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The manufacture of clinical grade cellular products for adoptive immunotherapy requires ex vivo culture and expansion of human

T cells. One of the key components in manufacturing of T cell therapies is human serum (HS) or fetal bovine serum (FBS),

which can potentially expose immunotherapy recipient to adventitious infectious pathogens and are thus considered as non-

cGMP compliant for adoptive therapy. Here we describe a novel xeno-free serum replacement (SR) with defined components that

can be reproducibly used for the production of clinical grade T-cell therapies in combination with several different cell culture

media. Dynabeads CD3/CD28 Cell Therapy System (CTS)-activated or antigen-specific T cells expanded using the xeno-free SR,

CTS Immune Cell SR, showed comparable growth kinetics observed with cell culture media supplemented with HS or FBS.

Importantly the xeno-free SR supplemented medium supported the optimal expansion of T cells specific for subdominant

tumour-associated antigens and promoted expansion of T cells with central memory T-cell phenotype, which is favourable for

in vivo survival and persistence following adoptive transfer. Furthermore, T cells expanded using xeno-free SR medium were

highly amenable to lentivirus-mediated gene transduction for potential application for gene-modified T cells. Taken together, the

CTS Immune Cell SR provides a novel platform strategy for the manufacture of clinical grade adoptive cellular therapies.

Clinical & Translational Immunology (2015) 4, e31; doi:10.1038/cti.2014.31; published online 16 January 2015

Adoptive immunotherapy with ex vivo-derived T cells is emerging as a
powerful tool to treat disease in a range of clinical settings.1,2 The
primary clinical settings targeted for adoptive immunotherapy over the
past two decades have been viral diseases associated with immune-
compromise3,4 and cancer,2,5 which both have shown great success. In
these settings, the in vitro expansion of T-cell populations from either
peripheral blood mononuclear cells (PBMC), gene-modified T cells or
tumour infiltrating lymphocytes has been used to improve the
functional properties of both CD8+ cytotoxic T lymphocytes and
CD4+ T cells prior to infusion. More recent studies have begun to
employ the adoptive transfer of T cells encoding recombinant
receptors, typically via delivery with a viral vector system, to improve
recognition of tumour cells. This has included the introduction of
recombinant T-cell receptors that target defined tumour-associated
peptide epitopes in complex with major histocompatibility molecules,6

and chimeric antigen receptors that contain antibody chains targeting
molecules expressed on the surface of tumour cells.5,7 Recent
observations have shown the great potential of using such approaches
in the treatment of malignant disease. Other recent approaches have
begun to employ ex vivo culture to generate regulatory T cells for the
treatment of autoimmune disease or graft-versus-host disease,8–10

further emphasising the potential of ex vivo expanded T cells for
targeted treatment of many human diseases.
Serum supplementation, traditionally with fetal bovine serum (FBS)

or human serum (HS), has been a mainstay for in vitro tissue culture
of mammalian cells, providing essential factors required for survival
and growth of cells. The manufacture of T cells for adoptive therapy is
also dependent upon the provision of a serum supplement, either FBS
or HS, to optimise the generation and function of ex vivo expanded
T cells. While improved tissue culture media formulations have been
developed that provide some incremental improvements in T-cell
growth ex vivo, these still provide inferior growth kinetics to serum-
supplemented media,11 particularly in settings where expansion is not
induced by non-specific polyclonal activation. However, given increas-
ing regulatory requirements associated with the use of serum in the
manufacture of cells for adoptive therapy, there is a pressing need for
the development of alternative approaches to the use of both animal-
derived and HS.11 In this study we have investigated the use of a xeno-
free serum replacement (SR), Cell Therapy System (CTS) Immune
Cell SR, as an alternative to both HS and FBS. We demonstrate, using
clinically relevant expansion protocols, that CTS Immune Cell SR
promotes the efficient ex vivo expansion of polyclonally activated
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T cells, with yields similar to that generated in HS. We also show that
CTS Immune Cell SR can substitute for the use of FBS in the
expansion of T cells specific for two clinically important human
herpesviruses, Epstein Barr Virus (EBV) and human Cytomegalovirus
(CMV), and demonstrate that culture in CTS Immune Cell SR can
enhance the generation of subdominant T-cell responses specific for
tumour-associated antigens.

