used by each of the newborn screening  
programs are likely to have impacted the measurable relation-
ship between the analytes and newborn GA. At the newborn 
screening program in Shanghai, China, samples were collected, 
on average, about one day later than samples used for model  
development, particularly among preterm infants with the  
majority being collected between 48–72 hours. Variations in tem-
perature, climate, sample handling, and storage among the three 
newborn screening laboratories may have also contributed to het-
erogeneity of findings. The screening laboratories in Ontario, 

Shanghai, China and Manila also varied with respect to sample  
collection and handling, as well as lab equipment, assays and 
reagents to quantify the measured analytes. Reduced perform-
ance of models in the China and Philippines settings was likely 
due to a combination of these sources of heterogeneity including 
genetic, environmental and non-biological (eg laboratory-based)  
variation, which cannot easily be teased apart. We attempted 
to address these sources of heterogeneity and bias through our 
data preparation steps, which involved local standardization 
of analyte values and birth weight. Extreme outliers, skewed  
distributions, heteroscedasticity, and systematic biases within and  
between laboratories are all factors that may obscure biologi-
cal signals. Normalization and other data pre-processing steps 
are therefore crucial to the analysis of metabolomic data, and we 
continue to investigate the impact of alternative data normali-
zation techniques in improving the generalizability of our GA  
estimation models, while still taking care to preserve the biologi-
cal signals of interest. This is an active area of active research 
as it relates to the use of ‘omics data in prognostic models  
more generally25,26.

Figure 2. Residual plots of predicted – observed by ultrasound-assigned gestational age. Models applied to test cohort from Ontario: 
(A) Model 1 (sex + birthweight), (B) Model 2 (sex + analytes) (C) Model 3 (sex + birthweight +analytes). Models applied to cohort from the 
Philippines: (D) Model 1, (E) Model 2, and (F) Model 3. Models applied to cohort from China: (G) Model 1, (H) Model 2, and (I) Model 3.
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Our study has several strengths and limitations. Notable 
strengths include the size of our Ontario, China and Philippines  
cohorts, the commonality of a preponderance of the analytes 
across populations, the ability to tailor models to the specific 
analytes available for each cohort, and the methodological rigor 
we imposed in our modeling and validation. Limitations include  
the inability to examine the impact of environmental factors  
(socio-economic conditions, dietary and environmental expo-
sures during pregnancy), variations in approaches to newborn 
screening that may not have been accounted for in our analyses, 
and generally smaller sample sizes for more severely preterm  
children. The preterm birth rate in our external validation cohorts 
(Philippines:4.6%, China: 4.8%) was lower than published esti-
mates (Philippines: 15%, China: 7.1%)27. This was in part due 
to selection bias because the expanded screening panel was 
not universally covered, requiring the family to pay in many  
cases, which may have led to infants in our validation cohorts 
being more likely to be from affluent families and/or from urban 
versus rural areas. Another source of bias was that samples in 
infants born preterm in China, and to a lesser extent the Philippines, 
were much more likely to be collected later than in term infants, 
and often after 48-72 hours. Samples collected beyond 48 hours  
were more heterogenous than samples collected within 48 hours  
but excluding these would have excluded an unacceptably 
large proportion of infants overall, especially preterm infants.  
Our compromise approach of relaxing the criteria to exclude 

samples that were collected later than 72 hours after birth, 
included more infants at the cost of increased heterogeneity,  
but even so, still excluded a disproportionate number of preterm 
infants in the China and Philippines. A combination of these fac-
tors likely contributed to the lower than expected preterm birth 
rates observed in China and in the Philippines validation cohorts, 
as well as leading to decreased apparent model performance  
due to more heterogeneous samples (collected 48-72 hours  
after birth) being included.

While there are numerous options currently available to health 
care providers to determine postnatal GA, none are as accurate  
as first trimester dating ultrasound28. Where access to antenatal 
dating technologies are limited, and the reliability of postnatal  
assessments is variable, there is a recognized need for new and 
innovative approaches to ascertaining population-level burdens 
of preterm birth in low resource settings28,29. Metabolic GA 
estimation models in particular have proven particularly  
promising29, and we continue to refine and evaluate these mod-
els in a variety of populations6,7,15 and laboratories in an effort 
to ready this innovation for broader application. The findings of 
this study suggest that the accuracy of metabolic gestational  
dating algorithms may be improved where newborn samples can  
be analyzed in the same laboratories from which the algorithms 
were originally derived and underscore our previous findings 
of their potential particularly among low birth weight or SGA  

Figure 3. Agreement between algorithmic gestational age estimations compared to ultrasound-assigned gestational age. (A) 
Legend, and overall MAE (95% CI) for each model applied to data from the Philippines and China. Dot size in plots is proportional to sample 
size in each gestational age category. Performance of each model by ultrasound-assigned gestational age when applied to data from (B) the 
Philippines (C) China. MAE, mean absolute error (average absolute deviation of observed vs. predicted gestational age in weeks).
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infants7. Validation of our ELASTIC NET machine learning 
models is also being completed in prospective cohorts of infants 
from low-income settings in Bangladesh and Zambia15, with 
validation of previously developed models already completed in  
Bangladesh9. The effects of laboratory-specific variables are 
being mitigated through the standardization of collection and 
analytical procedures applied to newborn samples; preliminary 
results are promising. As efforts to optimize gestational dating  
algorithms based on newborn metabolic data continue, and 
innovators seek to take this work to scale, future work should 
identify opportunities to develop algorithms locally where  
newborn screening laboratories exist, and to build capacity in  
low resource settings for these purposes.

Data availability
Underlying data
The data from Ontario, Canada used to develop models, and 
the data for the external validation cohorts in which model  
performance was evaluated were obtained through bilateral data 
sharing agreements with the Ontario Newborn Screening Pro-
gram and BORN Ontario, and newborn screening laboratories 
at Xinhua Hospital in Shanghai, China and University of the  
Philippines, Manila, Philippines. These data sharing agree-
ments prohibited the sharing of patient-level data beyond our  
research team.

Ontario data
Those wishing to request access to Ontario screening data can 
contact newbornscreening@cheo.on.ca, and the request will be 
assessed as per NSO’s data request and secondary use policies. 
For more information, please visit the NSO website: https://www.
newbornscreening.on.ca/en/screening-facts/screening-faq (‘What 
happens when a researcher wants to access stored samples for 
research’); https://www.newbornscreening.on.ca/en/privacy-and-
confidentiality.

Philippines data
Researchers can request access to the de-identified data (sex, 
birthweight, gestational age and screening analyte levels) from  
the Philippines for future replication of the study by sending a 
request letter to the Director of Newborn Screening Reference 
Center stating the study objectives in addition to:

  a. A copy of the study protocol approved by a techni-
cal and ethics review board that includes methods and  
statistical analysis plans;

  b. Full name, designation, affiliation of the person  
with whom the data will be shared; and,

  c. Time period that the data will be accessed.

Data requests must be addressed to: Dr. Noel R. Juban, Director 
of the Newborn Screening Reference Center National Institutes 
of Health, Unit 304 New Gold Bond Building, 1579 F. T. Benitez  
St, Ermita, Manila, Philippines, info@newbornscreening.ph.

China Data
Researchers can request access to the de-identified data (sex, 
birthweight, gestational age, age at sample collection, and  
screening analyte levels) from China by sending a written request 
to the corresponding author, Dr. Steven Hawken (shawken@
ohri.ca), which must include a copy of the study protocol and  
approval from the researcher’s local ethics board.

Extended data
SAS and R code for data preparation and cleaning, model  
fitting and external model validation are available at: https://github.
com/stevenhawken/Gates-Repository-China-Phil.

Archived code at time of publication: http://doi.org/10.5281/zen-
odo.408532023.

License: GNU General Public License v3.
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Authors: Suman Chaurasia, Ramesh Agarwal
We are pleased to go through this interesting article by Hawken et al., dealing with 
estimation of gestational age among neonates born in low-resource settings that illustrates 
novel clinical and metabolomic parameter-based models. We congratulate the authors for 
taking up this study on account of several outstanding features:

Conceptualizing the study idea of estimating gestational age postnatally, using a mix 
of conventional and novel metabolomic based objective parameters.

○

Enrolling neonates in large numbers from population based cohort to develop the 
model as well as validating internally.

○

Stratified random distribution of neonates among the derivation sub-cohorts to 
match the overall gestational age (GA) of the development cohort.

○

Using efficient study design of retrospective databases to source the samples - often 
stringently available in neonatal prospective cohort studies.

○

Utilizing machine-learning approaches to refine the algorithm.○

Undertaking the enormous task of external validation rigorously - involving settings 
that may find the algorithm most useful, recruiting huge cohorts, harmonizing tools 
and processes across the sites, etc.

○

Finally, ensuring that the data is accessible to all interested in taking up future 
studies.

○

○

However, we have a few comments to make, especially from the clinical rather than public health 
viewpoints. Major comments are: the model’s performance in term infants seems more reliable 
than preterms or SGAs. However the latter are the subgroups where gestation estimation maybe 
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much more useful in clinical settings. One of the reasons could have been because the derivation 
cohort itself had very few preterm infants (less than 5%) and so future studies should be planned 
for preterms and SGA categories. Also, as elaborated further, there appears to be much scope for 
conducting large multi-centric prospective study to remarkably improve and validate the GA 
algorithm, given that the article presents a promising alternative to grapple with this long-
standing issue.

We are of the opinion that GA estimation by the algorithm beyond ± 1 week may not be 
clinically as useful; so, the model performance in Table 4 in the main text should primarily 
depict this parameter and avoid parameters like “% ±  14 d”. The latter may actually be 
shifted to the web appendix if needed at all. This may also make the table less unsettling to 
the eyes. 
 

