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In this paper, a novel swarm-based metaheuristic algorithm is proposed, which is called tuna swarm optimization (TSO). The
main inspiration for TSO is based on the cooperative foraging behavior of tuna swarm. The work mimics two foraging behaviors of
tuna swarm, including spiral foraging and parabolic foraging, for developing an effective metaheuristic algorithm. The per-
formance of TSO is evaluated by comparison with other metaheuristics on a set of benchmark functions and several real
engineering problems. Sensitivity, scalability, robustness, and convergence analyses were used and combined with the Wilcoxon
rank-sum test and Friedman test. The simulation results show that TSO performs better compared to other

comparative algorithms.

1. Introduction

Real-world optimization problems have become more
challenging, which requires more efficient solution methods.
Different scholars have studied various approaches to solve
these complex and difficult problems from the real world. A
part of researchers solve these optimization problems using
traditional methods such as quasi-Newton, conjugate gra-
dient, and sequential quadratic programming methods.
However, owing to the nonlinear, nonproductivity char-
acteristics of most real-world optimization problems and the
involvement of multiple decision variables and complex
constraints, these traditional algorithms are difficult to be
solved effectively [1, 2]. The metaheuristic algorithm has the
advantages of not relying on the problem model, not re-
quiring gradient information, having strong search capa-
bility and wide applicability, and can achieve a good balance
between solution quality and computational cost [3].
Therefore, the metaheuristic algorithms have been proposed
to solve real-world optimization problems, such as image
segmentation [4, 5], feature selection [6, 7], mission plan-
ning [8, 9], parameter optimization [10, 11], job shop
scheduling [12, 13], etc.

Metaheuristic algorithms are usually classified into three
categories [14]: evolution-based algorithms, physical-based
algorithms, and swarm-based algorithms. The evolution-
based algorithm is inspired by the laws of evolution in
nature. Genetic algorithm (GA) [15], inspired by Darwin’s
theory of superiority and inferiority, is a well-known evo-
lution-based algorithm. With the popularity of GA, several
other widely used evolution-based algorithms have been
proposed, including differential evolution (DE) [16], genetic
programming (GP) [17], evolutionary strategies (ES) [18],
and evolutionary programming (EP) [19]. In addition,
several new evolution-based algorithms have been proposed,
such as artificial algae algorithm (AAA) [20], biogeography-
based optimization (BBO) [21], and monkey king evolu-
tionary (MKE) [22]. The physical-based algorithms are in-
spired by various laws of physics. One of the most famous
algorithms of this category is simulated annealing (SA) [23].
SA is inspired by the law of thermodynamics in which a
material is heated up and then cooled slowly. There are other
physical-based algorithms proposed, including gravitational
search algorithm (GSA) [24], nuclear reaction optimization
(NRO) [25], water cycle algorithm (WCA) [26], and sine
cosine algorithm (SCA) [27]. The swarm-based algorithms
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are inspired by the social behavior of different species in
natural groups. Particle swarm optimization (PSO) [28] and
ant colony optimization (ACO) [29] are two typical swarm-
based algorithms. PSO and ACO mimic the aggregation
behavior of bird colonies and the foraging behavior of ant
colonies, respectively. Some other algorithms of this cate-
gory include: grey wolf optimizer (GWO) [30], monarch
butterfly optimization (MBO) [31], elephant herding opti-
mization (EHO) [32], moth search algorithm (MSA) [33],
manta ray foraging optimization (MRFO) [34],earthworm
optimization algorithm (EOA) [35], etc. With the devel-
opment of metaheuristics, a type of human-based meta-
heuristic algorithm is also emerging. These algorithms are
inspired by the characteristics of human activity. Teaching-
learning-based optimization (TLBO) [36], inspired by tra-
ditional teaching methods, is a typical example of this
category among metaheuristic algorithms. Other human-
based metaheuristics include: social evolution and learning
optimization (SELO) [37], group teaching optimization
algorithm (GTOA) [38], heap-based optimizer (HBO) [39],
political optimizer (PO) [40], etc.

There is a common feature of all these metaheuristic
algorithms that rely on exploration and exploitation in the
search space to find the optimal solution [41, 42]. Explo-
ration means that the algorithm searches for promising
regions in a wide search space and exploitation is a further
search for the best solution in the promising regions. The
balance of the two search behaviors affects the quality of the
solution. When exploration dominates, exploitation de-
clines, and vice versa. Therefore, it is a big challenge to
balance exploration and exploitation for metaheuristics.
Although there are constantly new algorithms being de-
veloped, the no free lunch (NFL) [43] theory states that no
particular algorithm can solve all optimization problems
perfectly. The NFL has motivated researchers to develop
effective metaheuristic algorithms to solve various fields of
optimization problems.

In this paper, a novel swarm-based metaheuristic is
presented called tuna swarm optimization (TSO). It is in-
spired by two types of swarm foraging behavior of tunas. The
TSO is evaluated in 23 benchmark functions and 3 engi-
neering design problems. Test results reveal that the method
proposed in this paper significantly outperforms those
popular and recent metaheuristics. This paper is structured
as follows: Section 2 describes the inspiration for TSO and
builds the corresponding mathematical model. A bench-
mark function set and three engineering design problems are
employed to check the performance of TSO in Sections 3 and
4, respectively. Section 5 concludes the overall work and
provides an outlook for the future.

2. Tuna Swarm Optimization

2.1. Inspiration. Tuna, scientifically named Thunnini, is a
marine carnivorous fish. There are many species of tuna, and
the size varies greatly. Tuna are top marine predators,
feeding on a variety of midwater and surface fish. Tunas are
continuous swimmers, and they have a unique and efficient
way of swimming (called fishtail shape) in which the body
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stays rigid while the long, thin tail swings rapidly. Although
the single tuna swims very fast, it is still not as fast as the
nimble small fish response. Therefore, the tuna will use the “
group travel “ method for predation. They use their intel-
ligence to find and attack their prey. These creatures have
evolved a variety of effective and intelligent foraging
strategies.

The first strategy is spiral foraging. When tuna are
feeding, they swim by forming a spiral formation to drive
their prey into shallow water where they can be attacked
more easily.

The second strategy is parabolic foraging. Each tuna
swims after the previous individual, forming a parabolic
shape to enclose its prey.

Tuna successfully forage by the above two methods. In
this paper, a new swarm-based metaheuristic optimization
algorithm, namely, tuna swarm optimization, is proposed
based on modeling these natural foraging behaviors.

2.2. Mathematical Model. In this section, the mathematical
model of the proposed algorithm is described in detail.

2.2.1. Initialization. Similar to most swarm-based meta-
heuristics, TSO starts the process of optimization by gen-
erating initial populations at random uniformly in the search
space,

X" =rand- (ub-1b) +1Ib, i=1,2,.,NP, (1)
where X" is the i" initial individual, ub and Ib are the upper
and lower boundaries of the search space, NP is the number
of tuna populations, and rand is a uniformly distributed
random vector ranging from 0 to 1.

2.2.2. Spiral Foraging. When sardines, herring, and other
small schooling fish encounter predators, the entire school of
fish forms a dense formation constantly changing the
swimming direction, making it difficult for predators to lock
a target. At this time, the tuna group chase the prey by
forming a tight spiral formation. Although most of the fish in
the school have little sense of direction, when a small group
of fish swim firmly in a certain direction, the nearby fish will
adjust their direction one after another and finally form a
large group with the same goal and start to hunt. In addition
to spiraling after their prey, schools of tuna also exchange
information with each other. Each tuna follows the previous
fish, thus enabling information sharing among neighboring
tuna. Based on the above principles, the mathematical
formula for the spiral foraging strategy is as follows:

& - (Xizest +/3 : |X;7651 - Xfl) Toy- Xf’ i=1,
X
ap - (Xizest +ﬁ : |X§7est - X:l) Toy- Xﬁ—l’ i=23,.,NP,
(2)
t
q=a+(-a) —, (3)

max
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a2=(1—a)—(1_5‘)'%’ (4)
B = e cos (2mth), (5)
l = 63005(((tmax+1/t)_1)ﬂ)’ (6)

where X!*! is the i" individual of the  + 1 iteration, X is
the current optimal individual (food), «; and «, are weight
coeflicients that control the tendency of individuals to move
towards the optimal individual and the previous individual,
aisa constant used to determine the extent to which the tuna
follow the optimal individual and the previous individual in
the initial phase, t denotes the number of current iteration,
tmax 1S the maximum iterations, and b is a random number
uniformly distributed between 0 and 1.