RESULTS

CTS Immune Cell SR supports ex vivo expansion of polyclonal
activated T cells
Ex vivo expansion of T cells activated with CTS Dynabeads CD3/CD28
is a commonly used protocol for production of T cell products for cell
therapy.12–14 Current protocols employ several different cell culture
media, all of which are supplemented with pooled human AB serum
to increase total fold expansion of T cells. To test whether T cells can
expand to the same extent using a xeno-free chemically defined SR,
polyclonal T cells from healthy blood donors were activated using
Dynabeads and growth kinetics was monitored for a 2-week period.
Cells were cultured in CTS OpTmizer T-cell Expansion SFM (Life
Technologies, Carlsbad, CA, USA) supplemented with 2% HS or
titrated amounts of CTS Immune Cell SR, at a range of 0, 2, 5 or 10%.
Cells were fed every 1–2 days and counted at day 4, 7 and 12
(Figure 1). OpTmizer cell culture media supplemented with HS or SR

showed similar growth kinetics as shown by one representative donor
(Figure 1a) or total fold expansion at the end of the culture as shown
by an average of four donors (Figure 1b).
The rapid expansion protocol, first described by the Rosenberg

group, uses anti-CD3 monoclonal antibody (OKT3), high dose
interleukin-2 (IL-2) and irradiated allogenic feeder cells to generate
T cell for adoptive therapy from tumour infiltrating lymphocytes.15 To
study whether SR could support expansion of T cells activated using
soluble anti-CD3 monoclonal antibody and feeder cells, polyclonal
T cells were activated according to the rapid expansion protocol and
cultured in XVIVO15, OpTmizer or CTS AIM-V supplemented with
either HS or SR. On day 12, total fold expansion of CD4+ and CD8+

T cells was analysed by flow cytometry. A similar fold expansion in
both CD4+ and CD8+ T cells was evident in all culture media tested
(Figures 2a and b). Furthermore the expansion of both T cell subsets
was maintained when HS was replaced with the xeno-free chemically
defined SR regardless of the cell culture media used.
Polyclonal activation of T cells is commonly used in the generation

of gene-modified T cells encoding either tumour-specific chimeric
antigen receptors or T-cell receptors.6,13,14,16 To demonstrate the
capacity of SR to support the ex vivo expansion of gene-modified
T cells, polyclonal T cells activated with CTS Dynabeads CD3/CD28
were transduced with a GFP-expressing lentiviral vector (16–20 h after
activation) and the expression of GFP was analysed by flow cytometry
on day 7. As a control, T cells from the same donors were expanded in
the corresponding cell culture media supplemented with HS. A high
transduction efficiency was evident in both XVIVO15 and OpTmizer
supplemented with either HS or SR (Figure 2c), demonstrating the
capacity of CTS Immune Cell SR to support the growth of gene-
modified T cells.

CTS Immune Cell SR supports the expansion of virus-specific T cells
To evaluate the efficacy of OpTmizer and CTS Immune Cell SR in
promoting the expansion of viral antigen-specific T cells, we investi-
gated their use in the production of CMV-specific T cells using a
peptide-based stimulation protocol we have successfully employed to
generate cellular therapies for CMV-associated disease in transplant
patients and to treat CMV-associated glioblastoma multiforme.17,18 In
this setting, PBMC from three CMV-seropositive individuals were
exposed to a pool of custom designed CMV-specific T-cell peptide
epitopes, then cultured for 2 weeks in either RPMI supplemented with
10% FBS or OpTmizer supplemented with 5% SR. All cultures
were supplemented with 50% fresh culture medium containing 120
IUml− 1 recombinant IL-2 on day 3 and every 3 days thereafter. To
assess the impact of OpTmizer supplemented with SR on T-cell
expansion, at the completion of the culture period, T-cell numbers
were enumerated using trypan blue exclusion and T-cell specificity was
assessed using a standard intracellular interferon-γ (IFN-γ) assay.
Representative intracellular IFN-γ analysis from a single donor
comparing RPMI–FBS and OpTmizer-SR is shown in Figure 3a.
Consistent with the results following polyclonal stimulation, cell yield
was comparable or increased following culture in the presence of
OpTmizer-SR (Figure 3b), and the frequency of IFN-γ producing
CMV-specific T cells was similar (Figure 3c).
The polyfunctional profile of T lymphocytes, including the capacity

to degranulate (measured by the surface expression of CD107a) and
the production of multiple cytokines (IFN-γ, TNF (tumor necrosis
factor) and IL-2) is associated with the better control of disease.19,20

To compare the functional properties of T cells expanded in either
RPMI–FBS or OpTmizer-SR, we assessed the polyfunctional profile in
CMV-specific T cells from the three donors after 14 days in culture.