○

The authors admit that the model performance got attenuated from derivation to external 
validation such that the best performing model i. e. #3 lost its accuracy remarkably from 
average MAE of 0.71 (0.71, 0.72) in Ontario cohort to MAE of 0.90 (0.90, 0.91) and 0.89 (0.86, 
0.91) in Manila and Shanghai cohorts respectively. The authors have rightly attributed this 
finding to factors like biological differences, sample collection or lab/equipment variations 
and as yet unknown data (pre-)processing techniques. 
 

○

However, as depicted in Figure 1 and accepted by the authors, during external validation 
among the different models, the full model (#3) only marginally improved the agreement 
over that already achieved by birthweight model or model 1 (average MAE 0.90 
(Philippine)/0.89 (China) vs 0.96 (Canada)). This is in contrast to internal validation; addition of 
metabolic analytes (i.e. model #3; average MAE 0.71) or for that matter, restricting to 
analytes only model (model #2; 0.79) had significantly improved over the basic birthweight 
model (0.96). Two points emerge from this discussion:

Firstly, birthweight remains the most fundamental factor to predict GA with the lion’s 
share of explanatory attribute; this implies possible variability in measuring 
birthweight, quite plausible in resource-constrained settings and appears to be the 
crucial factor and should be minimized.

○

Secondly, the addition of analytes may not substantially improve beyond the 
bithweight’s robust contribution in the algorithm unless we consider critical 
remedies. One most likely pointer towards the solution may be attributed to the 
postnatal age cut off taken to collect the samples for metabolomic studies. The 
Ontario cohort’s sample collection cut off was 48 h compared to the other two 
cohorts of 72 h. Though the authors do mention that in the latter two cohorts, “most 
samples would have been excluded” with 48 h cut off, it may be pertinent to give the 
break up to describe the “most”.

○

Further it will be worthwhile to see how the model performs by removing the 
samples between 48 h and 72 h, and the same be included in the appendix.

○

If possible, analyzes involving samples more closer to birth e.g. within 24 h should 
also be alluded to give a broader understanding to the audience. Such exercises may 
aid towards improving the current performance of the model at nearly 75% of 
samples being predicted with GA ±  1 w. We do believe certainly that the latter target 
should be much higher- maybe close to 90%.

○

Thus, as raised earlier, we would like to emphasize that a prospective cohort study 
design for validation with the samples collected well within 48 h may lead to better 
algorithm development. In fact, we would suggest this esteemed group of authors 

○

○

Gates Open Research

 
Page 17 of 47

Gates Open Research 2021, 4:164 Last updated: 01 JUL 2021



led by Hawken et al. to consider developing algorithm especially for the preterm 
infants recruiting subjects prospectively. 
 

Reference GA assessment for the Philippines cohort has been mentioned to have “generally 
received gestational dating ultrasounds” for infants born in private hospitals while “other 
infants GA were generally assessed using Ballard scoring”. This discrepancy probably 
explains why the Philippines restricted models (#3 or #2) did not perform well while 
validating with Manila cohort than with Ontario cohort. For example, for model # 3, the 
average MAE is higher for Manila cohort at 0.90 (0.90, 0.91) against Ontario cohort at 0.72 
(0.71, 0.72) (Table 4). In contrast, the average MAE for China restricted model against 
Ontario cohort (0.76; 0.75, 0.76) is slightly closer to Shanghai cohort (0.89; 0.86, 0.91).

Therefore, firstly, we would suggest to provide the break up of two methods of 
reference GA ascertainment for the Philippines cohort.

○

Secondly, we would like the authors to consider reviewing the analyses of the Manila 
cohort excluding the infants with GA assessed by Ballard scoring. We assume the 
remaining cohort may still be large to validate the algorithm robustly given that it 
originally comprises of over 80,000 infants.

○

In addition, the need for the suggested review may also be relevant because of 
another example, of SGA cohorts. As highlighted by the authors, model 2 should 
better perform in the SGA cohorts. However, for Manila SGA10 cohort, model 2 of 
Philippines restricted model has higher MAE (1.08; 1.06, 1.09) compared to that of 
model 3 (0.97; 0.96, 0.99). This is contrary to the Canadian scenario: (0.90; 0.85, 0.94) 
vs. (1.13; 1.09, 1.17) or even the Chinese scenario: (1.00; 0.84, 1.15) vs. (1.48; 1.32, 
1.64). 
 

○

○

It will also be worthwhile to have a view at the agreement plots (as in Figure 3) after 
removing the SGAs - SGA10, SGA3 and both in that order, especially in the Philippine cohort 
where SGAs constitute around 13% infants. This may also improve the average MAEs across 
the models 1 – 3. Additionally, separate agreement plots for SGAs should be explored as 
well, and considered to be included in the appendix if they make sense. This may 
particularly helpful for deveral LMICs regions having high prevalence of IUGR like South-
east Asian Region. 
 

○

We have noted a typo error: the proportion of infants predicted by Philippines restricted 
model for the Ontario cohort within +/- 2 weeks is mentioned as 69.9; this should perhaps 
be 96.9, going by the 95% CIs.

○
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The authors report the results of a validation study of previously developed algorithms to predict 
gestational age in post-natal settings. This is a complex task considering the many differences 
between the countries and the authors have gathered substantial datasets for this study. One 
model is based on sex and birthweight only. The two other models include metabolic profiles 
measured on dried blood spot samples during newborn screening for congenital disorders. The 
models were applied on data acquired in different laboratories in China and the Philippines in 
comparison with data from a Canadian laboratory where it was developed. The ultimate goal is 
legitimate and, although the results are promising, given the limitations observed for preterm 
infants, several aspects must be addressed and explored before the method can be used in the 
clinic. 
 
I could not assess the relevance or correct application of the deep learning method used, as well 
as bootstrap percentile confidence intervals, as these are not within my area of expertise. 
 
Comments: 
 
Introduction:

In paragraph 2, you state that “Samples are typically collected within the first few days after 
birth, but under special circumstances (e.g., preterm birth, neonatal transfer) may be 
collected later”. In your study, you selected samples collected within 48 hours only, and 
explain that the reason is that LMIC usually collect the samples in this timeframe. However, 

○
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you also state that “most samples would have been excluded if the >48-hour exclusion were 
applied to these validation cohorts” (Methods, paragraph 2), so it seems that many samples 
were collected between 48 and 72 hours as mentioned in the discussion. 
 

Please discuss whether your algorithm could then be used to target the right 
population, i.e. preterm birth, when the samples might not be collected within 48 or 
even 72 hours. 
 

○

In untargeted metabolomics of newborn dried blood spots, it has been shown that 
the baby’s age at sampling is a critical variable when one considers metabolic 
profiles, and only a few days difference has significant impact. Have you investigated 
the extent of impact of this variable on your targeted metabolic profiling? How do 
you intend to address this in your future research or when applying your algorithm? 
Have you considered integrating age at sampling as a variable in the algorithm (or as 
a stratification variable for the partitioning into subsets)? See also my comment 
regarding the discussion. 
 

○

Please discuss the limitation of applying the algorithm outside the age at sampling 
range on which it was developed (or mention/rephrase this limitation more 
specifically in the discussion: “one day later after birth than the samples used for model 
development” as no sample >48 hours was included during model development).

○

In untargeted metabolomics of newborn dried blood spots, another crucial covariate 
impacting metabolic profiling is month of birth (see Courraud et al. 2021), or so at least in 
Denmark. Being born in summer or winter is remarkably visible. Such effect might be or not 
be visible in various countries. Have you investigated this potential covariate in your 
targeted profiling and/or considered integrating it in the algorithm? 
 

○

Methods:
Paragraphs 3-5. Please specify which analytical methods are used in each center included in 
the study. Is it mass spectrometry everywhere? Do they use a marketed kit or laboratory-
developed tests? Consider giving more methodological details as supplementary material as 
different platforms may not give the same analytical performance. 
 

○

Paragraph 4. Please clarify why some infants get the expanded screening panel of 28 
diseases and discuss the risk of selection bias when choosing these infants for the 
validation. 
 

○

Paragraph 5. Please discuss the risk of selection bias when choosing to include only infants 
for whom tandem mass spectrometry data were available. Does this mean that all 
metabolites have been measured with this method? (Is this the method used to screen for 
phenylketonuria, congenital adrenal hyperplasia, hypothyroidism and Glucose-6-phosphate 
dehydrogenase deficiency?). 
 

○

If the applicability of the algorithm is dependent on the family’s income (being able to pay 
for extra screening), will it achieve its goal to reflect preterm birth globally, given that 
preterm birth is more frequent in families struggling economically? Please discuss. 
 

○

Paragraph 6 on GA assessment: for the Philippines, please indicate the proportion of infants ○
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for whom GA was assessed by ultrasound or using Ballard Scoring. A note on the precision 
of the Ballard scoring with a relevant reference would help the reader. 
 
On the same topic, you later state that “model performance was assessed by comparing the 
estimated GA from the model to the ultrasound-derived GA”. So it is unclear whether or not 
the infants for whom GA was assessed using Ballard Scoring are included at all. Please 
clarify. 
 

○

Table 1:
Please indicate what “C0”, “C2”, etc. refer to precisely. It might be obvious for someone in 
the field, but not to many readers for whom C18 might just be a free fatty acid and not the 
acyl-carnitine. You could for instance provide a list in supplementary data with full names 
and PubChemIDs. It helps bridging with the untargeted metabolomics community who is 
also working on the topic. 
 

○

Please be more specific as to which metabolites are included in model 2 and 3. It’s not clear, 
especially considering the “restricted models” in Table 4.

○

Models including newborn screening analytes: How did you cope with the metabolites 
missing in the validation cohorts? In the result section, you mention “Philippines-restricted” 
models, etc., please introduce them in the method section. Are the equations the same, just 
removing the missing metabolites or did you “re-develop” the models? Or? 
 

○

Are your models “resistant” to missing values? (In the real world, there will be missing 
values.) 
 