When all tuna forage spirally around the food, they have
good exploitation ability for the search space around the
food. However, when the optimal individual fails to find
food, blindly following the optimal individual to forage is

Xt =

2.2.3. Parabolic Foraging. In addition to feeding by forming
a spiral formation, tunas also form a parabolic cooperative
feeding. Tuna forms a parabolic formation with food as a
reference point. In addition, tuna hunt for food by searching

XZest + rand ) (XZest - Xf) + TF ' p2 : (Xiest - Xt))

X{+1 —

1

TF-p*- X,

" (t/tmax)
P(lt—> ’

where TF is a random number with a value of 1 or —1.
Tuna hunt cooperatively through two foraging strategies
and then find their prey. For the optimization process of TSO,
the population is first randomly generated in the search space.
In each iteration, each individual randomly chooses one of the
two foraging strategies to execute, or chooses to regenerate the
position in the search space according to probability z. The

x - (X:’und +/3 : |X;und _Xf|) ta- Xf—l’ i=23,.,NP,

L %1 (XZest +ﬁ ! |X2est - X:I) ta-

not conducive to group foraging. Therefore, we consider
generating a random coordinate in the search space as a
reference point for spiral search. This facilitates each indi-
vidual to search a wider space and makes TSO with global
exploration ability. The specific mathematical model is de-
scribed as follows:

Xt _{ (xl'(Xiand"'ﬁ'|Xiand_xf|)+a2'xz’ i=1
=

oy (Xrgpg + B [ X ~Xi|) + 2 X, i=2,3,.,NP,
(7)
where X! . is a randomly generated reference point in the

search space.

In particular, metaheuristic algorithms usually perform
extensive global exploration in the early stage and then
gradually transition to precise local exploitation. Therefore,
TSO changes the reference points of spiral foraging from
random individuals to optimal individuals as the iteration
increases. In summary, the final mathematical model of the
spiral foraging strategy is as follows:

( t t t t .
al'(and-l_/’;'|and_xi|)+a2'xi’ i=1,

t
, if rand < —,

max

(8)

o (’czeﬁf + ﬁ : |X§7€st - X:I) ta,- Xf, i=1,

t
,ifrand > —
max

X, i=23,.,NP,

around themselves. These two approaches are performed
simultaneously, with the assumption that the selection
probability is 50% for both. The specific mathematical model
is described as follows:

if rand <0.5,

9
if rand > 0.5,

(10)

value of parameter z will be discussed in the parameter setting
simulation experiments. During the entire optimization
process, all individuals of TSO are continuously updated and
calculated until the end condition is met, and then the optimal
individual and the corresponding fitness value are returned.
The TSO pseudocode is shown in Algorithm 1. The detailed
process of TSO is shown in Figure 1.
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Return the best individual X, and the best fitness value F (X,,,,)

Initialize the random
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Calculate the fitness
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FiGure 1: Flowchart of TSO.

Assign free parameters a and z
While (£ < tpay)

Update XJ,,,
For (each tuna) do
Update «y, «,, p

If (rand < z) then

Else if (rand > z) then
If (rand < 0.5) then
If (t/t, .. <rand) then

max

max —

Else if (rand >0.5) then

End for
t=t+1
End while

Input: the population size NP and maximum iteration #,
Output: the location of food (the best individual) and its fitness value
Initialize the random population of tunas X! (i=1, 2, . .

Calculate the fitness values of tunas

Update the position X!*'using equation (1)

Update the position X!*'using Equation (7)
Else if (¢/t,,,, >rand) then
Update the position X!*'using Equation (2)

Update the position X!*!'using Equation (9)

Return the best individual X,,,and the best fitness value F (Xp,).

. NP)

ALGorITHM 1: Pseudocode of TSO.

3. Numerical Experiment and Discussion

3.1. Benchmark Function Set and Compared Algorithms.
In this section, in order to evaluate the performance of the
TSO proposed in this paper, a set of well-known benchmark
functions are employed for testing. This set of benchmark
functions include 7 unimodal functions, 6 multimodal
functions, and 10 multimodal functions with fixed dimen-
sions. The unimodal functions F1-F7 have only one global

optimal solution and are, therefore, often employed to
evaluate the local exploitation capability of an algorithm.
Besides the global optimal solution, the multimodal func-
tions F8-F23 also have multiple local optimal solutions and
are, therefore, used to challenge the global exploration ca-
pability and local optimal avoidance capability of an algo-
rithm. The mathematical formulas and characteristics of
these functions are shown in Table 1. A three-dimensional
visualization of these functions is given in Figure 2.
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F1Gure 2: 3D visualization for 2D benchmark functions.

3.2. Compared Algorithms and Experimental Setup. The re-
sults of the proposed TSO are compared with seven well-
regarded and recent metaheuristics. These algorithms in-
clude particle swarm optimization (PSO) [28], grey wolf
optimizer (GWO) [30], whale optimization algorithm
(WOA) [44], and Salp swarm algorithm (SSA) [45], which
are the more frequently used algorithms in the optimization
field, and Harris Hawks optimization (HHO) [46], equi-
librium optimizer (EO) [47], and tunicate swarm algorithm
(TSA) [48], which are three new algorithms recently
proposed.

All algorithms were implemented under MATLAB
R2016b on a computer with Windows 10 64 bit Professional
and 16 GB RAM. The population size and the maximum
number of iterations for all optimizers were set to 50 and
1000, respectively. All results were recorded and compared
based on the performance of each optimizer on 30

independent runs. It is well known that the parameter
settings of an algorithm have a huge impact on the per-
formance of the algorithm. For the fair comparison, the
parameter settings of all compared algorithms are based on
the parameters used by the authors of the original article.
Table 2 lists the parameters used by each algorithm.

3.3. Analysis of TSO for Variable-Dimensional Functions.
Table 3 presents the results of TSO and other comparison
algorithms for solving F1-F13 with Dim = 30. In addition,
the performance of TSO is also evaluated using test functions
with different dimensions, which is beneficial to recognize
the ability of TSO to solve high-dimensional functions.
Table 4-Table 6 show the results of TSO and other com-
parison algorithms for processing F1-F13 with dimensions
of 100, 500, and 1000.
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TABLE 2: Parameter settings for algorithms.

Algorithm Parameters

PSO ¢, =¢, =2, wMax = 0.9,wMin = 0.2
GWO a =2 (linearly decreased over iterations)
WOA a, =2 (linearly decreased over iterations)
SSA ¢, =rand,c, = rand

HHO ~

EO a, =2,a,=1

TSA Pox=4Pn=1

TSO z=0.05,a=0.7

TaBLE 3: Comparison of results on F1-F13 with 30D.