Figure 1 CTS Immune Cell SR supports the ex vivo expansion of polyclonal
activated T cells. T cells from PBMC were isolated and activated using CTS
Dynabeads CD3/CD28 and cultured in OpTmizer cell culture medium
supplemented with pooled human AB serum (HS 2%), titrated amounts of
CTS Immune Cell SR (2–10%) or no serum. Cells were fed every 1–2 days.
(a) Analysis of the growth kinetics from one representative donor. (b) Data
represent the average± s.d. of fold expansion of T cells at the end of culture
(day 12) from four donors.
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Representative analysis for a single donor stimulated with the CMV
peptide pools in either RPMI–FBS or OpTmizer-SR is shown in
Figure 3d. In both settings the majority of cells showed a typical
effector profile characterised by the production of IFN-γ, TNF and
CD107a, and a similar proportion (~10%) of cells also produced IL-2
(Figure 3e).

CTS immune cell SR provides optimal expansion of T cells specific
for subdominant tumour-associated EBV antigens
EBV LMP1&2- and EBNA1-specific T cells offer therapeutic potential
to treat EBV-associated malignancies, including nasopharyngeal

carcinoma and EBV-associated lymphomas.21,22 Unlike the immuno-
dominant CMV-specific T cells, EBV LMP1&2- and EBNA1-specific
T cells are classically subdominant EBV-specific T cells associated with
very low frequencies in peripheral blood and we have previously
shown that optimal expansion is achieved using an adenoviral vector
encoding the minimal CD8+ T cell epitopes (known as AdE1-
LMPpoly) and cultured in RPMI–10% FBS.23 To determine if
OpTmizer supplemented with CTS immune cell SR could provide
efficient culture conditions in a clinically compliant protocol used to
generate LMP1&2- and EBNA1-specific T cells, PBMC from seven
EBV-seropositive individuals were cultured with autologous PBMC
infected with the AdE1-LMPpoly vector as outlined previously, either
in RPMI–FBS or OpTmizer-SR. All cultures were supplemented with
50% fresh culture medium containing 120 IUml− 1 recombinant IL-2
on day 3 and every 3 days thereafter. On day 14, T-cell cultures were
assessed for cell number, and the frequency of LMP1&2- and EBNA1-
specific T cells using intracellular cytokine analysis. Representative
intracellular IFN-γ analysis from a single donor is shown in Figure 4a.
OpTmizer supplemented with SR resulted in a significant increase in
overall cell yield in all of the donors tested relative to cells cultured in
RPMI–FBS (Figure 4b). Similarly, all cultures displayed a significant
increase in the frequency of LMP1&2- and EBNA1-specific CD8+

T cells relative to RPMI–FBS (Figure 4c). These observations
demonstrate that OpTmizer cell culture media with CTS immune
cell SR can support the ex vivo expansion of T cells specific for
subdominant tumour-associated viral antigens, with at least similar
efficiency to the RPMI–FBS.
To explore the functional properties of the EBV-specific T cells

following in vitro stimulation in the presence of OpTmizer-SR, we
assessed the polyfunctional profile of the LMP1&2- and EBNA1-
specific T cells following expansion in three EBV-seropositive donors;
and investigated the expression of the effector molecules granzyme B,
granzyme K and perforin in EBV MHC-multimer-specific T cells.
Similar to the observations in CMV-specific T cells, the polyfunctional
profile of EBV-specific T cells was comparable following culture in
either OpTmizer-SR or RPMI–FBS, whereby in both culture condi-
tions the majority of cells were either CD107a+IFN-γ+TNF+IL-2+ or
CD107a+IFN-γ+TNF+IL-2− (Figure 4d). Similarly, T cells cultured in
either OpTmizer-SR or RPMI–FBS displayed a similar effector profile,
with the majority of EBV MHC-multimer-specific cells expressing
perforin and granzymes B and K (Figure 4e).

