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The Hippo pathway regulates cancer biology in many aspects and the crosstalk with other
pathways complicates its role. Accumulated evidence has shown that the bidirectional
interactions between tumor cells and tumor microenvironment (TME) are the premises of
tumor occurrence, development, and metastasis. The relationship among different
components of the TME constitutes a three-dimensional network. We point out the
core position of the Hippo pathway in this network and discuss how the regulatory inputs
cause the chain reaction of the network. We also discuss the important role of Hippo-TME
involvement in cancer treatment.
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INTRODUCTION

Tumors are abnormal tissues caused by cell proliferation under the action of carcinogenic
environmental factors. The tumor microenvironment (TME) includes various components, such
as blood vessels, immune infiltration, fibroblasts, and the extracellular matrix. The interaction
between tumor cells and TME may lead to tumor occurrence, metastasis and drug resistance. To
explore the specific mechanism between them further is of great significance for the development of
effective treatment methods. So far, Hippo pathway has been proved not only to control the
development of normal tissues, but also to participate in the occurrence, development and
metastasis of cancer. The purpose of this review is to illustrate the role of Hippo pathway in
TME that can indirectly act on tumors. The Hippo pathway generally plays a vital role in fibroblast
activation, stem cell maintenance, extracellular matrix change, immune infiltration, and
angiogenesis, which doesn’t depend on the typical receptor-ligand interaction mode. It also
influences the secretion of numerous molecules that affects the development of tumors via cells
in TME. More and more evidence show that the Hippo pathway is widely involved in the pro-and
antitumor effects in different tumor populations. We discuss the interactions between the Hippo
pathway and the other components of the TME, attempts to explain its mechanism of action on
tumors, and explores effective treatment options that may be realized in the future.
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HIPPO PATHWAY AT A GLANCE

The Hippo pathway plays a central role in regulating organ size
and maintaining dynamic tissue balance. The step of this
mechanism is: First, TAOK1/2/3 phosphorylation, or MST1/2
automatic phosphorylation Initiates the Hippo kinase cascade;
Second, activated MST1/2 phosphorylates LATS1/2; Third,
activated LATS1/2 phosphorylates YAP/TAZ under the action
of SAV1, MOB1A/B, and NF2; Finally, this results in the 14-3-3-
mediated cytoplasmic retention and SCF-mediated degradation
of YAP/TAZ (Figure 1). YAP/TAZ is a transcriptional
coactivator that regulates gene transcription mainly by
interacting with TEAD. In mouse models, the upregulation of
TEAD target gene expression, with partial deletion of kinase
cascade or YAP overexpression, can lead to increased progenitor
cell proliferation and tissue overgrowth (1–3). Physical
development is a very sophisticated process which follows
strict protocol according to an organism’s genetic blueprint.
The Hippo pathway plays a significant role in the drawing of
this blueprint. Because of the Hippo pathway’s unique ability to
promote regeneration, any abnormality of its core components,
especially YAP/TAZ, is of great significance in promoting the
migration, invasion, and malignancy of cancer cells. Aberrant
overexpression of YAP/TAZ in tumors promotes tumorigenesis
and is therefore considered an oncogene in a large number of
solid cancers. Also, YAP/TAZ can enhance death-resistant and
drug-resistant qualities of the cancer cell, which can be used as
the premise of expansion of cancer stem cells (CSC) (4, 5).
Consistent results in functional studies have revealed that the
expression level of YAP may be associated with invasiveness of
clinicopathological features and poor clinical outcomes (6, 7).
For example, there is an excellent correlation between the
predicted results and the actual results in patients with breast
cancer, which follows the conclusion outlined above (4, 8).
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A special statement is needed that the regulatory effects of the
Hippo pathway on tumors are highly dependent on the tumor
environment. For example, in a mouse model of colorectal
cancer, YAP/TAZ suppressed tumor growth by inducing
reprogramming of cancer stem cells (9), suggesting a duality of
the Hippo pathway. The Hippo pathway is regulated by a
network containing multiple upstream regulators such as cell
polarity, cell junctions, mechanical signals, and soluble factors
that act through G protein-coupled receptors (GPCRs). In
addition, the discovery that YAP/TAZ can crosstalk with other
signaling pathways such as AMPK, Wnt, TGF-b, and Notch to
control cell fate further adds to the complexity (10). Just as the
Hippo signaling pathway has different effects on different organs,
it has also been shown that the importance of activated YAP/
TAZ in promoting tumors varies in different environments (11).
Although YAP/TAZ activation seems to be a common feature of
many tumors, differences in the forces driving activity and the
modes of interaction are evident. Therefore, an in-depth
understanding of the differences can help predict the prognosis
of patients and guide the development of YAP/TAZ-
targeted therapy.
HIPPO PATHWAY AND CANCER-
ASSOCIATED FIBROBLASTS

