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Abstract: The dynamic behaviour of micro- and nano-beams is investigated by the nonlocal con-
tinuum mechanics, a computationally convenient approach with respect to atomistic strategies.
Specifically, size effects are modelled by expressing elastic curvatures in terms of the integral mixture
of stress-driven local and nonlocal phases, which leads to well-posed structural problems. Relevant
nonlocal equations of the motion of slender beams are formulated and integrated by an analytical
approach. The presented strategy is applied to simple case-problems of nanotechnological interest.
Validation of the proposed nonlocal methodology is provided by comparing natural frequencies with
the ones obtained by the classical strain gradient model of elasticity. The obtained outcomes can be
useful for the design and optimisation of micro- and nano-electro-mechanical systems (M/NEMS).

Keywords: free vibrations; nanostructures; size effects; stress-driven mixture model; integral elastic-
ity; MEMS/NEMS

1. Introduction

The modelling and design of advanced small-scale structures is a topic of major
interest in nanoengineering. Many recent contributions in the literature concern the anal-
ysis and optimisation of new-generation composites and devices such as: biosensors [1],
DNA-based sensors [2], nano/micro-resonators [3], energy harvesters [4], cantilever-based
MEMS/NEMS [5], nanogenerators [6], and nanocomposites [7,8].

Analysis of micro and nanostructures has to be carried out by adequately modelling
the effect of molecular interactions and inter-atomic forces which are technically significant.
These long-range interactions result in size effects which cannot be overlooked. Continuum
mechanics can be conveniently exploited to capture these small-scale phenomena and
to predict the size-dependent responses of structural components of smaller and smaller
devices, provided that some internal characteristic lengths are properly accounted for.
Thus, nonlocal models of elastic continua can be conveniently adopted in place of atomistic
methodologies which are computationally expensive.

Seminal works on nonlocal mechanics were contributed in [9–11]. Subsequently, Eringen
formulated a nonlocal model of elasticity based on a strain-driven integral convolution effi-
ciently applied to screw dislocation and wave propagation problems involving unbounded
domains [12,13].

Thanks to the choice of a special averaging integral kernel, the strain-driven integral
model was reversed by Eringen himself, providing a simpler, but equivalent, differential
formulation. However, when applied to bounded structural domains, Eringen’s strain-
driven model leads to ill-posed problems due to incompatibility between constitutive law
and equilibrium requirements [14].

To bypass the aforementioned issues, a mixture strain-driven theory was developed,
based on a convex combination of local and nonlocal contributions. First proposed by
Eringen in [15], strain-driven two-phase theory has been recently applied in several studies,
such as [16–20].
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However, for a vanishing local fraction, Eringen’s mixture leads to singular structural
problems [21]. All difficulties related to Eringen’s purely nonlocal model are overcome
by the stress-driven nonlocal model [22–25] extended by the stress-driven two-phase
elastostatic theory that, unlike the local/nonlocal strain-driven mixture, provides a well-
posed methodology for any local fraction [26,27]. Since local/nonlocal mixtures are able to
model both stiffening and softening behaviors of small-scale structures [18], they can be
conveniently adopted to solve applicative problems of nanoengineering.

Thus, the motivation of the present research is to develop a well-posed stress-driven
two-phase methodology to model the size-dependent dynamic behaviour of small-scale
elastic beams, generalising the treatment contributed in [28] confined to stress-driven purely
nonlocal nanomaterials. The proposed analytical approach, here applied to solve exemplary
1-D structural problems of technical interest, provides an advancement in nonlocal dynamics
of beams with respect to the state of the art. Theoretical predictions obtained in the present
research are in agreement with experimental evidence regarding small-scale inflected beams
exposed in [29,30]. Extension of the stress-driven elasticity mixture to size-dependent buck-
ling and dynamic problems of advanced materials and 2-D structures, such as graphene
nanoribbons [31], will be contributed in a forthcoming paper.

The plan is the following. Kinematics and equilibrium of slender beams are prelimi-
narily recalled in Section 2. There, the mixture stress-driven model of integral elasticity
and its equivalent differential formulation are also provided. The associated differential
problem governing free bending vibrations of two-phase elastic beams is formulated in
Section 3. A parametric study is accomplished in Section 4 to examine the size-dependent
vibrational responses of simple structural schemes of technical interest. Comparisons with
outcomes obtained by the strain gradient elasticity theory are also performed and discussed
in detail. Closing remarks are provided in Section 5.