Function TSO HHO EO TSA GWO SSA PSO WOA
g Ave  000E+00  392E-193  536E-102  2.59E-52 4.76E-70 9.09E-09 1.78E-09  4.37E-172
Std 0.00 E+00 0.00 E+00 7.54E-102 4.91E-52 1.16E-69 1.37E-09 8.10E-09 0.00 E+00
m Ave 1.47E-235 3.54E-102 1.41E-57 1.15E-30 3.93E-41 4.75E-01 1.33 E+00 1.13E-108
Std  0.00E+00  1.17E-101  1.70E-57 4.74E-30 3.90E-41 6.71E-01 434E+00  4.69E-108
g3 Ave  000E+00  198E-155  495E-27 1.52E-15 597E-20  4.01 E+01 1.02E+03  1.31E+04
Std 0.00 E+00 1.09E-154 2.01E-26 7.35E-15 1.95E-19 2.60 E+01 1.89 E+03 6.96 E+03
F4 Ave 2.39E-236 3.11E-98 2.59E-25 2.91E-04 1.92E-17 4.00 E+00 2.40 E+00 2.60 E+01
Std  0.00 E+00 1.14E-97 6.69E-25 7.90E-04 298E-17  2.61 E+00 7.09E-01 2.81 E+01
g5 Ave  122E-04 9.96E-04  2.39E+01 2.85 E+01 2.65 E+01 8.80 E+01 316E+03  2.65E+01
Std 3.16E-04 1.09E-03 1.51E-01 6.96E-01 6.99E-01 1.84 E+02 1.64 E+04 3.61E-01
F6 Ave 1.77E-08 9.32E-06 1.87E-13 3.59E+00 4.09E-01 9.62E-09 1.20E-09 4.17E-03
Std  9.08E-08 1.44E-05 6.11E-13 7.04E-01 3.04E-01 2.38E-09 3.07E-09 2.22E-03
gy Ave  LISE-04 3.67E-05 428E-04 3.00E—03 4.73E-04 5.67E—02 2.13E-02 1.18E-03
Std 7.56E-05 3.20E-05 2.34E-04 1.34E-03 2.14E-04 2.49E-02 8.59E-03 1.33E-03
F8 Ave -1.26 E+04 -1.26 E+04 -9.11 E+03 -6.39 E+03 —-6.05E+03 —-7.61 E+03 -9.08 E+03 -1.19E+04
Std  1.64E-06 8.89E—02 724E+02  6.83E+02  8.07E+02  870E+02  544E+02  1.24E+03
po  Ave  0.00E+00  000E+00  0.00E+00 1.51 E+02 5.41E-01 4.78 E+01 4.85E+01 0.00 E+00
Std 0.00 E+00 0.00 E+00 0.00 E+00 3.54E+01 2.14 E+00 1.13 E+01 1.37 E+01 0.00 E+00
F10 Ave 8.88E-16 8.88E-16 4.56E-15 1.49 E+00 1.28E-14 1.82 E+00 8.86E-02 4.56E-15
Std  0.00E+00  0.00E+00  6.49E-16  163E+00  2.87E-15  8.07E-01 3.40E—01 2.38E-15
gy Ave  000E+00  0.00E+00  0.00E+00  657E-03 1.40E-03 1.07E—02 1.11E-02 7.35E-03
Std 0.00 E+00 0.00 E+00 0.00 E+00 7.05E-03 4.58E-03 1.28E-02 1.43E-02 1.91E-02
Fl12 Ave 3.16E-10 8.06E-07 3.46E-03 8.00 E+00 2.53E-02 3.90 E+00 3.11E-02 1.17E-03
Std  8.I3E-10 1.06E—-06 1.89E-02  4.19E+00 1.75E-02 1.97E+00  7.28E-02 1.53E-03
pp3  Ave  193E-09 5.48E-06 1.78E-02  2.83E+00 2.97E-01 7.56E-03 2.93E-03 4.86E—02
Std 4.41E-09 5.87E-06 3.38E-02 6.31E-01 1.06E-01 1.18E-02 4.94E-03 5.55E-02
TaBLE 4: Comparison of results on F1-F13 with 100D.
Function TSO HHO EO TSA GWO SSA PSO WOA
F1 Ave 0.00 E+00 5.76E-190 1.08E-72 1.04E-27 3.53E-34 9.88E-03 7.10 E+02 1.15E-168
Std  0.00E+00  0.00E+00  4.12E-72 2.59E-27 5.28E-34 LI0E-02  255E+03  0.00 E+00
gy Ave  196E-231  3.05E-100  245E-42 7.52E-18 7.04E-21 1.41 E+01 398E+01  6.29E-103
Std 0.00 E+00 1.30E-99 2.64E—-42 1.09E-17 3.19E-21 4.47 E+00 2.40 E+01 3.45E-102
3 Ave 0.00 E+00 2.81E-145 2.12E-06 7.99 E+02 1.67E-01 2.21 E+04 8.11 E+04 7.18 E+05
Std 0.00 E+00 1.54E-144 5.59E-06 1.02 E+03 3.53E-01 1.05 E+04 1.91 E+04 1.23 E+05
pq Ave  L49E-229  130E-97  551E-11  286E+01 138E-04  196E+01  325E+01  7.08 E+01
Std 0.00 E+00 4.59E-97 1.75E-10 9.58 E+00 2.18E-04 2.29 E+00 3.62 E+00 2.99E+01
F5 Ave 1.15E-01 3.74E-03 9.41 E+01 9.79 E+01 9.70 E+01 7.13 E+02 1.05 E+04 9.73 E+01
Std 4.32E-01 5.74E-03 3.34E-01 8.33E-01 8.86E-01 4.63 E+02 2.31 E+04 4.64E-01
F6 Ave 1.08E-03 3.41E-05 1.43E-01 1.38 E+01 7.36 E+00 8.23E-03 1.04 E+03 5.30E-01

Std 2.11E-03 5.76E-05 2.04E-01 9.64E-01 1.16 E+00 8.37E-03 3.06 E+03 1.70E-01
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TaBLE 4: Continued.

Function TSO HHO EO TSA GWO SSA PSO WOA
F7 Ave 1.17E-04 4.11E-05 6.99E-04 1.31E-02 1.56E-03 7.61E-01 4.21 E+00 9.37E-04
Std 1.62E-04 6.24E-05 3.25E-04 4.63E-03 7.36E-04 1.72E-01 7.59 E+00 1.42E-03