Culture of antigen-specific T cells in OpTmizer medium
supplemented with CTS immune cell SR expands T cells with
central memory phenotype
To explore the impact of culturing virus-specific T cells in OpTmizer
supplemented with CTS immune cell SR on the immunophenotype of
expanded T cells, EBV MHC-multimer-specific T cells were assessed
for the surface expression of CD27, CD28, CD57 and CD62L.
Representative analysis of MHC-multimer staining and surface marker
expression from one donor is shown in Figure 5a. Interestingly, while
culture in OpTmizer-SR increased the frequency of MHC-multimer-
specific T cells, it also resulted in a less terminally differentiated
phenotype, most evident by a reduction in the proportion of cells
expressing the terminal differentiation marker CD57. Although T cells
cultured in RPMI–FBS were predominantly CD27−CD28+CD57
+CD62L+ or CD27−CD28+CD57−CD62L+, T cells cultured in
OpTmizer-SR were predominantly CD27+CD28+CD57−CD62L+ or
CD27−CD28+CD57−CD62L+, a typical phenotype of T-central
memory cells (Figure 5b). Previous observations have suggested that
adoptive therapy with less differentiated central memory T-cell

Figure 2 CTS Immune Cell SR supports CD8+ and CD4+ T-cell expansion
using the rapid expansion protocol. T cells were activated using OKT-3, IL-2
(3000Uml−1) and irradiated allogenic feeder cells (1:100) in different cell
culture media supplemented with either HS or 10% SR, and supplemented
with fresh media every 1–2 day. On day 13, cells were counted and stained
for CD4 and CD8. Data represent the average± s.d. relative fold expansion of
CD8+ T cells (a) or CD4+ T cells (b) when compared with cells cultured in
XVIVO+HS. (c) T cells from PBMC were isolated and activated using CTS
Dynabeads CD3/CD28 and cultured in XVIVO15 or OpTmizer cell culture
medium supplemented with HS (5% HS with XVIVO15 and 2% HS with
OpTmizer) or 10% SR. After 16–20 h, cells were transduced with pELNS-
GFP lentiviral vector. At day 7, GFP expression was analysed using a flow
cytometer. Data represent average± s.d. of the percentage of GFP+ cells
from a total of 3 donors. NT, non-transduced cells.
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Figure 3 CTS Immune Cell SR supports the ex vivo expansion of CMV-specific T cells. PBMC from healthy CMV-seropositive donors were cultured with
autologous PBMC pulsed with a pool of CMV-encoded CD8+ T-cell peptide epitopes in either RPMI–FBS or OpTmizer-SR. T-cell cultures were supplemented
with 50% fresh media containing 120 IUml−1 IL-2 after 3 days and every 3–4 days after. On day 14, cell numbers were determined using trypan
blue exclusion, then T-cell specificity was determined using an intracellular IFN-γ assay following recall with a pool of defined CMV-encoded, CD8+ T-cell
peptide epitopes. (a) Representative analysis from the same donor stimulated with the CMV peptide pool and cultured in either RPMI–FBS or OpTmizer-SR is
shown. (b) Data represents the mean± s.e.m. from three donors of the number of viable cells following CMV peptide pool stimulation in RPMI–FBS or
OpTmizer-SR. (c) Data represent the mean± s.e.m. from three donors of the frequency of CMV-specific CD8+ T cells following CMV peptide pool stimulation
in RPMI–FBS or OpTmizer-SR. (d) CMV peptide pool expanded T cells were assessed for multiple cytokine production (IFN-γ, TNF and IL-2) and
degranulation (CD107a) following recall with cognate peptides. Representative dot plots are shown from the same donor cultured in either RPMI–FBS or
OpTmizer-SR. (e) Data represent the mean± s.e.m. from three donors of the proportion of CMV-specific CD8+ T cells producing different combinations of
IFN-γ, TNF, IL-2 and CD107a in RPMI–FBS or OpTmizer-SR.
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Figure 4 CTS Immune Cell SR optimises the expansion of T cells specific for the subdominant tumour-association EBV antigens, LMP1&2 and EBNA1.
PBMC from healthy EBV-seropositive donors were cultured with autologous AdE1-LMPpoly infected PBMC in either RPMI–FBS or OpTmizer supplemented
with SR. T-cell cultures were supplemented with 50% fresh media containing 120 IUml−1 IL-2 after 3 days and every 3–4 days after. On day 14, cell
numbers were determined using trypan blue exclusion, then T-cell specificity was determined using an intracellular IFN-γ assay following recall with a pool of
defined LMP1&2 and EBNA1. (a) Representative analysis from the same donor stimulated with AdE1-LMPpoly and cultured in either RPMI–FBS
or OpTmizer-SR is shown. (b) Data represent the mean± s.e.m. from seven donors of the number of viable cells following AdE1-LMPpoly stimulation in
RPMI–FBS or OpTmizer-SR. (c) Data represent the mean± s.e.m. from seven donors of the frequency of LMP1&2/EBNA1-specific CD8+ T cells following
AdE1-LMPpoly stimulation in RPMI–FBS or OpTmizer-SR. (d) AdE1-LMPpoly expanded T cells were assessed for multiple cytokine production (IFN-γ, TNF
and IL-2) and degranulation (CD107a) following recall with cognate peptides. Data represent the mean± s.e.m. from three donors of the proportion of
EBV-specific CD8+ T cells producing different combinations of IFN-γ, TNF, IL-2 and CD107a in RPMI–FBS or OpTmizer-SR. (e) AdE1-LMPpoly expanded
T cells, were stained with the HLA B35/HPVGEADYFEY pentamer, then assessed for the intracellular expression of granzymes B and K and perforin. Data
represent the mean± s.e.m. from two donors (use average and s.d.) of the proportion of HPVGEADYFEY-specific CD8+ T cells producing each effector
molecule in RPMI–FBS or OpTmizer-SR.
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populations can offer increased survival and in vivo persistence of
T cells following transfer.24