2. Stress-Driven Mixture of Integral Elasticity

Let us consider a slender straight beam under flexure. L indicates the beam length, m
denotes the mass per unit length and K is the local elastic bending stiffness, i.e., the second
moment of Euler–Young moduli field E on the beam cross-section.

The bending plane is described by the Cartesian axes (x, y), with x coinciding with
the beam axial abscissa. Denoting with v : [0, L] 7→ < the transverse displacement field of
beam axis, the kinematic hypothesis of Bernoulli–Euler theory prescribes that the linearised
geometric curvature field χt : [0, L] 7→ < at a time t is related to displacements as follows

χt = v(2) = χel + χnel , (1)

where the symbol (•)(n) denotes n-times differentiation along the beam axis x. In Equation (1),
χel is the elastic curvature and χnel stands for all other non-elastic curvature fields. Here-
inafter, dependence on time is omitted for the sake of brevity. Equilibrated stress fields in
Bernoulli–Euler beams are described by bending moments M : [0, L] 7→ < fulfilling the
differential equation of d’Alembert dynamic equilibrium, that is:

M(2) = q−m v̈ , (2)

where q is a transversely distributed loading and a superimposed dot ˙(•) denotes the time
derivative. The shear force field is defined by T := −M(1) : [0, L] 7→ <.

According to the mixture stress-driven model of elasticity [21], the elastic curvature

χel is a convex combination of the source local field
M
K

and of the convolution between
the source field and a proper averaging kernel φLc described by a characteristic length Lc.
That is,

χel = α
M
K
(x) + (1− α)

∫ L

0
φLc(x, ξ)

M
K
(ξ) dξ . (3)
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Denoting with λ a positive nonlocal parameter, the characteristic length is defined
as Lc := λ L. In Equation (3), 0 ≤ α ≤ 1 is the mixture parameter; for α = 0, the purely
nonlocal stress-driven integral model is obtained, while for α = 1, the classic local law of
elasticity is recovered.

The averaging kernel is assumed to be the bi-exponential function (Helmholtz’s kernel)

φLc(x) =
1

2Lc
exp

(
−|x|

Lc

)
, (4)

fulfilling symmetry, positivity and limit impulsivity [13].
Adopting the special kernel in Equation (4), an equivalent differential formulation [14]

of the mixture nonlocal model in Equation (3) can be proven as follows. Indeed, the special
kernel in Equation (4) is the Green’s function of the linear differential operator defined as
Lx := 1− L2

c (•)(2). Thus, LxφLc(x) = δ(x), where δ denotes the Dirac unit impulse. Now,
let us rewrite Equation (3) as follows(

χel − α
M
K

)
(x) = (1− α)

∫ L

0
φLc(x, ξ)

M
K
(ξ) dξ , (5)

and, applying the differential operator Lx to Equation (5), we obtain the following expression:

Lx

(
χel − α

M
K

)
(x) = (1− α)

∫ L

0
LxφLc(x, ξ)

M
K
(ξ) dξ = (1− α)

M
K
(x) . (6)

Thus, the differential equation equivalent to the two-phase model in Equation (3)
writes as

Lx

(
χel − α

M
K

)
(x) = (1− α)

M
K
(x) . (7)

The special averaging kernel satisfies the homogeneous boundary conditions proven
in [14] {B0φLc |0 = 0 ,

BLφLc |L = 0 ,
(8)

where B0 := 1− Lc (•)(1) and BL := 1 + Lc (•)(1) are differential operators defined at the
boundary. Thus, the constitutive boundary conditions associated with Equation (7) are
obtained by applying B0 and BL to Equation (5) as follows:

B0

(
χel − α

M
K

)
|0 = 0 ,

BL

(
χel − α

M
K

)
|L = 0 .

(9)

The equivalent differential Equation (7) equipped with boundary conditions in Equation (9)
can be finally rewritten as

χ(x)
L2

c
− χ(2)(x) =

1
L2

c

M
K
(x)− α

M
K

(2)
(x) , (10)


χ(1)(0)− 1

Lc
χ(0) = α

(
M
K

(1)
(0)− 1

Lc

M
K
(0)
)

,

χ(1)(L) +
1
Lc

χ(L) = α

(
M
K

(1)
(L) +

1
Lc

M
K
(L)
)

,

(11)

where the geometric curvature field χ has been assumed to be coincident with the elastic
one χel .
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3. Scale-Dependent Free Vibrations

The structural problem of a Bernoulli–Euler nonlocal beam undergoing free vibrations
is formulated by adopting the two-phase stress-driven model illustrated in Section 2.