Ave -4.19E+04 -4.19 E+04 -2.89 E+04 -1.45E+04 -1.67 E+04 —2.41 E+04 -2.35E+04 -3.79 E+04

k8 Std 8.33E-02 3.21E-01 1.54 E+03 7.90 E+02 2.56 E+03 1.51 E+03 1.51 E+03 4.58 E+03
F9 Ave 0.00 E+00 0.00 E+00 0.00 E+00 9.20 E+02 1.49E-01 1.34 E+02 3.14 E+02 0.00 E+00
Std  0.00E+00  0.00E+00  0.00E+00  1.38E+02  818E-01  379E+01  510E+01  0.00E+00
plo  Ave  888E-16 8.88E-16 7.52E-15 5.96E-12 7.03E-14  515E+00  4.61E+00  4.44E-15
Std 0.00 E+00 0.00 E+00 1.23E-15 3.24E-11 4.73E-15 1.25E+00 3.08 E+00 2.64E-15
Fl11 Ave 0.00 E+00 0.00 E+00 0.00 E+00 2.71E-03 7.62E-04 1.25E-01 7.31 E+00 0.00 E+00
Std 0.00 E+00 0.00 E+00 0.00 E+00 6.26E-03 2.94E-03 2.90E-02 2.28 E+01 0.00 E+00
F12 Ave 3.03E-06 3.47E-07 1.89E-03 9.22 E+00 1.93E-01 9.90 E+00 1.02E+01 6.08E-03
Std 8.46E-06 5.00E-07 5.68E-03 3.74 E+00 6.19E-02 2.58 E+00 4.20 E+00 3.07E-03
F13 Ave 1.44E-04 1.19E-05 2.12 E+00 1.21 E+01 5.68 E+00 1.54 E+02 4.54E+02 6.00E-01
Std 2.32E-04 1.74E-05 1.15 E+00 1.61 E+00 3.89E-01 1.57 E+01 4.27 E+02 3.17E-01
TaBLE 5: Comparison of results on F1-F13 with 500D.
Function TSO HHO EO TSA GWO SSA PSO WOA
F1 Ave 0.00 E+00 6.83E-192 5.35E-59 4.74E-12 2.61E-14 3.20E+04 1.32 E+05 2.99E-165
Std 0.00 E+00 0.00 E+00 6.41E-59 4.95E-12 1.42E-14 2.21 E+03 2.05E+04 0.00 E+00
2 Ave 1.24E-230 4.93E-96 5.52E-35 9.54E-09 5.31E-09 3.39E+02 9.89 E+02 1.12E-104
Std 0.00 E+00 2.70E-95 3.87E-35 7.88E-09 1.32E-09 1.38 E+01 1.25E+02 5.58E-104
3 Ave 0.00 E+00 1.08E-87 443 E+02 9.00 E+05 8.42E+04 5.87 E+05 2.20E+06 2.63 E+07
Std 0.00 E+00 5.91E-87 1.54 E+03 1.17 E+05 3.48 E+04 2.88 E+05 2.95E+05 6.32 E+06
F4 Ave 2.22E-228 7.26E-94 8.36 E+01 9.91 E+01 5.10 E+01 3.24E+01 7.55E+01 7.29 E+01
Std 0.00 E+00 3.97E-93 1.93E+01 2.47E-01 6.00 E+00 2.31 E+00 2.98 E+00 2.37E+01
F5 Ave 9.10E-01 1.53E-02 4.96 E+02 4.98 E+02 4.97 E+02 5.49 E+06 1.81 E+08 4.95E+02
Std 1.41 E+00 1.80E-02 7.74E-01 2.08E-01 4.29E-01 9.42 E+05 1.14 E+08 2.54E-01
F6 Ave 1.68E-01 1.01E-04 5.95E+01 9.17 E+01 8.83 E+01 3.31 E+04 1.37 E+05 9.03 E+00
Std 2.27E-01 1.27E-04 2.04 E+00 1.92 E+00 2.00 E+00 2.02E+03 2.41 E+04 1.83 E+00
F7 Ave 1.20E-04 3.74E-05 1.44E-03 2.99E-01 7.95E-03 5.27 E+01 1.91 E+03 1.17E-03
Std 1.13E-04 3.03E-05 5.54E-04 1.14E-01 2.42E-03 7.61 E+00 7.33 E+02 1.32E-03
F8 Ave -2.09 E+05 -2.09 E+05 -1.01 E+05 -3.44E+04 —6.29 E+04 —-8.68 E+04 —-7.85E+04 -1.99 E+05
Std 7.35E-01 1.36 E+00 6.70 E+03 2.48E+03 9.55E+03 5.27E+03 3.02E+03 1.66 E+04
F9 Ave 0.00 E+00 0.00 E+00 0.00 E+00 5.66 E+03 2.09E+00 1.92 E+03 3.51 E+03 0.00 E+00
Std 0.00 E+00 0.00 E+00 0.00 E+00 4.74 E+02 3.15E+00 1.15E+02 1.78 E+02 0.00 E+00
F10 Ave 8.88E-16 8.88E-16 8.70E-15 1.10E-07 6.67E-09 1.22 E+01 1.62 E+01 3.97E-15
Std 0.00 E+00 0.00 E+00 2.17E-15 5.29E-08 1.33E-09 3.43E-01 7.40E-01 2.23E-15
Fl11 Ave 0.00 E+00 0.00 E+00 0.00 E+00 5.89E-03 1.79E-03 2.87 E+02 1.15E+03 0.00 E+00
Std 0.00 E+00 0.00 E+00 0.00 E+00 1.57E-02 6.96E-03 2.17 E+01 243 E+02 0.00 E+00
F12 Ave 2.02E-05 2.78E-07 2.65E-01 1.06 E+04 7.01E-01 1.01 E+02 1.34 E+08 1.42E-02
Std 5.06E-05 3.95E-07 1.85E-02 1.22 E+04 3.05E-02 1.52 E+02 1.59 E+08 3.73E-03
F13 Ave 4.21E-03 4.36E-05 4.86 E+01 1.25E+03 4.51 E+01 1.01 E+06 5.88 E+08 4.72 E+00
Std 1.21E-02 7.01E-05 3.40E-01 8.75E+02 5.29E-01 3.96 E+05 4.43 E+08 1.45 E+00
TaBLE 6: Comparison of results on F1-F13 with 1000D.
Function TSO HHO EO TSA GWO SSA PSO WOA
F1 Ave 0.00 E+00 5.76E-190 1.08E-72 1.04E-27 3.53E-34 9.88E-03 7.10 E+02 1.15E-168
Std 0.00 E+00 0.00 E+00 4.12E-72 2.59E-27 5.28E-34 1.10E-02 2.55E+03 0.00 E+00
m Ave 1.96E-231 3.05E-100 2.45E-42 7.52E~-18 7.04E-21 1.41 E+01 3.98 E+01 6.29E-103
Std 0.00 E+00 1.30E-99 2.64E—-42 1.09E-17 3.19E-21 4.47 E+00 2.40 E+01 3.45E-102
3 Ave 0.00 E+00 2.81E-145 2.12E-06 7.99 E+02 1.67E-01 2.21 E+04 8.11 E+04 7.18 E+05

Std 0.00 E+00 1.54E-144 5.59E-06 1.02 E+03 3.53E-01 1.05 E+04 1.91 E+04 1.23 E+05
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TaBLE 6: Continued.
Function TSO HHO EO TSA GWO SSA PSO WOA
F4 Ave 1.49E-229 1.30E-97 5.51E-11 2.86 E+01 1.38E-04 1.96 E+01 3.25E+01 7.08 E+01
Std 0.00 E+00 4.59E-97 1.75E-10 9.58 E+00 2.18E-04 2.29 E+00 3.62 E+00 2.99E+01
F5 Ave 1.15E-01 3.74E-03 9.41 E+01 9.79 E+01 9.70 E+01 713 E+02 1.05 E+04 9.73 E+01
Std 4.32E-01 5.74E-03 3.34E-01 8.33E-01 8.86E-01 4.63 E+02 2.31 E+04 4.64E-01
F6 Ave 1.08E-03 3.41E-05 1.43E-01 1.38 E+01 7.36 E+00 8.23E-03 1.04 E+03 5.30E-01
Std 2.11E-03 5.76E-05 2.04E-01 9.64E-01 1.16 E+00 8.37E-03 3.06 E+03 1.70E-01
F7 Ave 1.17E-04 4.11E-05 6.99E-04 1.31E-02 1.56E-03 7.61E-01 4.21 E+00 9.37E-04
Std 1.62E-04 6.24E-05 3.25E-04 4.63E-03 7.36E-04 1.72E-01 7.59 E+00 1.42E-03
F8 Ave -4.19 E+04 -4.19 E+04 -2.89E+04 —-1.45E+04 -1.67 E+04 —2.41 E+04 -2.35E+04 -3.79 E+04
Std 8.33E-02 3.21E-01 1.54 E+03 7.90 E+02 2.56 E+03 1.51 E+03 1.51 E+03 4.58 E+03
F9 Ave 0.00 E+00 0.00 E+00 0.00 E+00 9.20 E+02 1.49E-01 1.34 E+02 3.14 E+02 0.00 E+00
Std 0.00 E+00 0.00 E+00 0.00 E+00 1.38 E+02 8.18E-01 3.79E+01 5.10 E+01 0.00 E+00
F10 Ave 8.88E-16 8.88E-16 7.52E~-15 5.96E-12 7.03E-14 5.15E+00 4.61 E+00 4.44E-15
Std 0.00 E+00 0.00 E+00 1.23E-15 3.24E-11 4.73E-15 1.25E+00 3.08 E+00 2.64E-15
F11 Ave 0.00 E+00 0.00 E+00 0.00 E+00 2.71E-03 7.62E-04 1.25E-01 7.31 E+00 0.00 E+00
Std 0.00 E+00 0.00 E+00 0.00 E+00 6.26E-03 2.94E-03 2.90E-02 2.28 E+01 0.00 E+00
F12 Ave 3.03E-06 3.47E-07 1.89E-03 9.22 E+00 1.93E-01 9.90 E+00 1.02E+01 6.08E-03
Std 8.46E-06 5.00E-07 5.68E-03 3.74 E+00 6.19E-02 2.58 E+00 4.20 E+00 3.07E-03
F13 Ave 1.44E-04 1.19E-05 2.12 E+00 1.21 E+01 5.68 E+00 1.54 E+02 4.54E+02 6.00E-01
Std 2.32E-04 1.74E-05 1.15 E+00 1.61 E+00 3.89E-01 1.57 E+01 4.27 E+02 3.17E-01

As shown in the results of the unimodal functions F1-F7
in Table 3-Table 6, TSO achieves the best results in most of
the functions, significantly outperforming almost all the
comparison algorithms. In addition, TSO outperforms the
comparison algorithms still when dealing with high-di-
mensional problems. On the other hand, the results obtained
by TSO are not much fluctuated as the dimensionality in-
creases, which can also be observed in the convergence
curves in Figure 3. Specifically, TSO performs best on F1-F5
when Dim =30. In particular, TSO can consistently obtain
the theoretical optimal solution on F1 and F3. In F7, HHO is
the best optimizer, and TSO follows the best. The TSO
performs poorly for the F6. For high-dimensional functions,
TSO and HHO perform in the top 2. TSO gives the most
satisfactory results for F1-F4. HHO performs best on F5-F7,
with TSO ranking behind it. Overall, TSO performs the best
exploitation ability among all the algorithms involved in the
test for unimodal functions on different dimensions.

