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All sequence data contain inherent information that can be measured by Shannon’s uncertainty theory.
Such measurement is valuable in evaluating large data sets, such as metagenomic libraries, to prioritize their
analysis and annotation, thus saving computational resources. Here, Shannon’s index of complete phage
and bacterial genomes was examined. The information content of a genome was found to be highly
dependent on the genome length, GC content, and sequence word size. In metagenomic sequences, the
amount of information correlated with the number of matches found by comparison to sequence databases.
A sequence with more information (higher uncertainty) has a higher probability of being significantly
similar to other sequences in the database. Measuring uncertainty may be used for rapid screening for
sequences with matches in available database, prioritizing computational resources, and indicating which
sequences with no known similarities are likely to be important for more detailed analysis.

he extraordinary advances in speed and throughput of sequencing technologies in the past decade have

generated an unprecedented wealth of complete or near complete genome sequences, and have also allowed

the emergence of the technology of metagenomics or random community genomics, which aims at sequen-
cing DNA from environmental microbial communities without culturing or isolating individual microbes. Today
thousands of fully sequenced genomes and over 7,000 metagenomes have been deposited in public repositories,
e.g., GenBank', Genomes Online Database (GOLD)?, the SEED database’, and the Metagenomics RAST (MG-
RAST) server*. To be annotated and analyzed, metagenome sequences are compared to genes, proteins, protein
domains, protein families, and genomes in known databases. It was shown a few years ago that approximately 19
hours were needed to analyze one megabase of DNA sequence (if linear compute complexity is assumed), and
each data set required about one month of computing time (Unpublished data, Edwards, R. A., 2008). However,
MG-RAST and other public services handle the analysis by using large compute clusters dedicated to sequence
searching. Because of the deluge of sequence data, new efficient tools and methods are required for analyzing and
comparing sequences, and for prioritizing the sequences to be analyzed when comprehensive analysis is not
feasible.

One approach to prioritizing the analysis of unknown genomic or metagenomic sequences is examining the
information content of known genes, proteins, and genomes to explore possible patterns or trends that might help
in predicting informative sequences, i.e., those sequences likely to encode proteins or to provide new rather than
redundant knowledge about the sample to which they belong. In the cell, the information flows from DNA to
amino acid sequences, as DNA is transcribed into RNA then translated into amino acids to make proteins.
Depending on the different combinations of bases in the deoxyribonucleotides of the DNA sequence, different
amino acids are added to the nascent, growing polypeptide chain. Complex proteins consist of different combi-
nations of amino acids and therefore are encoded by various combinations of the four sequence bases.
Homopolymeric tracts like AAAAAAAAC or TTTTTTTCCCCC can only code one or few different amino acids
and encode for proteins with amino acid repeats. Therefore, we hypothesize that they are much less likely to
encode functional proteins than DNA containing equimolar mixtures of bases (e.g., AGCTAGCTAGCT).

Statistical approaches derived from information theory can quantify the amount of information in a DNA
sequence. Several investigators have examined different aspects of information content of genomes, includ-
ing Shannon’s uncertainty®® and symmetry'®"". For example, Chang and coworkers calculated Shannon’s
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uncertainty index for all the complete prokaryotic and eukaryotic
genomes available in 2005. They found that Shannon’s information
in complete genomes is greater than that in matching random
sequences and they described a coarse-grain model for genome
growth and evolution that allows a genome to diverge at any stage
during its growth®”.

Shannon’s uncertainty'>'* was originally designed for encoding and
decoding data transmitted and received through a digital commun-
ication system. Since sequence data can also be represented as a system
where DNA is transformed into amino acids, this theory can be used
to calculate the amount of information or uncertainty of a sequence.
For each sequence, the uncertainty measurement per base pair gen-
erates a score from 0 to 2n, where n is word length. The greater the
uncertainty, the more even is the distribution of each word. For
example, the sequence AAAA can only be read using two letter words
as AA regardless of the register and has little uncertainty. In contrast,
the sequence ACGT can be read as AC, CG and GT, depending on the
register and has more inherent uncertainty and information.