○

Would it be possible to report which metabolites have the biggest influence in each model? 
 

○

Have you considered a “model 4” restricted to the few metabolites measured for the “basic” 
screening panels offered in China and the Philippines? It would be accessible to more 
people as far as I understand, and might still perform better than just birthweight and sex. 
 

○

Statistical modeling: while MAE is clearly explained, it is unclear how RMSE is calculated and 
what it brings. An extra sentence would be welcome, for instance with an example as given 
for MAE. RMSE values in Table 4 are not discussed in the manuscript, so if this metric does 
not bring important elements to understand the work, consider giving the values in 
supplementary data. Else, please discuss this metric. 
 

○

Results and discussion:
Can you comment on the high percentage of SGA in the Filipino cohort? Could it be that the 
thresholds used (ref 14) are not applicable to this population? Could it also be why models 
generally perform better in the Filipino cohort for the SGA infants as compared to Canadian 
and Chinese cohorts? (More power). 
 

○

In relation to my comment above (introduction), you mention that a majority of Chinese 
samples have been collected between 48-72 hours. Without going into extensive details, 
could you present your hypotheses as to why this variable matters? (Are there special 
metabolic changes during this window for instance?).

○
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Minor comments: 
 
Introduction and methods:

Paragraph 3. “in cohorts of infants from in North American settings”. Please remove the 
“from”. 
 

○

Data cleaning and normalization: Please develop the LMIC abbreviation. 
 

○

Statistical modeling: “a reported MAE of 1.0 weeks”. Please write “week” for values below 2.0 
weeks throughout the manuscript (several places). 
 

○

Results:
Table 3: 
 

Females in Canadian cohort, please correct the percentage to 50.7%. 
 

○

Birthweight values. I do not think that the decimal makes sense considering the 
precision of the measurements. I doubt that the used equipment goes below 1 g of 
precision. I would present birthweight with no decimal. 
 

○

Please use only one decimal for percentage of SGA counts. 
 

○

○

Please add thousands separators throughout the manuscript in a homogeneous way. 
 

○

Internal validation: The second sentence is 61 words long. Please split it in 2-3 sentences for 
clarity. 
 

○

External validation in the Philippines cohort: please indicate the CI for model 1 and 2 
regarding the estimated preterm birth rate. 
 

○

Same comment for estimated preterm birth rate in the Chinese cohort using model 2. 
 

○

Figure 1.
(A) It would be more informative to describe models as follows:  Model 1: sex + birth 
weight; Model 2: sex + analytes; Model 3: sex + birth weight + analytes. “analyte 
model” and “full model” are not very clear. 
 

○

(C) redundant x axis legend. 
 

○

○

Discussion:
You write: “First, as observed in the differences in performance across the birth weight-only 
models developed in the three cohorts, the predictive utility of anthropomorphic 
measurements for estimating GA may vary across populations”. 
 

“birth weight-only models developed ” Do you mean the unique model 1 (sex + birth 
weight) applied in the 3 cohorts? This sentence is confusing as it implies that there 
are several models that were developed, when I had understood that you developed 
one model 1 based on the Canadian infants and applied “the final equations” to the 

○

○

Gates Open Research

 
Page 22 of 47

Gates Open Research 2021, 4:164 Last updated: 01 JUL 2021



other cohorts no involved in the development. Please clarify. 
 
Also, why do you think that the “predictive utility of anthropomorphic measurements 
for estimating GA may vary across populations”? It could be that anthropomorphic 
measurements are indeed too different between Canada and Asian populations, so 
the models developed with Canadian data are not performing in Chinese infants. But 
why question the utility of the measurement itself? (To make a comparison with, for 
instance, month of birth, one could argue that seasonal variation is relevant in some 
climates but not in others. I’m not sure why birthweight would be more or less 
relevant and I’m just curious as to whether you have a more specific hypothesis.) 
 

○

Sentence starting with “Previous validation of our models among”: Please split this sentence 
as it is too long and difficult to know what you are referring to when you end with 
“differences were more pronounced” (between what? These different subgroups? More 
pronounced compared to?). When you write “inherent biological differences”, do you mean 
both genetic and environmental? Please clarify.

○
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Introduction:
In paragraph 2, you state that “Samples are typically collected within the first few 
days after birth, but under special circumstances (e.g., preterm birth, neonatal 
transfer) may be collected later”. In your study, you selected samples collected within 
48 hours only, and explain that the reason is that LMIC usually collect the samples in 
this timeframe. However, you also state that “most samples would have been 
excluded if the >48-hour exclusion were applied to these validation cohorts” 
(Methods, paragraph 2), so it seems that many samples were collected between 48 
and 72 hours as mentioned in the discussion.

1. 

Response: Thank you for your careful review of the manuscript. We have removed the 
second half of the sentence as we now see that it could confuse reviewers.  
We have now provided more details on the exclusion criteria applied to the Ontario cohort 
for model development. The two criteria leading to the most exclusions were 1) requiring 
gold-standard GA measurement via 1st-trimester dating ultrasound, and 2) screening 
bloodspot collection within 48 hours of birth.  
The first exclusion criteria may have excluded infants born in rural or underserved areas of 
the province where access to comprehensive prenatal care was lower. In many cases 
however, this is more likely to be a data quality issue, where dating ultrasound was used 
but not recorded as such. The second criteria led to the disproportionate exclusion of 
preterm infants who more often had delayed sample collection, despite this not being 
recommended practice. Although this exclusion biased the rate of preterm gestation 
observed in our Ontario study cohort downward, but it was unlikely to have had any 
important impact on GA model development, as we still had a large sample size across the 
full spectrum of gestational ages at birth to allow robust model development and 
performance evaluation. Further, the inclusion of samples collected later than 48 hours 
would introduce a large amount of heterogeneity in analyte levels which had to be 
balanced against the impact of exclusions. Although our intention was to exclude samples 
collected later than 48 hours for the external cohorts as well, it was not possible to take 
this approach because only calendar day of sample collection was available. Since hourly 
data was not available, a 48-hour cut off would have excluded most samples. Therefore, we 
relaxed the exclusion criteria to >72 hours. We have reorganized the methods and provided 
additional details which will clarify some of these points.  
 
 

Please discuss whether your algorithm could then be used to target the right 
population, i.e. preterm birth, when the samples might not be collected within 48 or 
even 72 hours.

1. 

 
 
Response: We have reviewed data collected outside of the recommended time frame. In our 
first external validation study in Bangladesh (Murphy et al, eLife 2019), mean sample 
collection time was ~14 hours as mothers were often discharged before the 24-hour time 
frame.  If samples are collected too early, hemoglobin values still reflect maternal values 
and decreases the accuracy of the algorithm.  
Ultimately for the algorithm to be viable, it needs to be effective across a range of sample 
collection timings to accommodate for early or late collection times. 
 For accuracy of newborn screening, it is recommended that samples are collected between 
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24-48 hours as heterogeneity begins to appear after 48 hours. Limiting the collection time 
for algorithm development reduces the variability in the data and improves the accuracy of 
the algorithm.  
 
 
2. In untargeted metabolomics of newborn dried blood spots, it has been shown that the 
baby’s age at sampling is a critical variable when one considers metabolic profiles, and only 
a few days difference has significant impact. Have you investigated the extent of impact of 
this variable on your targeted metabolic profiling? How do you intend to address this in 
your future research or when applying your algorithm? Have you considered integrating 
age at sampling as a variable in the algorithm (or as a stratification variable for the 
partitioning into subsets)? See also my comment regarding the discussion. 
 
Response: This is an important consideration.  We did incorporate time of sample collection 
in earlier exploratory models, and though a significant term retained in the model, the 
effect of time at collection appeared to mostly be the addition of noise/heterogeneity 
rather than having a monotonic relationship with gestational age that improved model 
estimates. 
 
  
3. Please discuss the limitation of applying the algorithm outside the age at sampling range 
on which it was developed (or mention/rephrase this limitation more specifically in the 
discussion: “one day later after birth than the samples used for model development” as no 
sample >48 hours was included during model development). 
 
Response: We have made the suggested edit in the discussion as follows: 
 
“Another source of bias was that samples in infants born preterm in China, and to a lesser 
extent the Philippines, were much more likely to be collected later than in term infants, and 
often after 48-72 hours.  Samples collected beyond 48 hours were more heterogenous than 
samples collected within 48 hours but excluding these would have excluded 
an unacceptably large proportion of infants overall, especially preterm infants.  Our 
compromise approach of relaxing the criteria to exclude samples that were collected later 
than 72 hours after birth, included more infants at the cost of increased heterogeneity, but 
even so, still excluded a disproportionate number of preterm infants in the China and 
Philippines.  A combination of these factors likely contributed to the lower 
than expected preterm birth rates observed in China and in the Philippines validation 
cohorts, as well as leading to decreased apparent model performance due to more 
heterogeneous samples (collected 48-72 hours after birth) being included.” 
 
4. In untargeted metabolomics of newborn dried blood spots, another crucial covariate 
impacting metabolic profiling is month of birth (see Courraud et al. 2021), or so at least in 
Denmark. Being born in summer or winter is remarkably visible. Such effect might be or not 
be visible in various countries. Have you investigated this potential covariate in your 
targeted profiling and/or considered integrating it in the algorithm? 
 
Response: Thank you for this comment. We are aware of studies demonstrating seasonable 
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variability in newborn screening outcomes (i.e. Ryckman et al., 2013), and also based on 
discussions with subject matter experts within our Ontario newborn screening, however 
the effects noted in Ontario data were small. Despite this, we have actually accounted for 
seasonality in our data normalization process, in which analyte values were standardized 
within monthly strata over time, to address assay/reagent/standard changes over time, 
which had the additional benefit of removing any seasonal bias in analyte measurements 
within the Ontario, China and Philippines screening data. 
Reference: 
Ryckman KK, Berberich SL, Shchelochkov OA, Cook DE, Murray JC. Clinical and 
environmental influences on metabolic biomarkers collected for newborn screening. Clin 
Biochem. 2013 Jan;46(1-2):133-8. doi: 10.1016/j.clinbiochem.2012.09.013. Epub 2012 Sep 23. 
PMID: 23010448; PMCID: PMC3534803. 
 