Let us preliminarily take the second derivative of Equation (10) along the beam abscissa x

1
L2

c
χ(2) − χ(4) =

1
L2

c

M(2)

K
− α

M(4)

K
, (12)

where a uniform bending stiffness K has been assumed. Enforcing the differential condi-
tion of kinematic compatibility in Equation (1) and prescribing the differential equilibrium
Equation (2) with a vanishing loading, we obtain the differential equation governing bending-
free vibrations of a nonlocal beam, that is

1
L2

c
v(4) − v(6) = − 1

L2
c

mv̈
K

+ α m
v̈(2)

K
. (13)

We are interested in synchronous motions v(x, t) ; that is, each abscissa x of the beam
axis executes the same motion in time. From a mathematical point of view, such a solution
v(x, t) is separable in spatial and time variables and thus can be expressed as

v(x, t) = ψ(x) φ(t) . (14)

Substituting Equation (14) in Equation (13) yields

1
L2

c
ψ(4)(x)φ(t)− ψ(6)φ(t) = − 1

L2
c

m ψ(x)φ̈(t)
K

+
α m ψ(2)(x)φ̈(t)

K
. (15)

Thus, from Equation (15), we obtain the following condition:

φ̈(t)
φ(t)

=

1
L2

c
ψ(4)(x)− ψ(6)(x)

− 1
L2

c

m ψ(x)
K

+
α m ψ(2)(x)

K

= β , (16)

with β being a constant value. The condition in Equation (16) provides thus two basic
differential equations:

φ̈(t)− β φ(t) = 0 ,

ψ(6)(x)− 1
L2

c
ψ(4)(x)− α m ω2ψ(2)(x)

K
+

m ω2ψ(x)
L2

c K
= 0 .

(17)

If β were positive, then, according to the general integral of Equation (17)1, φ(t) would be
the sum of two exponential functions, one of them diverging along with the time variable and
thus incompatible with the linearised Bernoulli–Euler theory. Hence, β must be negative and,
according to its dimension, it represents the square of natural frequency; that is β := −ω2.
Thus, Equation (17)1 is the differential equation governing harmonic motions and its general
integral is given by

φ(t) = a sin(ω t) + b cos(ω t) , (18)

where the pair of unknown constants (a, b) can be evaluated by prescribing suitable initial
conditions.

Evaluation of beam natural frequencies consists in solving the differential eigenvalue
problem formulated as follows:

1. Solving Equation (17)2 in terms of the vector c of integration constants ci, i ∈ {1, ..., 6}.
2. Enforcing standard and constitutive boundary conditions to get a homogeneous

algebraic linear system A(λ, α, s)c = o.
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3. Solving the characteristic nonlinear equation

det A{λ,α}(ω
2) = 0 , (19)

for any fixed pair of parameters {λ, α}, to detect natural frequencies ω.

4. Case-Problems: Numerical Outcomes

The differential eigenvalue problem for nonlocal beams illustrated in Section 3 is here
adopted to numerically detect fundamental natural frequencies ω1 as functions of nonlocal
and mixture parameters, for some exemplar structural schemes: clamped-free, simply
supported, clamped-pinned and doubly clamped beams. Plots and results are provided in
terms of the following non-dimensional fundamental natural frequency

ω∗ := ω1 L2
√

m
K

. (20)

The solution methodology explained in Section 3 requires the prescription of four
kinematic and/or static boundary conditions depending on the structural scheme at hand.
Thus, the following standard boundary conditions will be prescribed:

v = 0 , v(1) = 0 clamped end ,

v = 0 , M = 0 pinned end ,

M = 0 , M(1) = 0 f ree end .

(21)

For all considered beams (see Figure 1), the following two constitutive boundary
conditions must be enforced:

χ(1)(0)− 1
Lc

χ (0) = α
M(1)(0)

K
− α

Lc

M(0)
K

,

χ(1)(L) +
1
Lc

χ (L) = α
M(1)(L)

K
+

α

Lc

M(L)
K

.

(22)

It is worth noting that, by virtue of Equation (10), bending moment M appearing
in static boundary conditions (Equation (21)) and in constitutive boundary conditions
(Equation (22)) can be expressed as follows:

M(x) = K ψ(2)(x)φ(t)− L2
c K ψ(4)(x)φ(t)− α L2

c m ψ(2)(x)φ(t) . (23)

In all examined case studies, free vibration analysis based on the mixture stress-
driven elasticity shows stiffening or softening structural behaviors for the increasing
nonlocal or mixture parameter, respectively. Indeed, plots of non-dimensional fundamental
natural frequencies in Figures 2–5 show that frequency increases with λ and decreases
with α. Moreover, as shown in Figure 6, stiffening structural behaviours are obtained for
increasing redundancy degree. Numerical results of non-dimensional fundamental natural
frequencies of adopted structural schemes are shown in Tables 1–5.