Here, the information content was examined for complete bac-
terial and phage genomes, and the analysis was extended to the
calculation of Shannon’s uncertainty for each sequence within meta-
genomic libraries. The effects of word size, genome length, and GC%
on Shannon’s uncertainty have also been examined. We demonstrate
that the information content of sequences from metagenomes cor-
relates with the number of similar sequences that is found by com-
parison to databases of known sequences. Using this approach may
speed up the processing time for analyzing metagenomic data and
allow prioritization of computational resources.

12-14

Results
Shannon’s uncertainty in complete bacterial and phage genomes.
Shannon’s index was calculated for 600 complete phage genomes and
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94 complete bacterial genomes (listed in Supplementary Table S1)
using word lengths ranging from 1 to 12 nucleotides (nt). Shannon’s
indices of phage and bacterial genomes were similar up to word
length 7 nt (Figure 1), implying an even distribution of all possible
sequence words in phage and bacterial genomes. From word length 8
to 12 nt, the rate of increase of Shannon’s index is higher in bacterial
genomes than in phage genomes. Moreover, for word lengths greater
than 10 nt, Shannon’s index can differentiate bacteria and phages
(Figure 1).

Factors influencing differences in shannon’s uncertainty between
complete bacterial and phage genomes. The difference between
Shannon’s indices of phage and bacterial genomes for word length
greater than 8 nt suggested that either word length, genome size or a
combination of both might influence this uncertainty value.

Shannon’s index vs. word length. Word length is reportedly an
important factor influencing the value of Shannon’s index®’. A
high Shannon’s index (close to the maximum possible index,
i.e., for word length s, the maximum index will be 2n) depends
on the presence of all possible combinations of words in the
genome. Consequently, the longer the genome the higher the
probability of having different word variations. For a given word
length of n, there are 4" possible word combinations for DNA
sequences. The length of most phage genomes (585 out of 600)
ranges from 47 bp to less than 4° bp (Figure 2). Therefore, for
word size greater than 8 nt, many words will only be represented
zero or one times, which will result in a lower Shannon’s index for
most of these genomes. In contrast, the average length of the 94
bacterial genomes used in this analysis is about 3 million bp
(between 2X4' and 4" bp). Therefore, bacterial genomes have
a higher Shannon’s index than phage genomes using word lengths
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Figure 1| Shannon’s indices of 600 complete phage genomes and 94 complete bacterial genomes. Blue crosses represent phage genomes and red circles
represent bacterial genomes. As the word length increases, Shannon’s index is more discriminatory between phage and bacterial genomes.

| 3:1033 | DOI: 10.1038/srep01033



400 7

350 -

300 A

250 A

200 A

150

# of phages

100 A

374

119

Figure 2 | Length distribution of 600 complete phages.

smaller than 12 nt. For word lengths 11 nt or 12 nt, Shannon’s
index can distinguish phage and bacterial genomes (Figure 1)
although this is likely because phage genomes are too short to
generate sufficiently high Shannon’s indices for words of this size.
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Shannon’s index vs. genome length. Shannon’s indices for all phage
genomes have been plotted against their lengths. For word length
12 nt, Shannon’s index highly correlates with the logarithm of the
genome length (Figure 3). For word length 9 nt, there is still a
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Figure 3 | Shannon’s index vs. length for 600 complete phage genomes using word length 9 and 12.
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significant correlation; however, for shorter word lengths, no signi-
ficant correlation was observed between genome length and
Shannon’s index. For shorter word lengths, most of the genomes
have almost all combination of words in their genomes, so there is
no strong correlation between Shannon’s index and genome length.
In contrast, for longer words, the bigger genomes have more combi-
nations of words than the smaller genomes; so Shannon’s index
correlates with genome length.