Cancer-associated fibroblasts (CAFs), as the main cellular
component of TME, are characterized by the expression of
activation markers such as fibroblast activation protein, a-
smooth muscle actin (a-SMA), and some secretory factors
which are involved in immune invasion recruiting and
extracellular matrix remodeling (12, 13). Indeed, CAFs are
involved in the initiation, progression, and metastasis of
disease (14). Now, the importance of Hippo signaling in
FIGURE 1 | Classical signaling Hippo pathway. The target gene cannot be transcribed When the pathway is activated; Conversely, it can be transcribed when the
pathway is suppressed. The solid arrow represents promotion, the dotted arrow represents the movement of components and the fork on the solid line represents
the occlusion effect.
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regulating fibroblast activation in TME has been well
demonstrated. In prostate cancer, YAP1 converts normal
fibroblasts into CAFs by regulating SRC to activate cytoskeletal
proteins and actin (15). In CAFs, YAP affects the expression of
cytoskeleton regulatory factors such as ANLN, CTGF, and
DIAPH3 (16). Through MYL9/myosin light chain-2, YAP can
also affect actomyosin contractility and ECM remodeling (17).
The fact that YAP/TAZ can enhance the function of CAFs by
affecting the progression of matrix remodeling further confirms
their role (12, 13). However, two particular points that need to be
explained: One, for CAFs, depletion of YAP has more obvious
influence than the depletion of TAZ (17), indicating that the
downstream component of the signaling pathway which
mediated by YAP is not only TAZ; Two, in breast cancer, not
only the activity of MST1/2 doesn’t weaken in CAFs, but also the
activity of LATS kinases and phosphorylated YAP increases (17),
indicating that activation mode of YAP in CAF is different from
the typical model.

CAFs directly interact with cancer cells and change the
microenvironment by regulating paracrine signals mediated by
inflammatory cytokines (12). Due to the interaction with
interleukin in CAF, YAP/TAZ can affect the TME (11). In the
stroma of both adenoma and carcinoma lesions, YAP nuclear
accumulation has been observed. Also, the activation of YAP can
be promoted in the stroma of the surrounding tumor area of
advanced cancer (18).

Serum Response Factor (SRF) plays an essential role in
fibroblasts activation during vertebrate development. Myocardin-
related transcription factor (MRTF) is coactivator of SRF.
Activation of CAFs is promoted when YAP-TEAD cooperates
with MRTF-SRF (19). Moreover, YAP/TEAD and MRTF-SRF
can also activate each other by modulating actin cytoskeletal
dynamics in CAFs (16). Because of the unknown communication
between MRTF-SRF and YAP/TAZ-TEAD in different types of
cancer in vivo and the necessity of CAF for chemotherapy, there is
still further research to be done in the future.
HIPPO PATHWAY AND CANCER
STEM CELLS

Cancer stem cells (CSCs) or tumor-initiating cells (TICs) have
self-renewing and tumor-initiating characteristics that are present
in at least some tumors and can lead to a heterogeneous spectrum
of cancer cells (20, 21). The characteristics of CSCs are modulated
by epithelial-mesenchymal transformation-induced transcription
factors (EIFs) and endothelial cells (22). In addition to playing an
essential role in drug resistance, metastasis, recurrence, and cancer
mortality, CSCs can also influence the microenvironment by
generating endothelial-like cells and promoting tumor
vascularization (23). In a word, CSCs are closely related to
cancer progression. To effectively carry out targeted antitumor
therapy, it is necessary to investigate the mechanisms and
characteristics of CSC signal transduction.

In addition to aberrant activation or mutation in stemness
genes, the Hippo pathway is also related to cancer progression
(24). Accumulating evidence suggests that the Hippo pathway
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influences early tumorigenesis by regulating the proliferation and
maintenance of stem cells (SCs) to participate in cellular
reprogramming and regulating tissue size (25, 26). YAP has
been confirmed to have roles in establishing the TME,
maintaining the homeostasis of normal tissue SCs, maintaining
the pluripotency of embryonic stem cell and CSC pools, and
promoting epidermal development and proliferation of SCs and
progenitor cells (26–28).