Methods: 
 
1.  Paragraphs 3-5. Please specify which analytical methods are used in each center included 
in the study. Is it mass spectrometry everywhere? Do they use a marketed kit or laboratory-
developed tests? Consider giving more methodological details as supplementary material as 
different platforms may not give the same analytical performance. 
 
Response: In Ontario, hemoglobin profiles were determined by high performance liquid 
chromatography; neonatal 17-OHP, and TSH were measured using a PerkinElmer 
AutoDELFIA® Immunoassays; amino acid and acylcarnitine analysis was performed by 
tandem mass spectrometry; total TREC copy number was measured by quantitative 
polymerase chain reaction using a ThermoFisher Scientific Viia 7; biotinidase and 
galactose-1-phosphate uridyltransferase levels were measured using the Astoria-Pacific 
SPOTCHECK® Pro system. 
 
In the Philippines, a commercial kit is used for the measurement of amino acids, 
succinylacetone, free carnitine, acylcarnitines and PKU by tandem mass spectrometry 
(NeoBAse 1, Perkin Elmer). 17OHP and TSH to detect CAH and CH, respectively are detected 
using a Autodelfia kit by flouroimmunoassay (Perkin Elmer). Screening for G6PDH is done 
fluorometrically.  
 
We were unfortunately not able to confirm the details of analytical methods used in China. 
Based on published works (Shi et al., 2012), we have surmised the following: phenylalanine 
was measured fluorometrically to detect phenylketonuria. In congential hypothyroidism, 
TSH is quantified by radioimmunoassay (RIA), enzyme linked immunosorbent assay (ELISA) 
or dissociation-enhanced lanthanide flouroimmunoassay (DELFIA). The remaining tests for 
the expanded panel use tandem mass spectrometry. 
Reference: 
Shi XT, Cai J, Wang YY, Tu WJ, Wang WP, Gong LM et al. Newborn screening for inborn errors 
of metabolism in mainland china: 30 years of experience. JIMD Rep. 2012;6:79-83. doi: 
10.1007/8904_2011_119. Epub 2012 Jan 31. PMID: 23430943; PMCID: PMC3565663. 
 
 
2. Paragraph 4. Please clarify why some infants get the expanded screening panel of 28 
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diseases and discuss the risk of selection bias when choosing these infants for the 
validation. 
 
RESPONSE: Although the newborn screening initiatives are meant to be universal in these 
populations, some tests were paid for by the families. The expanded panel is now covered 
by National Health Insurance in the Philippines.  As our study only included samples for 
which the full panel of analytes was available, this could have contributed to a selection 
bias towards more affluent families. We have added the following to the discussion: 
 
“The preterm birth rate that we estimated in the current cohort (Philippines:4.6%, China: 
4.8%) was less than previously estimated (Philippines: 15%, China: 7.1%) (Blencowe et al., 
2012). Although newborn screening initiatives are meant to be universal in these 
populations, some tests are paid for by the families. Considering we only tested samples 
which the full panel was available this could have contributed to selection bias in our 
sample population towards more affluent families.” 
Reference: 
Blencowe H, Cousens S, Oestergaard M, Chou D, et al.: National, regional, and worldwide 
estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected 
countries: a systematic analysis and implications. The Lancet. 2012; 379 (9832): 2162-2172.  
 
3.Paragraph 5. Please discuss the risk of selection bias when choosing to include only 
infants for whom tandem mass spectrometry data were available. Does this mean that all 
metabolites have been measured with this method? (Is this the method used to screen for 
phenylketonuria, congenital adrenal hyperplasia, hypothyroidism and Glucose-6-phosphate 
dehydrogenase deficiency?). 
Response: The metabolites listed for each site with the expanded panel are listed in Table 1 
and in Figure 1.  All metabolites listed were measured at each external site. In Shanghai, 
tests for phenylketonuria, congenital adrenal hyperplasia, hypothyroidism and Glucose-6-
phosphate dehydrogenase deficiency are not measured by tandem mass spectrometry and 
are publicly funded. The expanded panel of tandem mass spectrometry are strongly 
recommended but participation is voluntary in both external settings at the time of 
analysis. There is a risk for selection bias toward a more affluent and medically aware 
population and we have included this in the manuscript. 
Reference: 
Shi XT, Cai J, Wang YY, Tu WJ, Wang WP, Gong LM et al. Newborn screening for inborn errors 
of metabolism in mainland china: 30 years of experience. JIMD Rep. 2012;6:79-83. doi: 
10.1007/8904_2011_119. Epub 2012 Jan 31. PMID: 23430943; PMCID: PMC3565663. 
 
4.If the applicability of the algorithm is dependent on the family’s income (being able to pay 
for extra screening), will it achieve its goal to reflect preterm birth globally, given that 
preterm birth is more frequent in families struggling economically? Please discuss. 
 
Response: Universal access and coverage for newborn screening is improving around the 
world. Since the initiation of this project, newborn screening is now fully funded in the 
Philippines. The authors agree that if the algorithm is dependent on a family’s ability to 
pay for screening, this could bias preterm birth rates and is not an ideal scenario for 
implementation of this approach. However, the approach we are evaluating isn’t intended 
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for implementation in either the Philippines or China - this was an opportunistic use of 
external cohorts with large retrospective screening databases where we could test our 
models in different geographic settings with results from local screening labs. Our 
approach is ultimately targeted to LMICs in Africa and South Asia, based on priorities 
defined by the Gates foundation assuming the necessary panel of analytes would be 
collected for the purpose of GA estimation. 
 
 
5. Paragraph 6 on GA assessment: for the Philippines, please indicate the proportion of 
infants for whom GA was assessed by ultrasound or using Ballard Scoring. A note on the 
precision of the Ballard scoring with a relevant reference would help the reader. 
 
Response: Although we knew general practice patterns of gestational dating method used 
in the Philippines, we did not have individual-level data on what method was used in each 
individual pregnancy, hence we accepted this as an additional source of validation error 
which would likely have led to larger MAE/RMSE. This was presented as a limitation in the 
discussion and we have clarified the description in the methods. It now reads:  
 
“In the Philippines cohort, mothers who delivered in private hospitals generally received 
gestational dating ultrasounds while other infants’ GAs were generally measured using 
Ballard Scoring, however individual-level data identifying which GA measurement method 
was used was not available.” 
We also added a statement in the discussion about the precision of the Ballard scoring: 
“Ballard tends to overestimate gestational age with a wide margin of error, particularly in 
preterm infants (Lee et al., 2016).” 
 
Reference: 
 
Lee AC, Mullany LC, Ladhani K, Uddin J, Mitra D, Ahmed P et al. Validity of Newborn Clinical 
Assessment to Determine Gestational Age in Bangladesh. Pediatrics. 2016 
Jul;138(1):e20153303. doi: 10.1542/peds.2015-3303. Epub 2016 Jun 16. PMID: 27313070; 
PMCID: PMC4925072. 
 
 
6. On the same topic, you later state that “model performance was assessed by comparing 
the estimated GA from the model to the ultrasound-derived GA”. So it is unclear whether or 
not the infants for whom GA was assessed using Ballard Scoring are included at all. Please 
clarify. 
 
Response: Thank you for pointing this out. We added a qualifying statement to correct this 
in the methods. The sentence now reads as follows. 
 
“For each infant, model performance was assessed by comparing the estimated GA from 
the model to the ultrasound-derived GA (or ultrasound or Ballard in the Philippines) and 
calculating validation metrics that reflect the precision of model estimates compared to 
reference GA values.” 
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Table 1: 
 
7. Please indicate what “C0”, “C2”, etc. refer to precisely. It might be obvious for someone in 
the field, but not to many readers for whom C18 might just be a free fatty acid and not the 
acyl-carnitine. You could for instance provide a list in supplementary data with full names 
and PubChemIDs. It helps bridging with the untargeted metabolomics community who is 
also working on the topic. 
 
Response: As this journal does not allow supplementary materials, the authors feel that 
providing the full names of all species would be more detail than is needed. We have added 
a reference to a previous paper which defines the list more exhaustively. We’ve also added 
subheadings which identify the ‘C’ species as acylcarntines.  
 
  
8. Please be more specific as to which metabolites are included in model 2 and 3. It’s not 
clear, especially considering the “restricted models” in Table 4 
 
Response: We have added in a new figure. (Figure 1) to make it more clear which analytes 
are used in the restricted models. 
 
9. Models including newborn screening analytes: How did you cope with the metabolites 
missing in the validation cohorts? In the result section, you mention “Philippines-restricted” 
models, etc., please introduce them in the method section. Are the equations the same, just 
removing the missing metabolites or did you “re-develop” the models? Or? 
 
Response: The internal validation of models 1-3 was conducted on an independent test 
dataset of Ontario infants. Since not all of the predictors available for the Ontario dataset 
were also available for the external datasets, we tailored the models 2 and 3 to include the 
maximum number of available predictors in each of the external datasets (which we called 
‘restricted models’). The list of analytes available at each site is presented in Table 1.  The 
tailored models were fit in the Ontario dataset, and validated in the external datasets. We 
have added a figure to clarify the different models tested. The Methods section now states: 
 
“A total of 47 newborn screening analytes, as well as sex, birth weight and multiple birth 
status, were used in the original Ontario model development. GA at birth (in weeks) 
determined by first trimester gestational dating ultrasound was the dependent variable. 
Multiple birth status and a subset of screening analytes were not available in the external 
cohorts (Table 1). Three main models were developed and evaluated in the Ontario cohort 
(Table 2). For models 2 and 3, we also developed restricted models including only the 
covariates available in each of the two external cohorts (Figure 1). Restricted models were 
trained on the Ontario datasets but deployed in the external cohorts.” 
  