It is worth noting that for α = 1, local fundamental frequencies are recovered, while
for α = 0, fundamental natural frequencies obtained by the stress-driven nonlocal model
are achieved [28].

Moreover, fundamental natural frequencies are compared with the ones obtained by
the gradient elasticity theory [32–34]. For all examined case studies, structural responses
predicted by gradient elasticity theory (GradEla) are included between purely local (α = 1)
and nonlocal (α = 0) cases, for increasing nonlocal parameter λ.
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Figure 1. Geometric sketches of adopted structural schemes.

Figure 2. Cantilever beam: non-dimensional fundamental natural frequency ω∗ vs. nonlocal parameter λ for α ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0}.
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Figure 3. Pinned-pinned beam: non-dimensional fundamental natural frequency ω∗ vs. nonlocal parameter λ for
α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}.

Figure 4. Clamped-pinned beam: non-dimensional fundamental natural frequency ω∗ vs. nonlocal parameter λ for
α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}.
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Figure 5. Clamped-clamped beam: non-dimensional fundamental natural frequency ω∗ vs. nonlocal parameter λ for
α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}.

Figure 6. Non-dimensional fundamental natural frequency ω∗ vs. nonlocal parameter λ, evaluated for mixture parameter
α = 0.5, for clamped-free (CP), pinned-pinned (PP), clamped-pinned (CP) and clamped-clamped (CC) structural schemes.
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Table 1. Cantilever beam: non-dimensional fundamental natural frequencies ω∗ = ω1L2
√

m
EI .

λ
ω∗

GradEla
α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

0+ 3.5160 3.5160 3.5160 3.5160 3.5160 3.5160 3.5160
0.01 3.5515 3.5443 3.5372 3.5301 3.5230 3.5160 3.5168
0.02 3.5877 3.5731 3.5585 3.5442 3.5300 3.5160 3.5192
0.03 3.6246 3.6021 3.5800 3.5583 3.5370 3.5160 3.5230
0.04 3.6621 3.6315 3.6016 3.5724 3.5439 3.5160 3.5282
0.05 3.7002 3.6612 3.6232 3.5865 3.5507 3.5160 3.5348
0.06 3.7389 3.6911 3.6449 3.6004 3.5575 3.5160 3.5426
0.07 3.7781 3.7211 3.6666 3.6143 3.5642 3.5160 3.5515
0.08 3.8177 3.7514 3.6882 3.6281 3.5708 3.5160 3.5615
0.09 3.8577 3.7817 3.7098 3.6418 3.5773 3.5160 3.5725
0.10 3.8981 3.8120 3.7313 3.6553 3.5837 3.5160 3.5843

Table 2. Pinned-pinned beam: non-dimensional fundamental natural frequencies ω∗ = ω1L2
√

m
EI .

λ
ω∗

GradEla
α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

0+ 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696
0.01 9.8744 9.8734 9.8725 9.8715 9.8706 9.8696 9.8743
0.02 9.8883 9.8845 9.8808 9.8771 9.8733 9.8696 9.8875
0.03 9.9107 9.9025 9.8942 9.8860 9.8778 9.8696 9.9081
0.04 9.9410 9.9266 9.9123 9.8980 9.8838 9.8696 9.9349
0.05 9.9786 9.9565 9.9346 9.9128 9.8911 9.8696 9.9666
0.06 10.0228 9.9916 9.9607 9.9300 9.8997 9.8696 10.0023
0.07 10.0729 10.0313 9.9901 9.9495 9.9093 9.8696 10.0407
0.08 10.1285 10.0751 10.0225 9.9708 9.9198 9.8696 10.0811
0.09 10.1888 10.1225 10.0575 9.9937 9.9311 9.8696 10.1224
0.10 10.2534 10.1731 10.0946 10.0179 9.9429 9.8696 10.1639

Table 3. Clamped-pinned beam: non-dimensional fundamental natural frequencies ω∗ = ω1L2
√

m
EI .