Since the proliferation and survival of CSCs are related to lipid
metabolism, and the Hippo signal participates in the lipid
desaturation of CSCs, it is theoretically possible to achieve
targeted clearance of CSCs via the Hippo signal (21). However,
the role of YAP and TAZ plays in CSCs could be specified in a
different environment and different signaling pathways (29).
Therefore, further research is needed. Studies have shown that the
Hippo andWnt pathways are closely related in terms of regulation
and function. The crosstalk between them contributes to the stem
cell self-renewal functions (30), especially in intestinal homeostasis.
For example, in themammalian intestine, YAP1 canmaintain crypt
SCs proliferation and stemness by activating the Wnt signaling
pathway (28). The crosstalk between the Hippo signal and other
pathwayswhich affect CSCs is complex, and the relatedmechanism
remains to be studied.
HIPPO PATHWAY AND
EXTRACELLULAR MATRIX

In addition to soluble signals, cells can also perceive their
microenvironment through mechanical cues derived from the
extracellular matrix (ECM). Some studies point out that Hippo
signals are nuclear relays that link mechanical signals to nuclear
transcriptional signals (31). For example, cells grown in the ECM
with different hardness show different YAP localizations (32, 33).
Integrin plays an important role in ECM signal transduction
which is mediated by Hippo signals (33). Recent studies have
found that the ECM hardness can inhibit Salvador (Sav)–LATS
association by regulating the integrin-mediated focal adhesion
kinase (FAK)–Src–PI3K–PDK1 pathway, which in turn inhibits
the Hippo signal pathway (34, 35). Src can also promote YAP
activity by phosphorylating LATS or directly phosphorylating
YAP (36, 37). Not only that, the regulation of dormant cancer
cell awakening by remodeled laminin-1 and the promotion of
colorectal tumorigenesis by fibroblast secreted periostin support
the notion that the ECM is able to regulate YAP/TAZ
(38, 39) (Figure 2).

Regulation of the Hippo pathway by mechanical upstream
signals, such as extracellular matrix stiffness, cell shape, and cell
density, largely depends on the effects of mechanical signals on
the F-actin cytoskeleton, tension within the cytoskeleton, tension
on cell-cell and cell ECM matrix attachments (40). Cytoskeleton
tension is produced by myosin, and its contraction level is
usually proportional to the activity of YAP (35). One of the
critical regulators of the myosin cytoskeleton is the Rho-Rock
(Rho-associated protein kinase)-MLC (non-myosin II light
chain) pathway. Similar changes in YAP/TAZ activity can also
November 2021 | Volume 11 | Article 772134
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be caused by manipulating a special part of the pathway (33, 41).
Inhibiting the key cytoskeleton regulatory factor Rho can inhibit
the effects of the cytoskeleton-mediated mechanical signals on
the Hippo signal (33, 42). It is important to note that other non-
mechanical upstream inputs of the Hippo pathway may also
affect Hippo signals through cytoskeleton regulation (43). There
is also a Rho-independent mechanism for the regulation of
mechanical signals on the Hippo pathway (44). Another
spectrin based cytoskeleton can also regulate Yorkie (Yki)/YAP
activity but is functionally opposite to the F-actin cytoskeleton
(45, 46).

Aberrant crypt foci (ACF) are the earliest sign ofmorphological
damage in the process of adenoma formation. Researchers have
speculated that the activation of YAP in ACF might be due to the
continuous change of shape and increasing hardness of the lesions
during the growth process (47). In intestinal organ culture, high
ECM hardness can promote the survival of YAP-dependent
intestinal stem cells (ISC) (48, 49), indicating that the mechanical
stimulation of YAP due to increased ECM hardness may play an
essential role in the development of colorectal cancer. There is no
doubt that further exploration of its mechanism is helpful for
targeted therapy.
HIPPO PATHWAY AND TUMOR IMMUNITY

According to the latest understanding, immune infiltration
composed of all immune cells involved in TME is defined as
the main factor regulating tumor development. Studies have
shown that CD8+T cells are immune infiltrated in a variety of
Frontiers in Oncology | www.frontiersin.org 4
solid tumors, suggesting that the density of CD8+T cells is closely
related to the prognosis of solid tumors, such as colorectal cancer
and breast cancer (50). However, the impact of this infiltration
on tumors is not absolute: phenomena related to transcriptional
signature of type I interferons indicate that innate immunity is
activated, and phenomena related to the regulation of T cells
(Treg) and myeloid-derived suppressor cells (MDSCs) indicate
that immune responses are suppressed. For cancer cells, some of
the infiltrating immune cells could destroy them while others
could tolerate them (51, 52).