A combination of CTS Immune Cell SR and the G-Rex culture
system promotes optimal expansion of antigen-specific T cells
The G-Rex culture systems have been designed to support optimal cell
growth through improved gas exchange. To investigate the use of the
G-Rex culture system with OpTmizer supplemented with SR, PBMC
from three EBV-seropositive donors were cultured with autologous
AdE1-LMPpoly infected PBMC in OpTmizer-SR, in either a 75 cm2

tissue culture flask, or in a G-Rex10 culture vessel. As outlined above,
cultures were supplemented with fresh media containing 120 IUml− 1

IL-2 on day 3 and every 3–4 days thereafter. Cell yield and the
frequency of EBV-specific T cells were assessed after 14 days.
Representative intracellular IFN-γ analysis from two donors is shown
in Figure 6a. Culture in the G-Rex flasks had a dramatic impact on cell
yield; generating a 9- to 13-fold expansion in absolute cell numbers
compared with a 2- to 5-fold expansion in the standard 75 cm2 tissue
culture flask (Figure 6b). Both flasks generated a similar frequency of
IFN-γ producing EBV-specific cells (Figure 6c); demonstrating that
the CTS OpTmizer T-cell Expansion SFM supplemented with CTS
Immune Cell SR can be used effectively to optimise the expansion of
antigen-specific T cells in G-Rex culture system.

IL-2 is sufficient to support the optimal expansion of both CD8+

and CD4+ T cells in OpTmizer cell culture media supplemented
with CTS Immune Cell SR
In addition to IL-2, many studies have investigated the use of different
γC-cytokines, including IL-7, IL-15 and IL-21, in promoting optimal
expansion of T cells for adoptive therapy.25–27 We therefore next
assessed the impact of culture antigen-specific T cells in OpTmizer-SR
with IL-7, IL-15 and IL-21, with and without IL-2 following in vitro
stimulation with the CMV-specific peptide pool. Cultures were
supplemented with IL-21 once at the time of stimulation, and with
IL-2, IL-7 and IL-15 every 3 days. In addition to CMV-specific CD8+

T cells, we also assessed the expansion of CMV-specific CD4+ T cells
following in vitro culture in different combinations of cytokines.
Analysis of the relative cell yield following expansion revealed that the
optimal expansion of total cells was dependent upon the addition of
IL-2 (Figure 7a). Although the addition of IL-21, IL-7 and IL-15 did
not enhance the cell yield, culture in IL-7 and IL-15 in the absence of
IL-2 reduced the overall cell yield. Additionally, culture in IL-2 alone
was sufficient to optimise the expansion of both CMV-specific CD8+

T cells (Figure 7b) and CMV-specific CD4+ T cells (Figure 7c). These
observations confirm efficient expansion of both CD8+ and CD4+

antigen-specific T cells in OpTmizer cell culture media supplement
with CTS Immune Cell SR and demonstrate that the addition of other

Figure 5 CTS Immune Cell SR promotes a central memory T-cell phenotype in expanded EBV-specific T cells. AdE1-LMPpoly expanded T cells were stained
with the HLA B35/HPVGEADYFEY pentamer prior to assessing the surface expression of CD27, CD28, CD57 and CD62L. (a) Representative dot plots of
the expression of CD27, CD28, CD57 and CD62L by HPVGEADYFEY-specific T cells are shown from the same donor cultured in either RPMI–FBS
or OpTmizer-SR. (b) Data represent the mean± s.e.m. from three donors of the proportion of HPVGEADYFEY-specific CD8+ T cells expressing different
combinations of CD27, CD28, CD57 and CD62L in RPMI–FBS or OpTmizer-SR.
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γC-cytokines does not synergise the expansion of antigen-specific
T cells.