10. Are your models “resistant” to missing values? (In the real world, there will be missing 
values.) 
 
Response: In the current study the sample size was large enough to exclude any samples 
with missing values and thus no imputation of missing values was done. In our external 
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validation studies (Murphy et al., 2019, Bota AB et al., 2020 and Hawken et al., 2021) where 
sample size was limited, we used multiple imputation for missing analyte values. If these 
models were to be implemented in real-world settings, we would use the same methods to 
impute missing values. 
 
References: 
Murphy M, Hawken S, Cheng W, Wilson L, Lamoureux M, Henderson M et al. Postnatal 
gestational age estimation using newborn metabolic profiles: A validation study in Matlab, 
Bangladesh. Elife. 2019 Mar 19;8. pii: e42627. doi: 10.7554/eLife.42627. 
 
Bota AB, Ward V, Hawken S, Wilson LA, Lamoureux M, Ducharme R, et al. Metabolic 
gestational age assessment in low resource settings: a validation protocol. Gates Open 
Res. 2021 Jan 28;4:150. doi: 10.12688/gatesopenres.13155.2. PMID: 33501414; PMCID: 
PMC7801859.  
Hawken S, Ducharme R, Murphy MSQ, Olibris B, Bota AB, Wilson LA, et al. Development and 
external validation of machine learning algorithms for postnatal gestational age 
estimation using clinical data and metabolomic markers. 2021.  BMC Pregnancy and 
Childbirth (under review). 
 
11. Would it be possible to report which metabolites have the biggest influence in each 
model? 
 
Response: Birth weight was the strongest predictor of gestational age overall. Seven 
analytes were the strongest predictors. Based on partial Spearman correlation analysis 
there were seven analyte covariates that had distinctly stronger partial correlations 
with GA compared to all others. These seven analytes in order of strength of partial 
spearman correlation are: fetal-to-adult hemoglobin ratio, 17-OHP, C4DC, TYR, ALA, C5, and 
C5DC. These details have been added to the methods. 
  
12. Have you considered a “model 4” restricted to the few metabolites measured for the 
“basic” screening panels offered in China and the Philippines? It would be accessible to 
more people as far as I understand, and might still perform better than just birthweight and 
sex.  
 
Response: We have previously derived and reported on restricted model results that 
included 17-hydroxyprogesterone(17OHP), thyroid stimulating hormone (TSH), and 
fetal/adults hemoglobin, as these are highly predictive analytes that can be cost-
effectively analyzed using non MS/MS marketed tests. Although these models were 
predictive, they were far inferior in performance to models evaluating the full set of 
expanded screening analytes and didn’t reach a promising level of precision in estimating 
GA, therefore we haven’t pursued them further.   
 
13.Statistical modeling: while MAE is clearly explained, it is unclear how RMSE is calculated 
and what it brings. An extra sentence would be welcome, for instance with an example as 
given for MAE. RMSE values in Table 4 are not discussed in the manuscript, so if this metric 
does not bring important elements to understand the work, consider giving the values in 
supplementary data. Else, please discuss this metric. 
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Response: Thank you.  We have elaborated on the difference between RMSE and MAE in the 
methods section, and have now provided formulas (please see manuscript text for 
formulas): 
 
“Model accuracy metrics were based on residual errors: the difference between model-
estimated GA and reference GA.  Although mean square error (MSE) is typically the loss 
function used in maximum-likelihood model fitting for continuous outcomes, it is not 
necessarily the best metric for assessing average agreement in model validation, as it is 
based on sum of squared differences, and hence is sensitive to large and small residuals.  
Therefore, the primary metric we have presented is the mean absolute error (MAE). MAE is 
the average of absolute values of residuals (values of the model estimate minus the 
reference GA) across all observations. MAE reflects the average deviation of the model 
estimate compared to the reference estimate, expressed in the same units as GA (weeks). 
 
 
For completeness, as well as for comparability to other published validations, we also report 
the square root of the MSE (RMSE). Also known as the standard error of estimation, RMSE is 
also expressed in the same units as GA (weeks). 
 
Lower values of both MAE and RMSE reflects more accurate model estimated GA.” 
  
Results and discussion:

Can you comment on the high percentage of SGA in the Filipino cohort? Could it be 
that the thresholds used (ref 14) are not applicable to this population? Could it also be 
why models generally perform better in the Filipino cohort for the SGA infants as 
compared to Canadian and Chinese cohorts? (More power).

1. 

Response: SGA was previously estimated to be 20.9% in an urban cohort of Filipino infants 
in the Cebu Longitudinal Health and Nutrition Survey (Jones et al 2008) and 22.5% in a 
smaller cohort (Blake et al 2016). The INTERGROWTH-21 SGA standards population did not 
include a Filipino cohort in its population, thus it is possible that this is not an acceptable 
reference for this particular population. Filipino infants born in Ontario have previously 
been shown to be at higher risk of being born small as compared to other Asian infants 
(Batsch et al). 
 
References: 
Jones LL, Griffiths PL, Adair LS, Norris SA, Richter LM, Cameron N. A comparison of the 
socio-economic determinants of growth retardation in South African and Filipino infants. 
Public Health Nutr. 2008 Dec;11(12):1220-8. doi: 10.1017/S1368980008002498. Epub 2008 
May 8. PMID: 18462561; PMCID: PMC2939971. 
Blake RA, Park S, Baltazar P, Ayaso EB, Monterde DB, Acosta LP, Olveda RM, Tallo V, 
Friedman JF. LBW and SGA Impact Longitudinal Growth and Nutritional Status of Filipino 
Infants. PLoS One. 2016 Jul 21;11(7):e0159461. doi: 10.1371/journal.pone.0159461. PMID: 
27441564; PMCID: PMC4956033.  
 
2. In relation to my comment above (introduction), you mention that a majority of Chinese 
samples have been collected between 48-72 hours. Without going into extensive details, 
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could you present your hypotheses as to why this variable matters? (Are there special 
metabolic changes during this window for instance?). 
 
Response: For accuracy of newborn screening, it is recommended that samples are 
collected between 24-48 hours as samples collected beyond that window have increasingly 
heterogeneous analyte results influenced by multiple exogenous factors that cannot be 
statistically adjusted for. Limiting the collection time for algorithm development reduces 
the variability in the data and improves the accuracy of the algorithm.  
 
 
Minor comments: 
 
Introduction and methods: 
 
1. Paragraph 3. “in cohorts of infants from in North American settings”. Please remove the 
“from”. 
 
Response: Thank you, this has been corrected. 
 
2. Data cleaning and normalization: Please develop the LMIC abbreviation. 
 
Response: Thank you, we have made this edit. 
  
3. Statistical modeling: “a reported MAE of 1.0 weeks”. Please write “week” for values below 
2.0 weeks throughout the manuscript (several places). 
 
Response: We have edited the manuscript to remove the s after any mention of 1 week. 
However, the authors think that any decimal number should be presented in plural (ie. 0.96 
weeks). We defer to the editors recommendations for guidance on this suggestion.  
 
Results: 
 
4. Table 3: Females in Canadian cohort, please correct the percentage to 50.7%. 
 
Response: Thank you, we have corrected this. 
 
 
5. Birthweight values. I do not think that the decimal makes sense considering the precision 
of the measurements. I doubt that the used equipment goes below 1 g of precision. I would 
present birthweight with no decimal. 
 
Response: Thank you, we have corrected this. 
 
6. Please use only one decimal for percentage of SGA counts. 
 
Response: We have made this edit in Table 3, thank you. 
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7. Please add thousands separators throughout the manuscript in a homogeneous way. 
 
Response:  We have corrected this in the manuscript, thank you. 
  
8. Internal validation: The second sentence is 61 words long. Please split it in 2-3 sentences 
for clarity. 
 
Response: We have edited this sentence. 
 
9. External validation in the Philippines cohort: please indicate the CI for model 1 and 2 
regarding the estimated preterm birth rate.            
 
Response:  We have corrected this in the manuscript, thank you. 
  
10. Same comment for estimated preterm birth rate in the Chinese cohort using model 2. 
 
Response:  We have corrected this in the manuscript, thank you. 
 
11. Figure 1

(A) It would be more informative to describe models as follows:  Model 1: sex + 
birth weight; Model 2: sex + analytes; Model 3: sex + birth weight + analytes. 
“analyte model” and “full model” are not very clear.

○

 (C) redundant x axis legend.○

1. 

Response: We have edited the figure and figure legend as suggested.  
 
Discussion:

You write: “First, as observed in the differences in performance across the birth 
weight-only models developed in the three cohorts, the predictive utility of 
anthropomorphic measurements for estimating GA may vary across populations”. 
 

“birth weight-only models developed ” Do you mean the unique model 1 (sex + 
birth weight) applied in the 3 cohorts? This sentence is confusing as it implies 
that there are several models that were developed, when I had understood 
that you developed one model 1 based on the Canadian infants and applied
 “the final equations” to the other cohorts no involved in the development. 
Please clarify. 
 

○

1. 

Response: We developed 3 models in the Ontario cohort which were applied to the external 
cohorts. Model 1 was a multivariable regression model including sex, birthweight and their 
interaction. Model 2 included ELASTIC NET regression model including sex, analytes and 
pairwise interactions among predictors, whereas model 3 used ELASTIC NET regression 
model including sex, birth weight, analytes and pairwise interactions among predictors. 
These were then applied to the external cohorts using analytes available in these settings. 
To clarify this, we have replaced all references to “birth weight only models” with 
referenced to Model 1 throughout the manuscript. 
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2. Also, why do you think that the “predictive utility of anthropomorphic measurements for 
estimating GA may vary across populations”? It could be that anthropomorphic 
measurements are indeed too different between Canada and Asian populations, so the 
models developed with Canadian data are not performing in Chinese infants. But why 
question the utility of the measurement itself? (To make a comparison with, for instance, 
month of birth, one could argue that seasonal variation is relevant in some climates but not 
in others. I’m not sure why birthweight would be more or less relevant and I’m just curious 
as to whether you have a more specific hypothesis.) 
 