Calculations with irrelevant word lengths may give the wrong
impression and create false differences between genomes (Figure 1).
To compare genomes based on Shannon’s index, the word length (n)
should be chosen in a way that allows the possibility of having all
combination of words (4") in all the genomes. Therefore, for a given
genome of length L, the possible word length (n) to calculate
Shannon’s index should be (Equation 1)

4"<L=>n< L%logzLJ (1)

Shannon’s index vs. GC%. For most phage genomes, the maximum
word length that should be used to calculate Shannon’s index
(Equation 1) is 7 nt. When word lengths from 1 to 7 nt were used
to calculate Shannon’s index, GC-rich and GC-poor genomes were
found to have lower Shannon’s index since these genomes tend to

have less diverse word combinations than genomes with 50% GC
content (Figure 4a). The strong relationship between Shannon’s
index and |GC% — 0.5| for word length 1 to 5 nt suggests that
Shannon’s index is strongly influenced by the GC composition of
the DNA sequence (Figure 4b). For word lengths above 6 nt, the
relationship is not strongly supported. Different sequences may have
the same GC%, but Shannon’s index depends on the distribution of
the different word combinations. Therefore two different sequences
having the same GC% may have different Shannon’s indices, and the
probability of this happening increases with the word length. Thus, as
word length is increased, the correlation between Shannon’s index
and GC content becomes weaker (Figure 4b).

Shannon’s uncertainty in metagenomes. Shannon’s uncertainty
was calculated for different metagenomic data sets. The maximum
uncertainty equates to a sequence that has equal frequencies of each
word (e.g. A, G, C, T for word length one) and the majority of reads in
ametagenome have an uncertainty greater than 1.8 per nt (Figure 5a)
suggesting an even distribution of bases in the reads, although the
relative information content of the reads varies by sample.

To investigate whether information content correlates with func-
tional content, we compared the frequencies with which each
sequence matched an entry in the known databases. The similarities
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Figure 4 | (a) Shannon’s index vs. GC% for 600 complete phage genomes using word length 1 nt to 7 nt. (b) The relationship between Shannon’s index
and |GC% —0.5! for 600 complete phage genomes using word length 1 nt to 7 nt.
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between the metagenomic sequences and the SEED non-redundant
protein database had been pre-calculated using BLASTX'>'® as a part
of the annotation and analysis procedure performed by the MG-
RAST server*. For a set of reads with a given uncertainty, the fraction
of reads that were similar to sequences in the SEED non-redundant
database was extracted from these pre-calculated similarities (Figure 5b).
A read with more information (higher uncertainty) was more likely
to be similar to sequences in the database than a read with less
information. Different metagenomes varied in the fraction of reads
that are similar to known sequences, but this likely reflects the sam-
pling limitations that have thus far limited the breadth of the known
sequences'’.

Discussion

Since the publication of the first complete genome sequences,
genome composition has been appealing to mathematicians, sta-
tisticians, and computer scientists. Base distribution statistics,
skews and biases'®**, sequence symmetries'®'', and information
content®>® have all been examined in the hope of deciphering
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hidden codes within the genomes'' and better understanding gen-
ome growth and evolution”*.

Among the mathematical methods used, Shannon’s uncertainty
has previously been considered as a genome analysis strategy®®. In
the work of Chang and colleagues®’, Shannon’s uncertainty was
calculated for complete prokaryotic and eukaryotic genomes avail-
able at that time, and it was found that genomes belonged to a
universality class that could be mathematically represented by a
simple formula, yet Plasmodium genomes stood out as an intriguing
exception, still unexplained®”. Additionally, the variation of
Shannon’s index with sequence word length and genome length
was examined®. Here, our findings confirmed and advanced that
study by establishing the relationship between word size and genome
length for calculating Shannon’s index.