In tumor immunology, T cells are essential for both immune
escape and antitumor immunity (53, 54). As the essential
component of tumor immunity, YAP/TAZ shows an
immunomodulatory effect by regulating immune cells functions.
However, accumulated evidence indicates that atypical rather than
typical Hippo signaling plays a crucial role in regulating T cells
activity (55). For example, the homeostasis and priming of CD8+T
cell which mediated by DC require the selective orchestration of
Mst1/2 (56). YAP and TAZ have different regulatory effects on
different immune cell subsets that play different roles in tumor
immunity. Themainmechanism of tumor immune surveillance in
the TME is CD8+ cytotoxic T cells response, while Tregs with
CD4+ CD25+ infiltration could inhibit T cells activity and
ulteriorly promote tumor progression (54, 57). Th17 is a subset
of T helper lymphocytes that can drive antitumor immune
responses by activating effector CD8+ T cells. TAZ can promote
the differentiation of TH17 and inhibit the differentiation of Tregs
(58). The mechanism is to induce the definition transcription
factor RORg T in Th17 cells and promote the degradation of the
Treg cell master regulator Foxp3, which is critical for TH17 and
FIGURE 2 | Hippo signaling in ECM. Effects of different mechanical signals mediated by integrins or the cytoskeleton on YAP/TAZ. The effect of remodeled laminin-1
on YAP mediated by FAK-ERK-MLCK has been confirmed. Although it is very likely to exist, the effect on TAZ remains to be studied. The solid arrow represents
promotion, the solid dot represents inhibition.
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Tregs respectively (58). As for YAP, according to the analysis of
glandular tissues of liver cancer,melanoma, and stomach cancer, it
can be found that YAP can promote the differentiation of Treg (59,
60). This function is realized by upregulating the activin signaling,
which enhances TGFb/SMAD activation in Tregs (60). Also, there
is a positive relationship between tumoral YAP expression and
Tregs infiltration (59). All in all, TAZ promotes antitumor
immunity while YAP promotes immune escape.

As the most important and highly infiltrated cells in the TME,
tumor associated macrophages (TAMs), mainly including M1
and M2 phenotypes, play a crucial role in tumor immunity.
According to the condition of TME, TAMs can be polarized into
different phenotypes: M1 type TAMs promote inflammation by
secrete IL-1, TNF-aand INOS; M2 type TAMs resolves
inflammation by secrete IL-10, IL-4, arginase-1 (arg-1) (61,
62). In a word, one is antitumoral and another one is
protumoral. It is known that there is a strong correlation
between recruitment of TAMs and poor prognosis of various
tumor types such as lung, hepatic, and colon cancers (63, 64).
This phenomenon isn’t solely due to the difficulty of
macrophages to polarize to M1 phenotype, considering that
the Toll-like receptor (TLR) in TME is not activated (65, 66),
and the Hippo-YAP signaling also plays a regulatory role in the
recruitment and polarization of TAMs, especially for M2. By
influencing several cytokines and chemokines, secreted by tumor
cells such as IL-6, CCL2, and CSF-1 (67–69), YAP recruits the
TAMs, remodels the composition of TME, and promotes the
development of tumors. In human monocytic cells (THP-1),
YAP-silencing only reduces the expression level of M2 markers
(70); In hepatocytes, YAP-activating only promotes the
polarization of TAMs into M2 phenotype (67); In pancreatic
ductal adenocarcinoma (PDAC), YAP-deleting only promotes
the polarization of TAMs into M1 phenotype (71); In colon
cancer cells, down-regulation of YAP expression is not only
inhibiting tumor development but also reducing the expression
of IL-4 and IL-13 (70), which are vital inducers of M2
polarization, thereby inhibiting the polarization of TAMs into
M2 phenotype. It should be noted that myeloid-derived
suppressor cells (MDSCs), which represent phenotypically
heterogeneous immature myeloid cells, can also promote
tumorigenesis by inhibiting T cells activity, especially CD8+
cytotoxic T cells (52). The regulatory effect of YAP on MDSCs
Frontiers in Oncology | www.frontiersin.org 5
is reflected in two aspects: First, directly transcribing chemokine
CXCL5 to promote the recruitment of MDSCs in prostate tumor
cells (72); Second, promoting the expression of IL-6, CSF1-3,
TNF-a, IL-3, CXCL1/2, and CCL2 to promote the recruitment
and systematic differentiation of MDSCs in the Kras: p53-mutant
PDAC model (71). In sum, YAP can promote tumorigenesis and
tumor immune escape (Table 1).