RESPONSE: This is an important consideration.  As our intent was to externally validate 
models derived in Ontario infants, we applied Model 1 based on sex and birthweight model 
coefficients derived in Ontario infants.  Although birth weight was locally standardized 
within each of the three cohorts, it is possible that deriving local models in China and the 
Philippines and then applying them locally would yield better performance.  And we did see 
evidence of this in previous exploratory modeling we have done.  However our intent here 
was to deploy pre-trained models to use in estimating GA that don’t require an existing 
database in each new country that is large enough to derive a robust country-specific 
model.  
 
3. Sentence starting with “Previous validation of our models among”: Please split this 
sentence as it is too long and difficult to know what you are referring to when you end with 
“differences were more pronounced” (between what? These different subgroups? More 
pronounced compared to?). When you write “inherent biological differences”, do you mean 
both genetic and environmental? Please clarify. 
 
Response: Thank you we have edited the sentence and it now reads:  
 
“Previous validation of our models among infants born in Ontario to landed-immigrant 
mothers from eight different countries across Asia and North and Sub-Saharan Africa 
suggested that inherent biological differences may not be a significant contributor to 
newborn metabolic data and the performance of our algorithms (Hawken et al., 2017). 
However in an external validation of previously developed GA estimation models in a 
prospective cohort from South Asia (Murphy et al., 2019), the drop in performance was 
more pronounced, despite the centralized analysis of samples in the Ontario Newborn 
Screening lab.” 
 
References: 
Hawken S, Ducharme R, Murphy MSQ, et al.: Performance of a postnatal metabolic 
gestational age algorithm: a retrospective validation study among ethnic subgroups in 
Canada. BMJ Open. 2017;7(9):e015615. 28871012 10.1136/bmjopen-2016-015615 5589017 
Murphy MSQ, Hawken S, Cheng W, et al.: External validation of postnatal gestational age 
estimation using newborn metabolic profiles in Matlab, Bangladesh. eLife. 2019;8:e42627. 
30887951 10.7554/eLife.42627 6424558  

Competing Interests: No competing interests were disclosed.
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© 2021 Villar J et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

José Villar   
Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK 
Eric Ohuma  
London School of Hygiene & Tropical Medicine, London, UK 

In this manuscript by Hawken et al., the authors have performed an external validation of 
newborn metabolomic markers for postnatal GA estimation in East and South-East Asian infants 
using an Elastic Net regression modelling approach. 
 
Main comments:

There is no doubt that an accurate estimate of GA is key. However, the authors propose a 
postnatal estimation of GA which does very little in advancing and encouraging 
determination of GA in early pregnancy. This is the recommendation of the WHO, The 
Brighton Collaboration GAIA definitions Prematurity and assessment of gestational age, The 
National Institute for Health and Care Excellence (NICE) Guideline for Routine Antenatal 
Care (2008), and International Society of Ultrasound in Obstetrics and Gynaecology (ISUOG). 
 

○

There is a clear gap identified in the accuracy of determining GA especially in LMIC and I 
strongly doubt this approach will help in better characterising of the burden of vulnerable 
newborns and the potential impact towards achieving better estimates for population rates 
of preterm birth, low birth weight, small-for-gestational age, and combinations of these to 
identify other vulnerable newborn phenotypes. 

○

Overall reporting of results warrants improvement, the authors have decided to report 
overall mean agreement in GA between gold standard GA with model predicted GA and yet 
there are clearly large differences in precision and this differs according to GA (Figure 1). 
The authors should state explicitly what is meant by agreement within 7 days. For example, 
if on average, model estimate agrees within 7 days, this technically means ± 7 days and 
therefore for a given fetus say model GA estimate is 32 weeks + 0 days, this would mean 
that the true GA ranges between 31 weeks + 0 days and 33 weeks + 0 days which is 
effectively 2 weeks. Following this, the best model estimate (model 3) on average will be 
accurate to within 10 days at best. The authors should show a plot of true GA vs. predicted 
GA as this will evidently show the variability of the prediction as a function of GA as opposed 
to the aggregated estimates they have presented by GA in Figure 1.

○

Across all models, great discrepancies and perhaps unacceptable discrepancies are 
observed for GA before 39 weeks. I am not convinced this approach offers any 
benefit/added value/utility compared to other methods in common use such as best 
obstetric methods for ascertaining GA.

○

The team used blood spot samples collected within 48hrs of delivery – there is considerable 
extra effort involved, time, and cost for drawing blood spots and processing of analytes. I 

○

Gates Open Research

 
Page 35 of 47

Gates Open Research 2021, 4:164 Last updated: 01 JUL 2021

https://doi.org/10.21956/gatesopenres.14318.r30282
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-3116-2593


do not see how this would be a feasible alternative especially for LMIC where accurate 
estimation of GA is a key data gap. The merits of the proposed approach have to clearly 
outweigh the performance of other known methods for postnatal GA determination such as 
the Ballard Score.

 
Statistical modelling:

Statistical modelling uses split-sampling for model derivation and model validation. Data 
splitting is an unstable method for validating models because if you were to split the data 
again, develop a new model on the training sample, and test it on the holdout sample, the 
results are likely to vary significantly. Recommended resampling approaches are cross-
validation and bootstrapping and the authors should consider this. 
 

○

The authors should also report recommended metrics for evaluating model performance 
i.e., discrimination and calibration of the models.

○

Interaction terms for models 1-3 – could the authors comment on the added value of the 
interaction parameters and how much improvement in model performance can be 
attributed to the inclusion of the interaction parameters? 
 

○

Reference for classifying SGA – the authors provide the reference INTERGROWTH-21st very 
preterm size at birth reference charts. The reference provided is only for infants born 24 to 
<33 weeks. What about for infants born after 33 weeks? Can the authors confirm that for 
infants born ³33 weeks they used the IG standards provided here: Villar et al. (20141).

○

 
Results:

The authors should comment on the very low % preterm across the three cohorts. 
According to Blencowe et al. (20122), in 2010, the preterm birth rate in Philippines was 
estimated to be 15% (vs 4.6% in current cohort) and was 7.1% in China (vs 4.8% in current 
cohort).

○

In table 3, can the authors also include % low birth weight and % LGA?○

 
Minor comments:

It is unnecessary to have elastic net in the title – it distracts the main focus of the paper.○

 
 
References 
1. Villar J, Ismail L, Victora C, Ohuma E, et al.: International standards for newborn weight, length, 
and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the 
INTERGROWTH-21st Project. The Lancet. 2014; 384 (9946): 857-868 Publisher Full Text  
2. Blencowe H, Cousens S, Oestergaard M, Chou D, et al.: National, regional, and worldwide 
estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected 
countries: a systematic analysis and implications. The Lancet. 2012; 379 (9832): 2162-2172 
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We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 13 May 2021
Kumanan Wilson, Ottawa Hospital Research Institute, Ottawa, Canada 

Thank you for your review. We have carefully responded to your concerns. We are updating the 
manuscript accordingly and it will be posted shortly. 
 
Reviewer:  
In this manuscript by Hawken et al., the authors have performed an external validation of 
newborn metabolomic markers for postnatal GA estimation in East and South-East Asian 
infants using an Elastic Net regression modelling approach. 
 
Main comments:

There is no doubt that an accurate estimate of GA is key. However, the authors 
propose a postnatal estimation of GA which does very little in advancing and 
encouraging determination of GA in early pregnancy. This is the recommendation of 
the WHO, The Brighton Collaboration GAIA definitions Prematurity and assessment of 
gestational age, The National Institute for Health and Care Excellence (NICE) 
Guideline for Routine Antenatal Care (2008), and International Society of Ultrasound 
in Obstetrics and Gynaecology (ISUOG).

○

 
Response:  
While the authors agree that accurate estimation of GA in early pregnancy is critical as the 
reviewer has outlined above, our objective was to provide a non-invasive alternative in low 
resource settings where prenatal care involving GA dating ultrasound in the first trimester 
is not widely accessible. 
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Reviewer: 
There is a clear gap identified in the accuracy of determining GA especially in LMIC and I 
strongly doubt this approach will help in better characterising of the burden of vulnerable 
newborns and the potential impact towards achieving better estimates for population rates 
of preterm birth, low birth weight, small-for-gestational age, and combinations of these to 
identify other vulnerable newborn phenotypes.  
 
Response: 
Post-natal estimation of GA has been identified as a priority of the Gates Foundation to 
facilitate population-based surveillance https://www.linkedin.com/pulse/innovation-how-
50-year-old-drop-blood-helps-solve-urgent-mundel/ . In many LMIC's, accurate early 
pregnancy estimations of GA are not accessible due to lack of ultrasound, pre-natal care 
and the unreliability of LMP. Our goal was to develop and refine one more potential tool to 
support maternal newborn care and surveillance in low resource settings. This external 
validation study has provided important information on the strengths and limitations of 
applying this method in different settings. In combination with the work of 
others, this may be a component of a broader solution that combines the strengths of 
different approaches. This may be an acceptable approach for a demographic surveillance 
site, for example. Ultimately, non-invasive ‘omics methods may provide an alternative to 
first trimester ultrasound when not available. Furthermore, this approach could assist in 
distinguishing between SGA infants and pre-term infants to facilitate care at the individual 
infant level. However, the limitations of these approaches need to be recognized and our 
work identifies some of these challenges. 
 