The results for solving the multimodal functions F8-F13
in different dimensions for each algorithm are also given in
Table 3-Table 6. The analysis shows that TSO performs best
in all dimensions when solving F8-F11. The TSO ranks
behind the HHO in solving F12 and F13. Notably, TSO can
stably obtain the theoretical optimal solution for F9-F11. As
the convergence curves show, the TSO performance does
not degrade too much as the dimensionality increases,
showing the superior performance of TSO in solving high-
dimensional multimodal functions.

3.4. Analysis of TSO for Fixed Dimensional Functions. The
test results of TSO applied to fixed dimensional functions are
shown in 7. The means in the table show that TSO is su-
periorly competitive on the fixed dimensional functions,
performing best on eight of the ten functions. TSO ranks

second and third on F8 and F15. In order to analyze the
distribution characteristics of TSO when solving fixed di-
mensional functions, box plots of F14-F23 are drawn based
on the results of 30 runs, as shown in Figure 4. It can be
observed that TSO outperforms the comparison algorithm
in most functions in terms of maximum, minimum and
median values, and the distribution of solutions is more
concentrated, thus, TSO performs better compared to other
algorithms.

3.5. Wall-Clock Time Analysis of TSO. Computational effi-
ciency is also an important measure of algorithm perfor-
mance. Table 8 records the average computational time
consumed by these algorithms for 30 independent runs in
each function. It can be seen that the computation of TSO
does not take much time, only longer than WOA and TSA.
Although TSO takes more time, the performance is better
than WOA and TSA. Moreover, TSO takes less time with
better performance than other comparison algorithms, thus
TSO has a huge efficiency advantage. Figure 5 illustrates the
ranking of computational time consumption of each algo-
rithm, and it can be visually seen that WOA, TSA, and TSO
rank in the top three.

3.6. Parameter Sensitivity Analysis. This section focuses on
the analysis of the values of the two control parameters (z
and a) of the TSO. The first parameter is z, which controls
the probability of randomly generated individuals. The
second parameter is a, which controls the extent to which
each individual follows the optimal individual and the
neighboring individuals. The 13 variable dimensional
functions (F1-F13) and 10 fixed dimensional functions
(F14-F23) are used for analyzing the effect of the values of
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F1Gure 3: Convergence curves of TSO on 13 test functions in 4 different dimensional cases.
TaBLE 7: Comparison of results on F14-F23.
Function TSO HHO EO TSA GWO SSA PSO WOA
Fl4 Ave 9.98E-01 9.98E-01 9.98E-01 8.12 E+00 3.87 E+00 9.98E-01 9.98E-01 1.49 E+00
Std 2.80E-16 8.98E-11 1.01E-16 4.59 E+00 3.96 E+00 2.08E-16 4.12E-17 1.97 E+00
Fl5 Ave 3.99E-04 3.54E-04 1.17E-03 1.03E-02 1.71E-03 1.48E-03 1.90E-03 5.35E-04
Std 2.79E-04 1.65E-04 3.65E-03 2.39E-02 5.08E-03 3.58E-03 5.03E-03 2.82E-04
F16 Ave  -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00  —-1.03 E+00
Std 5.61E-16 9.30E-14 6.58E-16 9.65E-03 3.20E-09 8.96E—-15 6.78E-16 2.13E-11
F17 Ave 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std 0.00 E+00 1.12E-08 0.00 E+00 6.82E-06 1.64E-07 3.83E-15 0.00 E+00 4.78E-07
F18 Ave 3.00E+00 3.00E+00 3.00 E+00 9.30 E+00 3.00 E+00 3.00 E+00 3.00 E+00 3.00E+00
Std 1.75E-15 2.51E-09 9.69E-16 2.09 E+01 5.86E-06 3.90E-14 1.39E-15 1.96E-06
F19 Ave  -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00  —3.86E+00
Std 2.46E-15 6.38E—04 2.70E-15 1.41E-03 2.73E-03 1.84E-14 2.71E-15 2.35E-03
F20 Ave  -330E+00  -3.18E+00  -3.26E+00  -3.21E+00  -325E+00 -3.23E+00 -326E+00  -3.22E+00
Std 4.84E-02 8.68E-02 6.37E-02 1.79E-01 7.38E-02 4.87E-02 6.68E-02 8.34E-02
a1 Ave  -1.02E+01  -522E+00 -9.81E+00 -6.78E+00 -9.65E+00 -9.06E+00 -6.98E+00  -9.81 E+00
Std 5.68E-15 9.28E-01 1.29 E+00 3.19 E+00 1.54 E+00 2.26 E+00 3.53 E+00 1.29 E+00
) Ave  -1.04E+01  -544E+00 -1.04E+01  -8.24E+00 -1.04E+01  -9.62E+00  -8.42E+00  -9.00 E+00
Std 8.08E-16 1.35E+00 9.90E-16 3.21 E+00 1.39E-04 2.06 E+00 3.14E+00 2.54 E+00
3 Ave  -1.05E+01  -531E+00 -1.00E+01  -7.87E+00 -1.05E+01  -9.49E+00  -8.84E+00  -9.15E+00
Std 1.98E-15 9.78E-01 1.65 E+00 3.68 E+00 1.46E-04 2.43 E+00 3.18 E+00 2.79 E+00

the control parameters on the TSO performance. The values  functions 30 times independently, and a total of 68310 data
of each parameter are defined as a = {0.1,0.2,0.3,...,0.9},  are obtained. Due to the large amount of data, no specific
z ={0,0.01,0.02,...,0.09,0.1}, and there are 9x11 =99  comparison of the experimental results was performed, but
combinations in total. Each combination solves the test  the differences in the experimental results were reflected by
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FIGURE 4: Boxplot analysis for fixed dimensional functions.
TaBLE 8: Wall-clock time costs of TSO and other algorithms on 23 benchmarks (unit: s).
Function TSO HHO EO TSA GWO SSA PSO WOA
F1 0.0436 0.0792 0.0726 0.0466 0.0549 0.0700 0.0923 0.0365
F2 0.0386 0.0711 0.0698 0.0483 0.0536 0.0679 0.0785 0.0349
F3 0.1878 0.6471 0.2078 0.1938 0.2025 0.2168 0.2187 0.1804
F4 0.0315 0.0765 0.0655 0.0442 0.0486 0.0613 0.0687 0.0286
F5 0.0387 0.1070 0.0723 0.0494 0.0574 0.0679 0.0745 0.0366
F6 0.0313 0.0896 0.0633 0.0434 0.0514 0.0743 0.0732 0.0301
F7 0.0502 0.1198 0.0853 0.0619 0.0690 0.0813 0.0953 0.0468
F8 0.0433 0.1270 0.0738 0.0535 0.0613 0.0789 0.0840 0.0428
F9 0.0341 0.0987 0.0652 0.0474 0.0543 0.0658 0.0785 0.0305
F10 0.0402 0.1096 0.0703 0.0521 0.0558 0.0745 0.0764 0.0354
F11 0.0478 0.1335 0.0753 0.0557 0.0608 0.0805 0.0820 0.0436
F12 0.1055 0.2735 0.1359 0.1154 0.1291 0.1372 0.1494 0.1062
F13 0.1040 0.2881 0.1338 0.1197 0.1350 0.1367 0.1482 0.1064
F14 0.2817 0.7229 0.3301 0.2855 0.2796 0.3102 0.3252 0.2855
F15 0.0337 0.0792 0.0633 0.0281 0.0294 0.0465 0.0651 0.0271
Fle6 0.0263 0.0619 0.0521 0.0202 0.0211 0.0385 0.0525 0.0195
F17 0.0229 0.0577 0.0501 0.0181 0.0177 0.0343 0.0505 0.0181
F18 0.0220 0.0585 0.0519 0.0175 0.0181 0.0343 0.0520 0.0171
F19 0.0453 0.1182 0.0745 0.0405 0.0420 0.0581 0.0735 0.0397
F20 0.0465 0.1143 0.0739 0.0427 0.0431 0.0604 0.0756 0.0407
F21 0.0739 0.1803 0.1041 0.0680 0.0684 0.0880 0.1028 0.0682
F22 0.0946 0.2264 0.1166 0.0822 0.0844 0.1053 0.1166 0.0820
F23 0.1161 0.2873 0.1502 0.1145 0.1115 0.1313 0.1482 0.1133
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FIGURE 5: Time cost ranking result.

sorting the simulation results under different parameter
settings by Friedman’s test.