DISCUSSION

Adoptive immunotherapy based on ex vivo expanded autologous or
antigen-specific T cells has emerged as a powerful tool to treat human
cancers and infectious complications.3,28,29 Over the last decade, the
manufacturing process for T-cell therapies has been extensively refined
to improve the quality of effector cells and increase the speed of
production.30 Supplementation of growth medium with HS or FBS is
an essential component for manufacturing of cellular immune
therapies. However, this process can potentially expose immunother-
apy recipient to adventitious infectious pathogens and thus limits
clinical application of cellular therapies. Furthermore, infusion of cells
expanded using FBS can lead to hypersensitivity reactions due to
development of specific antibodies,31 although such adverse reactions
are rare and predominantly occur following multiple infusions. While
Although emergence of serum-free growth medium has provided new
platform strategies for safe clinical translation of cellular therapies,
these formulations fail to match the efficiency of ex vivo T-cell
expansion using traditional growth medium supplemented with HS or
FBS. In this study we report the development and ex vivo assessment
of a novel xeno-free chemically defined SR, CTS Immune Cell SR as
an alternative to HS or FBS. We demonstrate that CTS Immune Cell
SR is highly efficient in expanding polyclonal, antigen-specific and
gene-modified human T cells, with yields similar to that generated
with cell culture medium supplemented with HS or FBS.
Using both polyclonal stimulation and viral antigen-specific activa-

tion, we found that different culture medium formulations (XVIVO,
CTS AIM-V and CTS OpTmizer T-cell Expansion SFM)

supplemented with CTS Immune Cell SR consistently expanded
polyclonal and virus-specific T cells. The expansion kinetics of
T cells using this novel SR was comparable to expansion kinetics
using HS or FBS. It is important to point out that these T-cell
expansions included both CD4+ and CD8+ T cells. These ex vivo
expanded T cells were highly amenable for lentivirus-mediated gene
transduction for potential application in the generation of gene-
modified effector cells encoding either tumour-specific chimeric
antigen receptors or T-cell receptors. Interestingly, we observed a
significantly improved expansion of CD8+ T cells directed towards
subdominant viral antigens from EBV in growth medium supple-
mented with CTS Immune Cell SR. Furthermore, phenotypic profiling
showed that the EBV-specific effector cells expanded with CTS
Immune Cell SR displayed a higher proportion of CD28+, CD62L+

and CD27+ T cells (central memory) when compared with the cells
expanded with FBS. These observations are indeed important as the
in vivo proliferative capacity and long-term survival of central memory
T cells is enhanced when compared with terminally differentiated
T cells when used for adoptive immunotherapy.32,33 It is important to
note that in spite of some phenotypic differences, antigen-specific
T cells expanded with CTS Immune Cell SR displayed a polyfunctional
profile comparable to the T cells expanded with FBS. Most of these
T cells expressed CD107, TNF, IFN-γ and IL-2 following stimulation
with viral peptide epitopes.
Earlier studies based on both human and murine models have

shown that different γC-cytokines (for example, IL-2, IL-7 and IL-15)
can have a dramatic impact on in vitro expansion of antigen-specific T
cells.25–27,34 To further refine our T-cell expansion protocol using CTS
Immune Cell SR, we stimulated human PBMC with viral antigens in
combination with different γC-cytokines (IL-2, IL-7, IL-15 and IL-21).

Figure 6 Optimal expansion of EBV LMP1&2- and EBNA1-specific T cells in OpTmizer supplemented with CTS Immune Cell SR in G-Rex10 flasks.
PBMC from three EBV-seropositive donors were cultured with autologous AdE1-LMPpoly infected PBMC in OpTmizer-SR (final concentration 5%) in either a
75 cm2 flask or a G-Rex10 flask. T cell cultures were supplemented with 50% fresh media containing 120 IUml−1 IL-2 after 3 days and every 3–4 days
after. On day 14, cell numbers were determined using trypan blue exclusion, prior to determining T-cell specificity using an intracellular IFN-γ assay
following recall with a pool of defined LMP1&2 and EBNA1 CD8+ T-cell peptide epitopes. (a) Representative intracellular IFN-γ analysis from two
different donors is shown. (b) Data represent the mean± s.e.m. of the fold expansion of viable cells as determined by trypan blue. (c) Data represent the
mean± s.e.m. of frequency of LMP1&2/EBNA1-specific CD8+ T cells.
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Consistent with previously published reports, IL-2 alone or in
combination with IL-21, IL-7 and/or IL-15 showed strong prolifera-
tion of both CD8+ and CD4+ T cells. These T-cell expansions were
comparable to those seen with growth medium supplemented with
FBS in the absence of IL-2, the total yield was reduced. Taken together,
the data presented in this study provide clear evidence that CTS