Reviewer: 
Overall reporting of results warrants improvement, the authors have decided to report 
overall mean agreement in GA between gold standard GA with model predicted GA and yet 
there are clearly large differences in precision and this differs according to GA (Figure 1). 
The authors should state explicitly what is meant by agreement within 7 days. For example, 
if on average, model estimate agrees within 7 days, this technically means ± 7 days and 
therefore for a given fetus say model GA estimate is 32 weeks + 0 days, this would mean 
that the true GA ranges between 31 weeks + 0 days and 33 weeks + 0 days which is 
effectively 2 weeks. Following this, the best model estimate (model 3) on average will be 
accurate to within 10 days at best. The authors should show a plot of true GA vs. predicted 
GA as this will evidently show the variability of the prediction as a function of GA as opposed 
to the aggregated estimates they have presented by GA in Figure 1. 
 
Response:  
Thank you. We have clarified that “within” indicates ± X days from the true GA throughout 
the manuscript. We have now also included residual plots of predicted – observed by 
ultrasound-assigned gestational age (new Figure 2 in manuscript). 
 
Reviewer: 
Across all models, great discrepancies and perhaps unacceptable discrepancies are 
observed for GA before 39 weeks. I am not convinced this approach offers any 
benefit/added value/utility compared to other methods in common use such as best 
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obstetric methods for ascertaining GA. 
 
Response: 
We agree that the model did not perform well in infants born before 39 weeks’ gestation. 
However, results from our prospective validation studies are much more promising (1,2). In 
our previous prospective Bangladesh cohort, the model accurately estimated gestational 
age +/- 6 days (2). The current paper represents one component of our external validation 
strategy that included: a) validation in retrospective cohorts from established newborn 
screening programs and b) prospective validation in low-resource settings with primary 
data collection and better control over the quality of the ascertainment of the gold 
standard GA measurement.   
 

Murphy M, Hawken S, Cheng W, Wilson L, Lamoureux M, Henderson M et al. 
Postnatal gestational age estimation using newborn metabolic profiles: A validation 
study in Matlab, Bangladesh. Elife. 2019 Mar 19;8. pii: e42627. doi: 
10.7554/eLife.42627.

1. 

 
Hawken S, Ducharme R, Murphy MSQ, Olibris B, Bota AB, Wilson LA, et al. 
Development and external validation of machine learning algorithms for postnatal 
gestational age estimation using clinical data and metabolomic markers. BMC 
Medical Informatics and Decision Making (under review). Preprint: 
medRxiv 2020.07.21.20158196; doi: https://doi.org/10.1101/2020.07.21.20158196

1. 

The purpose of this study was to evaluate the utility of a model derived in the Ontario 
dataset but deployed in an external setting. It is possible that deriving models for each 
external site using the external data may yield more robust results, and this is something 
to possibly explore in the future. 
 
Reviewer: 
The team used blood spot samples collected within 48hrs of delivery – there is considerable 
extra effort involved, time, and cost for drawing blood spots and processing of analytes. I 
do not see how this would be a feasible alternative especially for LMIC where accurate 
estimation of GA is a key data gap. The merits of the proposed approach have to clearly 
outweigh the performance of other known methods for postnatal GA determination such as 
the Ballard Score. 
 
Response: 
Our objective in this external validation study was not to address feasibility, but rather to 
assess the performance of models developed in a North American cohort in infants in other 
international settings. The BMGF has funded our group to assess the feasibility of 
implementing our GA estimation method in multiple LMIC settings, including comparative 
accuracy/costs/burden versus other available methods so we will be able to address these 
important considerations when we publish. 
 
Statistical modelling: 
Reviewer: 
tatistical modelling uses split-sampling for model derivation and model validation. Data 
splitting is an unstable method for validating models because if you were to split the data 
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again, develop a new model on the training sample, and test it on the holdout sample, the 
results are likely to vary significantly. Recommended resampling approaches are cross-
validation and bootstrapping and the authors should consider this. 
 
Response: 
We agree with this comment, but in the context of much smaller databases. Although our 
modeling process did use bootstrapping and cross-validation in the model training phase 
(i.e. for optimizing ELASTICNET hyperparameters), our available sample was large enough 
to ensure that the test subset was large, stable and had a similar distribution of perinatal 
characteristics. Using a held-out test set also allowed us to exactly replicate the analysis 
pipeline that would be used in our external validations (i.e. data preprocessing, 
normalization etc. were executed separately, but using the same algorithm in the model 
training subset and in the internal validation subset, as well as in external validation 
settings, which would not be possible if a cross-validation approach was used). To reinforce 
this point, we conducted sensitivity analyses where we used different training and testing 
splits, and also a cross-validation approach, and these yielded nearly identical results. 
 
Reviewer: The authors should also report recommended metrics for evaluating model 
performance i.e., discrimination and calibration of the models. 
 
Response: 
In this paper, we did not report results from a logistic regression model or other method 
meant to classify term vs. preterm birth, so discrimination is not relevant in the context of 
the models we are reporting. However, based on our model estimates, we have reported 
the preterm birth rate that is based on observed GA above and below 37 weeks and model-
predicted GA above and below 37 weeks. This represents calibration in the large, which we 
have now clarified in the manuscript, and we have included plots of observed vs predicted 
GA (new Figure 2 in manuscript). 
 
Reviewer: 
Interaction terms for models 1-3 – could the authors comment on the added value of the 
interaction parameters and how much improvement in model performance can be 
attributed to the inclusion of the interaction parameters? 
 
Response:  
The inclusion of the interaction terms improved model performance appreciably, both 
overall and in important subgroups (<37 weeks and SGA10). The addition of the interaction 
terms reduced the MAE from 0.75 to 0.71 overall, from 1.14 to 1.03 in the <37 weeks 
subgroup, and from 1.39 to 1.13 in the SGA10 subgroup. We have now commented on the 
effect of the interactions in the methods section. 
 
Reviewer: 
Reference for classifying SGA – the authors provide the reference INTERGROWTH-21st very 
preterm size at birth reference charts. The reference provided is only for infants born 24 to 
<33 weeks. What about for infants born after 33 weeks? Can the authors confirm that for 
infants born ³33 weeks they used the IG standards provided here: Villar et al. (20141). 
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Response: 
Yes, we confirm that the reference provided by the reviewer was used for infants born 33 
weeks and older. We have updated the text accordingly. 
 
Results: 
 
Reviewer:  
The authors should comment on the very low % preterm across the three cohorts. 
According to Blencowe et al. (20122), in 2010, the preterm birth rate in Philippines was 
estimated to be 15% (vs 4.6% in current cohort) and was 7.1% in China (vs 4.8% in current 
cohort).Thank you we have commented on this in the discussion. The text now reads: 
 
Response: The preterm birth rate that we estimated in the current cohort (Philippines: 
4.6%, China: 4.8%) was less than previously estimated (Philippines: 15%, China: 7.1%)(3). 
Although newborn screening initiatives are meant to be universal in these populations, 
some tests were paid for by the families. In the Philippines, all newborn screening has been 
covered since 2019, but prior to that only 4 of the tests were covered. Considering we only 
tested samples which the full panel was available this could have contributed to selection 
bias in our sample population where infants born in higher resource/urban areas were 
preferentially included where preterm birth rates could be substantially different. We also 
excluded infants in whom samples were collected later than 72 hours after birth as these 
are subject to a high level of heterogeneity. This had a similar effect as it did in Ontario, 
disproportionately excluding preterm infants, lowering the preterm birth rate from 6.9% to 
4.8% in the China cohort (and thus accounting for the bulk of the discrepancy there) and 
from 5.6% to 4.62% in the Philippines cohort (thus accounting for only a very small part of 
the discrepancy). 
 
1. Blencowe H, Cousens S, Oestergaard M, Chou D, et al.: National, regional, and worldwide 
estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected 
countries: a systematic analysis and implications. The Lancet. 2012; 379 (9832): 2162-2172  
 
Reviewer: 
In table 3, can the authors also include % low birth weight and % LGA? 
 
Response: 
We have added low birthweight and LGA to Table 3. 
 
Reviewer; 
Minor comments:

It is unnecessary to have elastic net in the title – it distracts the main focus of the 
paper.

○

 
Response: 
Thank you, we have made this change. The title is now: External validation of machine 
learning models including newborn metabolomic markers for postnatal gestational age 
estimation in East and South-East Asian infants  
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Sunil Sazawal   
1 Centre for Public Health Kinetics, New Delhi, Delhi, India 
2 Johns Hopkins School of Public health, Baltimore, MD, USA 

General Comments: 
 
This is an interesting study where the authors have collected unique datasets both from 
developed country and developing country settings. The paper addresses a very pertinent 
question related to the gestational age dating especially in the developing country settings where 
early ultrasound dating is missing due to unavailability of resources or because of the cost 
involved in getting an ultrasound done. But it is yet to be seen whether taking blood spots in on 
Whatman paper is feasible and getting the screen done in a lab with MS is possible in these 
settings. The paper is generally well written and structured with enough details, however, there 
are some queries which the authors need to address to make the paper clearer and more 
transparent. 
 
Paper should be accepted for indexing with revisions.

Major Concern:
Although not highlighted but proved in the original manuscript there were exclusions 
and imputations. A section providing details of these and how these may have 
affected the outcome or made improvements needs to be clearly stated in methods 
and discussion. 
 

○

The full model seems to include addition Hb ratio’s and analyses not part of the 
newborn screening routinely, in terms of implications and discussion this needs 

○

1. 
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better discussed. While in results a result that was obtained with metabolic screen 
with clinical variable routinely available as birth weight needs to be the key primary 
estimate and other estimates need to be provided as secondary exploratory results. 
The distinction as provided current is blurred and confuses the reader. 
 

Other concerns:
Reference GA assessment○

2. 