We also found that at a certain word lengths, Shannon’s index can
be used to differentiate phage and bacterial sequences. Although this
differentiation is sensitive to genome length, with some modification,
this observation can help find phage genes embedded in bacterial
genomes. As an application, we calculated Shannon’s index for a
group of DNA sequences using a word size of 12 nt (four consecutive
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Figure 5 | (a) Cumulative comparison of the uncertainty (for word length 1) in DNA sequences in metagenome samples. Eight samples
representative of the 24 used in this study are shown here: Soudan Mine Black Stuff (pink®), Line islands Kingman reef phage (light green’®), Line islands
Tabuaren phage (light blue*), Marine phages from the Gulf of Mexico (blue®’), Marine samples supplemented with DMSP (magenta®), Line islands
Palmyra Phage (dark green®), Line islands Christmas Reef phage (red*), Marine samples supplemented with vanillate (green’)). The uncertainty is
greater than 1.7 for 85% to 90% sequences of all samples. (b) Comparison of Shannon’s uncertainty and the observed similarity to known sequences.
Shannon’s uncertainty (H) was calculated for word length one, and is compared with similarity to the SEED no-redundant protein database. Samples are
coloured the same as in Fig. 5. Word lengths up to 11 letters were also used to calculate (H) and all cases confer same results (data not shown).
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amino acids) and we were able to use this group of sequences to
detect prophages in bacterial genomes™.

Finally, our findings show that the information content of meta-
genomic sequences varies from sample to sample, but about 85% of
those sequences have high levels of uncertainty, suggesting that they
are comprised of approximately equal numbers of each of the four
bases (Figure 5). In addition, the information content in metage-
nomic sequences was found to correlate with the likelihood that
the sequence would be similar to a previously characterized sequence
(in the non-redundant database). This suggests that the large num-
bers of metagenomic sequences could be rapidly sorted based on
their information content to prioritize similarity searches and other
common computations. It is to be noted, however, that those meta-
genomic sequences have to be preprocessed and cleared of potential
repeats or homopolymeric runs, sometimes introduced by sequen-
cing methods (e.g., the introduction of runs of nucleotides during
high-throughput sequencing)®. For this purpose, tools such as
PRINSEQ* MG-RAST* can be used prior to sequence analysis of
metagenomic data sets. Moreover, the correlation between informa-
tion content and similarity may provide a rapid mechanism to screen
for either false positive matches (sequences matching the database
that should not) or false negative matches (sequences with no match
in the database, but that should). Of course, the extremely large
numbers of sequences with high uncertainty but no similarity in
the databases might be influenced by the lack of sampling in the
known databases™.

Methods

Retrieval of genomic and metagenomic data sets. All genomes used in this analysis
were retrieved from the SEED database and servers® (http://servers.theseed.org),
where they have been consistently annotated and classified into subsystems®*** in the
RAST server® (http://rast.nmpdr.org) Likewise, metagenomic sequence data sets
were retrieved from the MG-RAST server* (http://metagenomics.theseed.org).

For the calculation and analysis of Shannon’s uncertainty, a subset of 24 meta-
genomes was selected from the previously studied SCUMS data set*, most of which
were created by pyrosequencing. The metagenomes were chosen to represent the
range of data sets available from sequences sampled in simple and well-characterized
environments to more complex environments with multiple species present. The raw
data were used without assembly, and the samples included in the data set cover both
viral and microbial metagenomes, sampled from such diverse biomes as mines,
marine environment, soils, and animals®". The shortest sequence in the data set was
31 bp and the longest was 362 bp.

Calculation of Shannon’s uncertainty. Shannon’s uncertainty was calculated using
Equation 2",

= pi log(pi) (2)

where p; is the frequency of the i-th word in a sequence. For example, for word length
one, p; is calculated from the frequencies of the nucleotides{A, G, C, T}. If each word is
equally frequent, p; = 0.25. In general, for all words of length n being equally likely, p;
is 1/4".
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