Immune Cell SR is highly efficient in expanding both polyclonal and
virus-specific T cells directed against both dominant and subdominant
antigens. Furthermore the cost of manufacturing T-cell therapy using
the CTS Immune Cell SR is comparable to traditional growth medium
supplemented with serum. These observations are highly relevant for
the potential clinical application of T-cell therapies for infectious
complications in immunosuppressed transplant patients and also for
cancer patients. It will be important in future studies to formally assess
the potential application of CTS Immune Cell SR in clinical settings
where the patients are severely immunocompromised or lymphopenic.

METHODS

Activation of polyclonal T cells using CTS Dynabeads CD3/CD28
Polyclonal T cells from freshly isolated PBMC (from healthy blood donors)
were isolated and activated ex vivo using CTS Dynabeads CD3/CD28 (Life
Technologies) at a bead to T cell ratio of 3:1 and cultured for 2 weeks. T cells
were seeded 1× 106 T cell ml− 1 in cell culture media with 100 Uml− 1 IL-2
(Life Technologies) in tissue culture wells. Media used were XVIVO 15 (Lonza,
Walkersville, MD, USA), CTS OpTmizer T-cell Expansion SFM, or CTS AIM-
V (Life Technologies). Pooled human AB serum (2 or 5% as indicated, Life
Technologies) or CTS Immune Cell SR (percentage indicated in figure legends,
Life Technologies) were added to the media for comparison. All cell culture
media were supplemented to a final concentration of 6mM glutamine (Life
Technologies). Cell cultures were fed with fresh media every 1–3 days as
needed. At the end of culture, cells were counted and phenotype was analysed
using flow cytometer (CD4 and CD8, Life Technologies). Cell acquisition was
performed using a BD LSRII (BD Biosciences, Franklin Lakes, NJ, USA). Post-
acquisition analysis was performed using FACSDiva software (BD Biosciences).

Lentiviral transduction of polyclonal T cells
After 16–20 h of stimulation with CTS Dynabeads CD3/CD28 (bead to T-cell
ratio 3:1) as described above, 1 multiplicity of infection of pELNS-GFP
lentiviral vector (kindly provided from Dr James Riley and Andrew Medvec
at Department of Microbiology at University of Pennsylvania) was added to the
cultures. Efficiency of transduction was assessed at day 7 by flow cytometry.
Cell acquisition was performed using a BD LSRII (BD Biosciences). Post-
acquisition analysis was performed using FACSDiva software (BD Biosciences).

Activation of polyclonal T cells using OKT-3 monoclonal antibody,
feeder cells and high dose IL-2
Polyclonal T cells from freshly isolated PBMC (from healthy blood donors) were
isolated using Dynabeads Untouched T cells Kit (Life Technologies) and activated
ex vivo using OKT3 (30 ngml− 1, eBioscience, San Diego, CA, USA), pooled
irradiated feeder cells (1:100) and high dose IL-2 according to the rapid
expansion protocol described by Rosenberg lab (Dudley et al.). Cells were seeded
1×105 T cell ml− 1, 5× 107 irradiated feeder cells ml− 1 in cell culture media with
3000Uml− 1 IL-2 (Life Technologies) in tissue culture wells and grown for
2 weeks. Cell cultures were fed with fresh media every 1–3 days as needed. Media
used were XVIVO-15 (Lonza), CTS OpTmizer T cell Expansion SFM, or AIM-V
CTS (Life Technologies). Pooled human AB serum (2 or 5% as indicated) or
10% CTS Immune Cell SR were added to the media for comparison. All cell
culture media were supplemented to a final concentration of 6mM glutamine
(Life Technologies). At the end of culture, cells were counted and phenotype was
analysed using flow cytometer (CD4, CD8 and CD62L).