Statement: In the Philippines cohort, mothers who delivered in private hospitals generally received 
gestational dating ultrasounds while other infants’ GAs were generally measured using Ballard 
Scoring 
 
Q: It is a discrepancy since Ontario based models trained data against USG confirmed GA. Then 
under External validation where Philippines samples were used: How can both ultrasound and 
Ballard scoring used under same bracket. 
 
Internal validation of model performance in Ontario, Canada  
Q: Was the internal validation performed with previously developed models including 47 analytes, 
birth weight, sex or the restricted model, needs clarification and discussed  
 
Q: Restricted model definition 
The proper definition of the restricted model is missing. Was a restricted model built separately 
for Manila and Shanghai or Separate models model were made for Manila and Shanghai 
 
Statistical methods 
Statement: In the Ontario cohort, all screen-positive results were excluded from analysis, which 
had the effect of removing a large proportion of extreme outliers and a typical metabolic profiles. 
 
Q: What is the meaning of screen positive? Does this mean that all children who had a metabolic 
disorder which might have abnormal values for some metabolites were removed? If so, was it 
done in the other two datasets and will the model then be not applicable to children who show 
abnormal values for the metabolites.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
No
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Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious disease, pediatrics, epidemiology and statistics, global health

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 05 May 2021
Kumanan Wilson, Ottawa Hospital Research Institute, Ottawa, Canada 

Reviewer 1  
  
General Comments:  
  
This is an interesting study where the authors have collected unique datasets both from 
developed country and developing country settings. The paper addresses a very pertinent 
question related to the gestational age dating especially in the developing country settings 
where early ultrasound dating is missing due to unavailability of resources or because of 
the cost involved in getting an ultrasound done. But it is yet to be seen whether taking 
blood spots in on Whatman paper is feasible and getting the screen done in a lab with MS is 
possible in these settings. The paper is generally well written and structured with enough 
details, however, there are some queries which the authors need to address to make the 
paper clearer and more transparent.  
  
Paper should be accepted for indexing with revisions.  
  
Major Concerns: 

Although not highlighted but proved in the original manuscript there were exclusions 
and imputations. A section providing details of these and how these may have 
affected the outcome or made improvements needs to be clearly stated in methods 
and discussion 

○

  
Response: No imputation of missing analyte/covariate values was undertaken either in the 
Ontario cohort or in the international cohorts given large sample sizes and very low occurrence 
of missing values. We have now provided further detail on the exclusion criteria applied in 
preparing the Ontario cohort for model development. The two criteria leading to the most 
exclusions were 1) requiring gold-standard GA measurement via 1st-trimester dating ultrasound, 
and 2) screening bloodspot collection within 48 hours of birth.   
The first exclusion criteria may have excluded infants born in rural or underserved areas of the 
province where access to comprehensive prenatal care was lower. In many cases however, this is 
more likely to be a data quality issue, where dating ultrasound was used but not recorded as 
such. The second criteria led to the disproportionate exclusion of preterm infants who more often 
had delayed sample collection, despite this not being recommended practice. Although 
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this exclusion biased the rate of preterm gestation observed in our Ontario study cohort 
downward, but it was unlikely to have had any important impact on GA model development, as 
we still had a large sample size across the full spectrum of gestational ages at birth to allow 
robust model development and performance evaluation. Further, the inclusion 
of samples collected later than 48 hours would introduce a 
large amount of heterogeneity in analyte levels which had to be balanced against the impact of 
exclusions. We have added more details to the methods and discussion reflecting these 
considerations.  
  
   
Reviewer:   
The full model seems to include addition Hb ratio’s and analyses not part of the newborn 
screening routinely, in terms of implications and discussion this needs better discussed. 
While in results a result that was obtained with metabolic screen with clinical variable 
routinely available as birth weight needs to be the key primary estimate and other 
estimates need to be provided as secondary exploratory results. The distinction as provided 
current is blurred and confuses the reader.  
  
Response:   
Hemoglobin types (eg HbF HbA - fetal and adult hemoglobin types) are measured during routine 
NBS in Ontario and the Philippines, in the course of identifying mutant types associated 
with hemoglobinopathies. These are reported as “peak percentages” with respect to total 
hemoglobin.  We have used the peak percentages for normal HbF, HbF1 and HbA to construct a 
ratio of fetal to adult hemoglobin by calculating (HbF+HbF1)/(HbF+HbF1+HbA), to measure the 
proportion of normal fetal hemoglobin, relative to the proportion of total normal fetal + adult 
hemoglobin types. This is strongly predictive of gestational age as the transition from fetal to 
adult hemoglobin occurs apace with fetal development. We have added these details to the 
Methods.   
   
 
Reviewer: 
Other concerns:  
Reference GA assessment  
Statement: In the Philippines cohort, mothers who delivered in private hospitals generally 
received gestational dating ultrasounds while other infants’ GAs were generally measured 
using Ballard Scoring  
  
Q: It is a discrepancy since Ontario based models trained data against USG confirmed GA. 
Then under External validation where Philippines samples were used: How can both 
ultrasound and Ballard scoring used under same bracket.  
  
Response:   
Although we knew general practice patterns of gestational dating method used in the Philippines, 
we did not have individual-level data on what method was used in each individual pregnancy, 
hence we accepted this as an additional source of validation error which would lead to 
larger MAE/RMSE. This was presented as a limitation in the discussion and we have clarified the 
description in the methods. It now reads:   

Gates Open Research

 
Page 45 of 47

Gates Open Research 2021, 4:164 Last updated: 01 JUL 2021



  
‘In the Philippines cohort, mothers who delivered in private hospitals generally received 
gestational dating ultrasounds while other infants’ GAs were generally measured using Ballard 
Scoring, however individual-level data identifying which GA measurement method was used was 
not available.’  
 
 
Reviewer:  
Internal validation of model performance in Ontario, Canada   
Q: Was the internal validation performed with previously developed models including 
47 analytes, birth weight, sex or the restricted model, needs clarification and discussed   
  
Response: 
The internal validation of models 1-3 was conducted on an independent test dataset of Ontario 
infants using all 47 analytes, multiple gestation, birthweight and sex. Since not all of the 
predictors available for the Ontario dataset were also available for the external datasets (multiple 
gestation and a small subset of analytes were absent), we tailored the models to include the 
maximum number of available predictors in each of the external datasets (which we called 
‘restricted models’). The list of analytes available at each site is presented in Table 1. The tailored 
models were fit in the Ontario dataset, and validated in the Ontario test set and external 
datasets. We have added a figure (Figure 1) to clarify the different models tested. The Methods 
section now states:  
  
'A total of 47 newborn screening analytes, as well as sex, birth weight and multiple birth status, 
were used in the original Ontario model development. GA at birth (in weeks) determined by first 
trimester gestational dating ultrasound was the dependent variable. A subset of 
screening analytes, as well as multiple gestation status were not available in the external cohorts 
(Table 1). Three main models were developed and evaluated in the Ontario cohort (Table 2). For 
models 2 and 3, we also developed restricted models including only the covariates available in 
each of the two external cohorts (Figure 1). Restricted models were trained on the Ontario 
datasets but deployed in the external cohorts.'  
  
 
Reviewer: 
Q: Restricted model definition  
The proper definition of the restricted model is missing. Was a restricted model built 
separately for Manila and Shanghai or Separate models model were made for Manila and 
Shanghai  
  
Response: 
Restricted models were built separately to be applied in Manila and Shanghai based on 
availability of screening analytes/predictors in each setting. These models were trained in the 
Ontario data and then deployed in the external cohorts. We have updated the text and the 
methods now read:  
  
A total of 47 newborn screening analytes, as well as sex, birth weight and multiple birth status, 
were used in the original Ontario model development. GA at birth (in weeks) determined by first 
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trimester gestational dating ultrasound was the dependent variable. A subset of 
screening analytes as well as multiple gestation were not available in the external cohorts (Table 
1). Three main models were developed and evaluated in the Ontario cohort (Table 2). Model 1 was 
developed excluding multiple gestation status, and for models 2 and 3, we also 
developed restricted models including only the covariates available in each of the two external 
cohorts (Figure 1). All of the restricted models were trained on the Ontario datasets and deployed 
in the external cohorts.  
  
 
Reviewer: 
Statistical methods  
Statement: In the Ontario cohort, all screen-positive results were excluded from analysis, 
which had the effect of removing a large proportion of extreme outliers and atypical 
metabolic profiles.  
  
Q: What is the meaning of screen positive? Does this mean that all children who had a 
metabolic disorder which might have abnormal values for some metabolites were removed? 
If so, was it done in the other two datasets and will the model then be not applicable to 
children who show abnormal values for the metabolites.  
  
Response:  
Screen positive refers to infants who tested positive for a disorder in the screening panel. We have 
clarified this statement in the methods. These infants were excluded from the Ontario population 
as they tend to have extreme outlying values for some analytes which impact negatively on model 
development. Additionally, we employed a strategy of winsorizing extreme values that lay more 
than three IQRs above the third quartile or three IQRs below the first 
quartile. Winsorizing replaces these extreme outliers with the upper and lower boundary value 
for the analyte, which preserves the extremeness, but reduces the impact of the original 
value. The same winsorization algorithm was applied in the external cohorts. Screen positive data 
points were not explicitly removed from the Philippines and China datasets. The reviewer is 
correct that the model may not be as accurate for children with abnormal values, however in the 
external settings where this algorithm is being deployed, it would not be known whether infants 
had a disorder at birth, so the model would need to be as robust as possible in estimating GA 
under these conditions. Because of the approach we took, the impact of abnormal/extreme 
values would be attenuated by our data normalization strategy which included both log 
transformation and Winsorization of extreme outliers. The occurrence of extreme outliers for 
either screen positive infants or for other reasons was extremely low, so would only affect a 
small number infants, but our strategy allowed us to produce a GA estimate in these infants 
that was robust to extreme values and less likely to produce a wildly inaccurate estimate. We have 
clarified these details in the Methods.  
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