According to the results, the Friedman test results of
unimodal functions F1-F7, multimodal functions F8-F23,
and all functions F1-F23 are given respectively, as shown in
Table 9-Table 11. From the results in Table 9, it is clear that
the smaller the value of z taken, the better the TSO per-
formance. The larger the value of a taken, the better the
results obtained by TSO. This is because the smaller the value
ofzis, the smaller the probability of randomly generating
new individuals, while the larger the value of a is, the higher
the degree to which each individual follows the optimal
individual, all of which are beneficial for improving ex-
ploitation ability and accelerating convergence. For the
multipeaked functions F14-F23, we can get almost the
opposite conclusion from Table 10 compared to unimodal
functions. The rankings considering the results of all
functions are given in Table 11. The results show that TSO
has the best performance when z = 0.05,a = 0.7.

3.7. Statistical Analysis of TSO. This section further analyses
the differences between TSO and other algorithms statisti-
cally using the Wilcoxon rank-sum test and Friedman test.
The Wilcoxon rank-sum test is a paired test that checks for
significant differences between two algorithms. The results of
the test between TSO and each algorithm at significance level
a = 0.05 are given in Table 12-Table 16, where the symbols
“+/=/-” indicate that TSO performs better, similar, or worse
than the comparison algorithm. Table 17 gives the statistical
results of TSO in different dimensions and functions that are
better than, similar to, and worse than the comparison al-
gorithm. TSO outperforms other comparative algorithms in
different cases and achieves results of 32/15/15, 42/13/7, 62/
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0/0, 61/1/0, 61/1/0, 51/6/5,and 55/7/0, confirming the sig-
nificant superiority of MSMA in most cases compared to
other algorithms.

Table 18 shows the statistics of F1-F13 in different di-
mensions and the fixed dimensional functions F14-F23. The
statistics show that TSO ranks first in all cases. Therefore, it
can be considered that TSO has the best performance
compared to other algorithms.

4. TSO for Engineering Design Problems

This section uses three engineering design problems to assess TSO’s
ability to solve real-world problems. These problems include the
pressure vessel design problem, the tension/compression spring
design problem, and the welded beam design problem. TSO uses
the same number of iterations (1000) and populations (50) in
solving these engineering design problems. Each problem is run 30
times independently, and the statistical results are compared with
other algorithms in the literature.

4.1. Pressure Vessel Design. The pressure vessel design
problem shown in Figure 6 is a well-known benchmark test
design problem with the goal of reducing total cost, in-
cluding forming cost, material cost, and welding cost. There
are four different variables: vessel thickness Ts (x;), head
thickness Th (x,), inner diameter R (x;), and vessel cylin-
drical cross-section length L (x,). The problem is described
as follows:

min £ (x,, %y, X3, %) = 0.62242, x5, + 1.7781x,%3

11)
+3.1661x7x, + 19.84x7 x5.
Subject to
g1 (X) = —x; +0.0193x; <0,
g, (X) = —x, +0.00954x, <0,
2 4 5

g3 (X) = —nx5x, — z x5 + 1,296,000 <0,

: (12)

g4 (X) = x, —240<0,
Variable ranges: 1x0.0625<x,,
X, €99 % 0.0625, 10 < x, x, < 200.

The results of TSO for solving this problem are com-
pared with other algorithms such as DDSCA, ISCA, MBA,
CPSO, TEO, hHHO-SCA, HPSO, MVO, and AFA, and the
comparison is shown in Table 19. The results show that the
TSO solution is superior to the solutions provided by the
comparison algorithms with optimal solutions for each
parameter [0.7782, 0.3846, 40.3196, and 199.9999], corre-
sponding to a minimum cost of 5885.3327.

4.2. Tension/Compression Spring Design. The tension/com-
pression spring design problem is a mechanical engineering
design optimization problem. As shown in Figure 7, the goal
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TaBLE 9: Ranking of results for F1-F7 with varied values of parameter z and a.
a
z
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average
0 61.26 64.72 57.17 55.07 54.46 55.54 58.02 57.00 56.04 57.70
0.01 52.78 49.13 47.09 51.02 46.57 48.15 46.93 48.74 49.30 48.86
0.02 50.13 49.72 54.24 50.89 55.35 45.78 46.65 44.26 45.61 49.18
0.03 55.24 51.96 54.41 48.65 45.33 57.91 51.15 46.11 45.26 50.67
0.04 55.50 52.15 51.50 49.39 47.24 46.37 43.83 46.89 44.74 48.62
0.05 50.74 49.22 47.52 46.11 49.54 43.46 41.83 47.91 45.74 46.90
0.06 53.11 52.50 47.65 46.15 45.96 53.13 48.48 43.63 48.30 48.77
0.07 48.30 50.50 48.50 46.43 51.96 50.91 45.02 46.48 52.70 48.98
0.08 50.57 53.11 43.61 45.02 51.07 45.35 45.17 53.35 46.15 48.15
0.09 51.57 5591 47.93 50.98 52.35 54.89 52.02 52.50 48.52 51.85
0.1 51.50 51.83 57.41 51.72 54.61 49.33 53.39 43.28 39.83 50.32
Average 52.79 52.79 50.64 49.22 50.40 50.08 48.41 48.20 47.47
TaBLE 10: Ranking of the results for F8-F23 with varied values of parameter z and a.
a
z
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average
0 36.57 43.14 36.14 28.71 38.86 35.86 40.57 33.57 39.00 36.94
0.01 37.00 45.00 34.00 37.00 32.00 30.71 36.00 30.86 34.71 35.25
0.02 41.43 43.29 48.86 44.57 50.29 43.71 40.14 39.14 36.57 43.11
0.03 54.43 39.43 50.86 40.86 34.00 47.86 51.43 44.71 37.71 44.59
0.04 47.57 49.57 49.71 44.71 49.00 42.71 46.14 39.29 35.29 44.89
0.05 52.00 42.14 52.43 58.14 57.57 40.71 43.29 53.29 40.29 48.87
0.06 58.57 51.71 47.00 46.00 49.43 57.43 44.57 39.14 52.00 49.54
0.07 57.86 60.71 57.29 49.14 72.14 62.86 47.86 53.71 48.57 56.68
0.08 63.43 60.86 45.86 56.57 67.43 57.86 62.14 62.43 52.57 58.79
0.09 58.43 73.14 59.57 68.00 69.86 72.29 66.57 60.14 58.43 65.16
0.1 62.71 71.86 73.57 69.14 67.00 65.57 63.14 67.71 54.86 66.17
Average 51.82 52.81 50.48 49.35 53.42 50.69 49.26 47.64 44.55
TaBLE 11: Ranking of results for F1-F23 with varied values of parameter z and a.
a
z
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average
0 72.06 74.16 66.38 66.59 61.28 64.16 65.66 67.25 63.50 66.78
0.01 59.69 50.94 52.81 57.16 52.94 55.78 51.72 56.56 55.69 54.81
0.02 53.94 52.53 56.59 53.66 57.56 46.69 49.50 46.50 49.56 51.84
0.03 55.59 57.44 55.97 52.06 50.28 62.31 51.03 46.72 48.56 53.33
0.04 58.97 53.28 52.28 51.44 46.47 47.97 42.81 50.22 48.88 50.26
0.05 50.19 52.31 45.38 40.84 46.03 44.66 41.19 45.56 48.13 46.03
0.06 50.72 52.84 47.94 46.22 44.44 51.25 50.19 45.59 46.69 48.43
0.07 44.13 46.03 44.66 45.25 43.13 45.69 43.78 43.31 54.50 45.61
0.08 44.94 49.72 42.63 39.97 4391 39.88 37.75 49.38 43.34 43.50
0.09 48.56 48.38 42.84 43.53 44.69 47.28 45.66 49.16 44.19 46.03
0.1 46.59 43.06 50.34 44.09 49.19 42.22 49.13 32.59 33.25 43.39
Average 53.22 52.79 50.71 49.16 49.08 49.81 48.04 48.44 48.75
TaBLE 12: Wilcoxon rank-sum test on F1-F13 with Dim = 30.
TSO vs HHO EO TSA GWO SSA PSO WOA
Function p Win p Win p Win p Win p Win p Win p Win
F1 121E-12  + 121E-12 + 121E-12 + 121E-12 + 121E-12 + 121E-12 + 121E-12 +
F2 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F3 121E-12  + 121E-12 + 121E-12 + 121E-12 + 121E-12 + 121E-12 + 121E-12 +
F4 3.02E-11 + 3.02B-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F5 220E-07 + 3.02B-11 + 3.02B-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F6 549E-11 + 739E-11 - 3.02E-11 + 3.02E-11 + 848E-09 + 002236 - 3.02E-11 +
F7 1.34E-05 - 143E-08 + 3.02E-11 + 672E-10 + 3.02E-11 + 3.02BE-11 + 147E-07 +
F8 462E-10 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
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TaBLE 12: Continued.