λ
ω∗

GradEla
α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

0+ 15.4184 15.4183 15.4183 15.4183 15.4182 15.4182 15.4182
0.01 15.5854 15.5512 15.5174 15.4840 15.4509 15.4182 15.4385
0.02 15.7781 15.7030 15.6294 15.5575 15.4871 15.4182 15.4969
0.03 15.9958 15.8724 15.7532 15.6379 15.5263 15.4182 15.5897
0.04 16.2373 16.0583 15.8875 15.7242 15.5679 15.4182 15.7137
0.05 16.5016 16.2593 16.0310 15.8154 15.6115 15.4182 15.8657
0.06 16.7874 16.4737 16.1823 15.9105 15.6564 15.4182 16.0427
0.07 17.0931 16.7000 16.3399 16.0085 15.7023 15.4182 16.2419
0.08 17.4173 16.9364 16.5024 16.1084 15.7485 15.4182 16.4606
0.09 17.7585 17.1814 16.6686 16.2092 15.7947 15.4182 16.6965
0.10 18.1152 17.4332 16.8370 16.3103 15.8406 15.4182 16.9473
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Table 4. Clamped-clamped beam: non-dimensional fundamental natural frequencies ω∗ = ω1L2
√

m
EI .

λ
ω∗

GradEla
α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

0+ 22.3737 22.3736 22.3736 22.3735 22.3734 22.3733 22.3734
0.01 22.8518 22.7531 22.6559 22.5602 22.4660 22.3733 22.4268
0.02 23.3932 23.1758 22.9655 22.7618 22.5645 22.3733 22.5812
0.03 23.9976 23.6394 23.2993 22.9757 22.6674 22.3733 22.8284
0.04 24.6643 24.1412 23.6540 23.1991 22.7732 22.3733 23.1619
0.05 25.3918 24.6772 24.0259 23.4293 22.8804 22.3733 23.5762
0.06 26.1774 25.2430 24.4106 23.6632 22.9877 22.3733 24.0660
0.07 27.0180 25.8337 24.8038 23.8981 23.0937 22.3733 24.6266
0.08 27.9098 26.4440 25.2014 24.1312 23.1973 22.3733 25.2532
0.09 28.8488 27.0689 25.5994 24.3603 23.2976 22.3733 25.9412
0.10 29.8307 27.7033 25.9944 24.5837 23.3940 22.3733 26.6861

Table 5. Non-dimensional fundamental natural frequencies [ ω∗ = ω1L2
√

m
EI ] of clamped-free (CF), pinned-pinned (PP),

clamped-pinned (CP) and clamped-clamped (CC) beams, for α = 0.5.

λ
ω∗

CF PP CP CC

0+ 3.5160 9.8696 15.4183 22.3735
0.01 3.5336 9.8720 15.5007 22.6079
0.02 3.5514 9.8789 15.5933 22.8628
0.03 3.5691 9.8901 15.6950 23.1355
0.04 3.5869 9.9051 15.8049 23.4228
0.05 3.6047 9.9237 15.9217 23.7212
0.06 3.6225 9.9453 16.0440 24.0272
0.07 3.6402 9.9697 16.1708 24.3370
0.08 3.6578 9.9965 16.3008 24.6473
0.09 3.6753 10.0254 16.4328 24.9549
0.10 3.6927 10.0560 16.5659 25.2573

5. Concluding Remarks

Free bending vibration analysis of small-scale elastic beams has been carried out by
adopting the stress-driven mixture model of elasticity. In particular, a consistent stress-
driven two-phase nonlocal methodology has been presented to parametrically investigate
the size-dependent dynamic behaviour of nanobeams. Thus, size effects on fundamental
natural frequencies have been numerically investigated and assessed for selected case
studies of current interest in nanomechanics, providing new benchmark results for the
modelling and design of small-scale structures.

Moreover, the analytical and numerical findings of this research provide an extension
of previous contributions in [28], where free vibrations were studied by resorting to the
special stress-driven purely nonlocal model [22]. A comparison with the gradient elasticity
theory has also been carried out.

Thus, a well-posed methodology has been provided in the paper to capture the size-
dependent dynamic behaviours of small-scale structures for a wide range of dynamic
nanoengineering problems.

Indeed, the presented local/nonlocal mixture formulation represents a general approach
which is able to simulate both softening and stiffening size-dependent dynamic behaviors
characterising smaller and smaller technological devices, as experimentally confirmed in the
literature (see, e.g., [29,30]). Accordingly, such a strategy can be efficiently exploited for the
design and optimisation of nanoengineered materials, modern sensors and actuators.
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