Activation of CMV-specific T cells
CMV-specific T cells were generated using a pool of CMV-specific CD8+ T-cell
epitopes (JPT Peptide Technologies GmbH, Berlin, Germany) as outlined
previously.18 Briefly, 2.7 × 106 PBMC were co-cultured in a 24-well plate with
peptide pulsed autologous PBMC at a responder to stimulator ratio of 2:1, in
either RPMI–10% FBS or in OpTmizer supplemented with 5% SR. On day 3,
and every 3–4 days thereafter, the cultures were supplemented with the
appropriate growth medium containing 120 IUml− 1 recombinant IL-2. On
day 14, cells were harvested, cell number and viability determined using trypan

Figure 7 IL-2 is sufficient to support the optimal expansion of both CD8+

and CD4+ T cells in OpTmizer supplemented with CTS Immune Cell SR.
PBMC from five CMV-seropositive donors were cultured with autologous
PBMC pulsed with a pool of CMV-encoded CD8+ and CD4+ T cell peptide
epitopes in OpTmizer-SR supplemented with or without 30 ngml−1 IL-21.
On day 3 and every 3 days thereafter, cultures were supplemented with
IL-2, and/or IL-7 (10 ngml−1) and IL-15 (10 ngml−1). On day 14, cell
numbers were determined using trypan blue exclusion, then T-cell specificity
was determined using an intracellular IFN-γ assay following recall with the
pool of CMV-encoded CD8+ and CD4+ T-cell peptide epitopes. (a) Data
represent the mean± s.e.m. of the relative expansion of cells compared
with cells cultured in IL-2 alone. (b) Data represent the mean± s.e.m.
of frequency of CMV-specific CD8+ T cells. (c) Data represent the
mean± s.e.m. of frequency of CMV-specific CD4+ T cells.
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blue exclusion, specific T cells using a standard IFN-γ intracellular cytokine
assay as described previously.18

Activation of EBV-specific T cells
LMP/EBNA1-specific T cells were generated using the AdE1-LMPpoly adeno-
viral vector as outlined previously.21 Briefly, 2.7× 106 PBMC were co-cultured
in a 24-well plate with autologous PBMC infected with AdE1-LMPpoly
(multiplicity of infection of 10:1) at a responder to stimulator ratio of 2:1, in
either RPMI-1640 supplemented with 10% FBS, or in CTS OpTmizer T-cell
Expansion SFM (OpTmizer) supplemented with 5 or 10% CTS Immune Cell
SR or 10% Human AB serum. On day 3, and every 3–4 days thereafter, the
cultures were supplemented with the appropriate growth medium containing
120 IUml− 1 recombinant IL-2. On day 14, cells were harvested, cell number
and viability were determined using trypan blue exclusion, then tested for LMP-
and EBNA1-specific T cells using a standard IFN-γ intracellular cytokine assay
as described previously.21

Polyfunctional cytokine analysis
T cells were assessed for polyfunctional cytokine production (IFN-γ, TNF and
IL-2) and degranulation (CD107a), as described previously.18 Briefly, T cells
were stimulated with cognate peptide and incubated for 4 h in the presence of
FITC anti-CD107a, GolgiPlug and GolgiStop (BD Biosciences). Cells were then
incubated with PerCP-Cy5.5 anti-CD8 and PE-Cy7 anti-CD4, fixed and
permeabilised, then incubated with AF700 anti-IFN-γ, APC anti-TNF and PE
anti-IL-2. Cell acquisition was performed using a BD LSR Fortessa (BD
Biosciences). Post-acquisition analysis was performed using FlowJo software
(TreeStar, Ashland, OR, USA).

Phenotypic analysis of cultured T cells
In vitro expanded T cells were incubated for 20min with the APC labelled HLA
B35/HPVGEADYFEY pentamer (ProImmune, Oxford, UK), then incubated for
a further 30min at 4 °C with V500 anti-CD8, PE-Cy7 anti-CD4, PE anti-CD27,
PerCP-Cy5.5 anti-CD28, FITC anti-CD62L and biotin anti-CD57; followed by
incubation with BV421 streptavidin. To assess the expression of Perforin and
Granzymes B and K, T cells were incubated with the APC labelled HLA B35/
HPVGEADYFEY pentamer, incubated with PerCP-Cy5.5 anti-CD8, then fixed
and permeabilised using the BD transcription factor buffer kit. Cells were then
incubated with BV421 anti-perforin (eBioscience), Alexa Fluor 700 anti-
Granzyme B (BD Biosciences) and FITC anti-Granzyme K (Santa Cruz
Biotechnology, Dallas, TX, USA). All cell acquisition was performed using a
BD LSR Fortessa. Post-acquisition analysis was performed using FlowJo software.

Statistical analysis
All statistical analysis was performed using GraphPad Prism software (Graph-
Pad, La Jolla, CA, USA). Differences were considered to be statistically
significant where Po0.05.
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