TSO vs HHO EO TSA GWO SSA PSO WOA
Function p Win p Win p Win p Win p Win p Win P Win
F9 NaN = NaN = 1.21E-12 + 0.160802 + 1.21E-12 + 1.21E-12  + NaN =
F10 NaN = 2.71E-14 + 1.09E-12 + 5.65E-13 + 1.21E-12 + 1.21E-12 + 1.08E-09 +
F11 NaN = NaN = 5.37E-06 + 0.081523 + 1.21E-12 + 1.21E-12 + 0.041926 +
F12 420E-10 + 597E-09 -  3.02E-11 + 3.02E-11 + 3.02E-11 + 0.340288 = 3.02E-11 +
F13 3.02E-11 + 0.137323 = 3.02E-11 + 3.02E-11 + 7.22E-06 + 0.030317 + 3.02E-11 +

TaBLE 13: Wilcoxon rank-sum test on F1-F13 with Dim = 100.

TSO vs HHO EO TSA GWO SSA PSO WOA
Function p Win p Win p Win p Win p Win p Win p Win
F1 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 +
F2 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F3 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 +
F4 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F5 1.37E-03 - 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F6 3.59E-05 - 1.75E-05 + 3.02E-11 + 3.02E-11 + 1.70E-08 + 3.02E-11 + 3.02E-11 +
F7 1.52E-03 - 4.62E-10 + 3.02E-11 + 5.49E-11 + 3.02E-11 + 3.02E-11 + 1.86E-06 +
F8 3.16E-05 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F9 NaN = NaN = 1.21E-12 + 7.58E-07 + 1.21E-12 + 1.21E-12 + NaN =
F10 NaN = 8.64E—14 + 1.00E-12 + 9.19E-13 + 1.21E-12 + 1.21E-12 + 1.22E-08 +
F11 NaN = NaN = 6.51E-05 + 0.160802 = 1.21E-12 + 1.21E-12 + NaN =
F12 1.05E-01 = 1.41E-09 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F13 2.96E-05 — 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
TaBLE 14: Wilcoxon rank-sum test on F1-F13 with Dim = 500.
TSO vs HHO EO TSA GWO SSA PSO WOA

Function p Win p Win p Win p Win p Win p Win p Win

F1 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 +
F2 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F3 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 +
F4 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F5 1.07E-09 — 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F6 4.08E-11 - 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F7 1.29E-06 — 3.69E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 7.74E-06  +
F8 1.67E-01 = 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F9 NaN = NaN = 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + NaN =
F10 NaN = 6.12E-14 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 9.16E-09 +
F11 NaN = NaN = 1.21E-12 + 1.20E-12 + 1.21E-12 + 1.21E-12 + NaN =
F12 7.04E-07 - 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F13 8.88E—-06 - 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
TaBLE 15: Wilcoxon rank-sum test on F1-F13 with Dim = 1000.

TSO vs HHO EO TSA GWO SSA PSO WOA
Function p Win p Win p Win p Win p Win p Win p Win
F1 121E-12  + 121E-12 + 121B-12 + 121E-12 + 121E-12 + 121E-12 + 121E-12 +
F2 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F3 121E-12  + 121E-12 + 121B-12 + 121B-12 + 121E-12 + 121E-12 + 121E-12 +
F4 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F5 587E-04 - 3.02E-11 + 3.02B-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F6 350E-09 - 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F7 1.86E-03 - 3.02E-11 + 3.02E-11 + 3.02BE-11 + 3.02B-11 + 3.02B-11 + 3.37B-05 +
F8 223B-01 = 302E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02B-11 + 369E-11 +
F9 NaN = NaN = 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 0.333711 =
F10 NaN = 2.90E-13 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 7.21E-07 +
F11 NaN = 8.99E-11 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 0.333711 =
F12 2.00E-05 - 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
F13 1.25E-05 - 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +
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TaBLE 16: Wilcoxon rank-sum test on F14-F23.
TSO vs HHO EO TSA GWO SSA PSO WOA
Function p Win p Win p Win p Win p Win p Win p Win
F14 7.27E-11 + 2.81E-04 - 1.99E-11 + 1.99E-11 + 5.43E-02 = 1.80E-05 - 1.99E-11 +
F15 8.30E-08 + 4.84E-08 + 8.43E-09 + 3.94E-08 + 1.10E-08 + 4.27E-08 + 5.06E-08 +
Fl6 1.07E-09 + 1.49E-04 - 1.41E-11 + 1.41E-11 + 1.39E-11 + 1.43E-06 - 1.40E-11 +
F17 1.21E-12 + NaN = 1.21E-12 + 1.21E-12 + 5.07E-06 + NaN = 1.21E-12 +
F18 1.46E-10 + 1.85E-02 - 2.09E-11 + 2.09E-11 + 2.09E-11 + 2.88E-03 2.09E-11 +
F19 1.75E-11 + 5.29E-05 + 1.75E-11 + 1.75E-11 + 2.35E-11 + 1.10E-05 1.75E-11 +
F20 1.09E-08 + 3.07E-01 = 3.07E—08 + 8.39E-08 + 7.12E-10 + 4.65E-01 = 1.09E-08 +
F21 1.07E-11 + 3.81E-01 = 1.07E-11 + 1.07E-11 + 1.07E-11 + 1.84E-01 = 1.07E-11 +
F22 6.43E-12 + 0.019605 - 6.43E-12 + 6.43E-12 + 6.43E-12 + 2.70E-01 = 6.43E-12 +
F23 2.14E-11 + 2.20E-02 - 2.14E-11 + 2.14E-11 + 2.14E-11 + 2.31E-01 = 2.14E-11 +
TaBLE 17: Statistical results of the Wilcoxon rank-sum test.
TSO VS. F1-F13 (Dim=30) F1-F13 (Dim=100) F1-F13 (Dim=500) F1-F13 (Dim=1000) F14-F23 Sum
HHO 9/3/1 5/4/4 4/4/5 4/4/5 10/0/0 12% 5
Wilcoxon’s rank- EO 8/3/2 11/2/0 11/2/0 12/1/0 2/3/5  42/13/7
sum TSA 13/0/0 13/0/0 13/0/0 13/0/0 10/0/0 62/0/0
test (+/=/-) GWO 13/0/0 12/1/0 13/0/0 13/0/0 10/0/0 61/1/0
B SSA 13/0/0 13/0/0 13/0/0 13/0/0 9/1/0 61/1/0
PSO 11/1/1 13/0/0 13/0/0 13/0/0 1/5/4 51/6/5
WOA 12/1/0 11/2/0 11/2/0 11/2/0 10/0/0  55/7/0
TABLE 18: Statistical results of the Friedman test.
TSO HHO EO TSA GWO SSA PSO WOA
Dim = 30 Friedman value 1.54 2.23 3.23 6.54 5.15 6.46 6.15 4.69
- Friedman rank 1 2 3 8 5 7 6 4
Dim = 100 Friedman value 1.65 1.73 3.38 6.31 5.00 6.31 7.54 4.08
F1-F13 - Friedman rank 1 2 3 6 5 6 8 4
- Dim = 500 Friedman value 1.65 1.73 4.00 6.54 492 6.23 7.54 3.38
m= Friedman rank 1 2 4 7 5 6 8 3
Dim = 1000 Friedman value 1.54 1.62 4.08 6.46 5.00 6.23 7.46 3.62
um = Friedman rank 1 2 4 7 5 6 8 3
. . Friedman value 1.75 5.90 2.35 7.30 5.40 4.30 3.60 5.40
F14-F23 Fixed dim Friedman rank 1 7 2 8 5 4 3 5
. Friedman value 1.62 2.48 3.46 6.60 5.08 5.98 6.60 4.18
F1-F23 All dim Friedman rank 1 2 3 7 5 6 7 4
Ts < 5 rTh
R R

il
U

FIGURE 6: Schematic of the pressure vessel design problem (Figure 6 is reproduced from [49]).
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TaBLE 19: Comparisons of the best solutions offered by reported optimizers for pressure vessel design.
. Optimal values for variables )
Algorithm Optimal cost
X1 X2 X3 Xy
DDSCA [50] 0.7782 0.3855 40.3198 176.6389 5888.3366
ISCA [51] 0.8125 0.4375 42.0982 176.6389 6059.7410
MBA [52] 0.7802 0.3856 40.4292 198.4964 5889.3216
CPSO [53] 0.8125 0.4375 42.0912 176.7465 6061.0777
TEO [54] 0.7791 0.3852 40.3698 199.3018 5887.5110
hHHO-SCA [55] 0.9459 0.4471 46.8513 125.468 6393.0927
HPSO [56] 0.8125 0.4375 42.0984 176.6366 6059.7143
MVO [57] 0.8215 0.4375 42.0907 176.7386 6060.8066
AFA [58] 0.8125 0.4375 42.0984 176.6366 6059.7143
TSO 0.7782 0.3846 40.3196 199.9999 5885.3327

of this problem is to reduce the weight of the spring. It
includes four nonlinear inequalities and three continuous
variables: wire diameter w(x,), average coil diameter d(x,),
and coil length or number L(x;). This problem can be de-
scribed by the following equation:

min f (x,, X5, %3) = (%3 +2)x° %, (13)
Subject to
XX
(X)=1-—223_<0,
9 71785x]
x,(4x, — x 1
gz(X): 2( 32 l) + Z_IS
12566x7 (x, — x;)  5108x]
140.45x,
g3 (X) =1-—5—<0, (14)
Xy%3
2(x +
9,() = @— 1<0,

Variable range: 0.05<x,<2, 0.25<x,<1.3,
2.0 < x, < 15.0.

The solution of TSO is compared with other methods
given in the literature, including GA3, CPSO, CDE, DDSCA,
GSA, hHHO-SCA, AEO, and MVO. Table 20 shows the
parameters and costs corresponding to the optimal solution
of each algorithm. As can be seen from Table 10, TSO is the
best algorithm for solving the problem. The optimal solution
for each parameter corresponding to the lowest cost of
1.724852 is [0.205729, 3.470488, 9.036623, 0.205729].

4.3. Welded Beam Design. The welded beam design problem
is the classical structural optimization problem. As shown in
Figure 8, the objective of this design problem is to minimize
the fabrication cost of the welded beam. The optimization
variables include welding thickness h(x, ), joint beam length
I(x,), beam height #(x;), and beam thickness b(x,). The
mathematical model is as follows:

min f (x, X5, X3, %) = L10471x7x, + 0.04811x;x, (14.0 + x;).

(15)
Subject to
g1 (X)=1,-1(X)>0,
9,(X) =04-0(X) 20,
g3 (X) =x,—x,20, (16)
94(X) = P.(X) - P20,
95(X) =8, - 6(X) 20,
where

(7' (X)) + (7" (X)) + x,7 (X)7" (X)
\/0.25(x§ +(x, + x3)2)

7(X) =

50400
2 b
X3,

o(X) =

P.(X) = 64746.002 (1 — 0.0282346x; )x;x.,

2.1952 (17)
8(X) =25,

X3%4
X 6000

(\/Exle)’

6000 (14 + 0.5x,)~/0.25(x2 + (x; + x;)*
oy 2 00 V02505, + (31 + %))

2(0.707x,2,(x3/12 + 025 (x, +x3)°)) |

This problem has been solved by different algorithms
such as DDSCA, HGA, MGWO-III, IAPSO, TEO, hHHO-
SCA, HPSO, CPSO, and WCA. Table 21 summarizes the
results of the above algorithms and compares them with the
best results of TSO. The results show that TSO can provide a
parameter design plan with lower cost compared to other
algorithms. TSO generates the best solution at design var-
iables of 0.205729, 3.470490, 9.036626, and 0.205729 with a
minimum cost of 1.724854.
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FIGURE 7: Schematic of tension/compression spring design problem.
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TaBLE 20: Comparisons of best solutions offered by reported optimizers for tension/compression spring design.

Optimal values for variables

Algorithm Optimal cost
X1 X2 X3
GA3 [59] 0.051989 0.363965 10.890522 0.0126810
CPSO [53] 0.051728 0.357644 11.244543 0.0126747
CDE [60] 0.051609 0.354714 11.410831 0.0126702
DDSCA [50] 0.052669 0.380673 10.0153 0.012688
GSA [24] 0.050276 0.323680 13.525410 0.0127022
hHHO-SCA [55] 0.054693 0.433378 7.891402 0.0128229
AEO [61] 0.051897 0.361751 10.879842 0.0126662
MVO [57] 0.05251 0.3762 10.33513 0.012970
TSO 0.051642 0.355609 11.354247 0.0126652
P
b
s
|
FIGURE 8: Schematic of the welded beam design problem.
TasLE 21: Comparisons of best solutions offered by reported optimizers for welded beam design problem.
. Optimal values for variables .
Algorithm Optimal cost
X1 X2 X3 X4
DDSCA [50] 0.20516 3.4759 9.0797 0.20552 1.7305
HGA [62] 0.205712 3.470391 9.039693 0.205716 1.725236
MGWO-III [63] 0.205667 3.471899 9.036679 0.205733 1.724984
IAPSO [64] 0.205729 3.470886 9.036623 0.205729 1.724852
TEO [54] 0.205681 3.472305 9.035133 0.205796 1.725284
hHHO-SCA [55] 0.190086 3.696496 9.386343 0.204157 1.779032
HPSO [56] 0.20573 3.470489 9.036624 0.20573 1.724852
CPSO [53] 0.202369 3.544214 9.048210 0.205723 1.728024
WCA [26] 0.205728 3.470522 9.036620 0.205729 1.724856
TSO 0.205729 3.470490 9.036626 0.205729 1.724854
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5. Conclusions

This work presents a novel swarm-based metaheuristic al-
gorithm: tuna swarm optimization. The algorithm is inspired
by the cooperative foraging mechanisms of tuna, including
spiral foraging and parabolic foraging. The method has few
adjustable parameters and can be implemented easily. TSO
was comprehensively evaluated using a set of benchmark
functions in different dimensions and was compared with
other state-of-the-art algorithms. The results show that TSO
is superior to the comparative algorithms. In addition, the
pressure vessel design problem, the tension/compression
spring design problem, and the welded beam design problem
are investigated. The statistical results show that TSO has a
high potential for solving real-world optimization problems
compared to the reported methods. A major factor in TSO’s
success is the balance of exploitation and exploration
achieved through the two foraging strategies. Meanwhile,
fewer iterative steps bring less time costs, which is one of the
strengths of TSO. However, while TSO performs excellently
in most functions, there is still potential for enhancement
regarding the small percentage of functions. This can be
done by further enhancing TSO’s ability to get rid of local
optimum, using methods such as hybridisation of algo-
rithms, adaptive parameters, etc.

For future work, binary and multiobjective versions of
TSO can be developed for discrete problems and multi-
objective optimization problems. Moreover, TSO will be
applied to solve UAV mission planning problems such as
trajectory planning problems, target allocation problems,
etc. A further interesting direction would be to investigate
the performance of different constraint handling methods in
solving constrained optimization problems.
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