Immune escape is both a challenge and an opportunity. PD-
L1 and CTLA-4, often used as tumor cell surface markers, can
reduce the proliferation and effector function of the cytotoxic T
cell (CTL) by binding to homologous receptors on the CTL.
Therefore, any factor that upregulates PD-L1 or CTLA-4, such as
interaction with YAP/TAZ, can promote immune escape. On the
one hand, YAP/TAZ could upregulate the level of PD-L1 by
directly binding to the TEADs promoter in human cancer cells
(76, 77). On the other hand, PD-L1 can increase the stability and
activity of YAP/TAZ without affecting the Hippo pathway (78),
indicates a positive feedback loop may exist. Based on the
information above, people have successfully activated T cells in
some tumor cells by using monoclonal antibodies which against
PD-L1/CTLA-4 or PD-L1 receptors (Figure 3). Unfortunately,
this method doesn’t affect most tumor cells due to the existence
of other immunosuppressive mechanisms (79, 80). Therefore, a
future research direction may concentrate on exploring practical
ways to mediate T cell reactivation.
HIPPO PATHWAY AND
TUMOR VASCULATURE

Angiogenesis plays an important role in both ontogeny and
tumor progression. Most cancer patient deaths are caused by
tumor metastasis. The main reason is that vascular mimicry
increases the tendency of cancer cells to enter blood circulation
(81). Still, the formation of new blood vessels in and around the
tumor is more important. Angiogenesis is a complex process
involving the dynamic changes of endothelial cells (EC). Recent
studies have found that the Hippo pathway and its main effect
factor YAP/TAZ, contribute to angiogenesis. One study showed
that overactivation of YAP/TAZ led to excessive angiogenesis in
mice (82), and another study showed that activation of YAP/
TABLE 1 | Effects of regulatory factors from different sources on immune cells.

Immune cell type Source of regulating factor Regulating factor type Effect

M1
Tumor cells

IL-6, CCL-2, CSF-1 Recruitment
IL-6 Polarization

Itself IL-1, TNF-a, INOS, IL-6 Affect the tumor

M2
Tumor cells

IL-6, CCL-2, CSF-1 Recruitment
IL-4, IL-13 Polarization

Itself IL-4, IL-10, Arg-1, TGF-b Affect the tumor

MDSCs
Tumor cells

CXCL5, IL-6, CSF1-3, TNF-a, IL-3, CXCL1/2, CCL-2 Recruitment
IL-6, CSF1-3, TNF-a, IL-3, CXCL1/2, CCL-2 Polarization

Itself NO, ROS, TGF-b Affect the tumor
November 2021 | Volume 11
Both Recruitment and Polarization refer to the effect of regulatory factors on immune cells; Itself refers to the corresponding immune cells. The contents of the table come from five articles
(67, 72–75).
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TAZ mediated vascular endothelial growth factor (VEGF)
signaling in various endothelial cells in vitro (83). There are a
variety of signal pathways that regulate angiogenesis. To date,
VEGF, especially vascular endothelial growth factor A
(VEGF-A), is recognized as the most recognized pro-
angiogenic signal. In addition to stimulating the development
of endothelial cells, it can also stimulate tumor cells, especially
cancer stem cells (CSCs), to affect the occurrence, development,
and recurrence of tumors (84). This has stimulated great interest
in exploring the regulatory role of VEGF in tumor cells and their
potential use as therapeutic targets. VEGF is the main initiator
and regulator of angiogenesis (85). It induces angiogenesis by
binding to its receptors VEGFR1 and VEGFR2, thereby
regulating the proliferation, survival, and migration of
endothelial cells (86). Among these receptors, the VEGF-
VEGFR2 signal axis needs the participation of YAP/TAZ (82,
83). Some studies have found that YAP/TAZ can regulate
angiogenesis mediated by VEGF through regulation of the
circulation of VEGFR2 on the cell surface (82, 83). Other
studies found that VEGF increases the nuclear localization of
YAP and that Verteporfin significantly reduced VEGF-induced
angiogenesis, suggesting that YAP/TAZ play an important role
in VEGF-induced angiogenesis in vivo (87). There may be many
VEGF mechanisms that activate YAP/TAZ. Src family kinases
activated by VEGFR2, and cytoskeletal rearrangement mediated
by Rho family GTPases activated by Src family kinases may be
the core (88) (Figure 4). All the evidence outlined above suggests
that YAP/TAZ plays an important role in promoting the
feedforward loop of angiogenesis. Not only does the Hippo-
YAP/TAZ signal acts as a new influencing factor, but also its
Frontiers in Oncology | www.frontiersin.org 6
crosstalk with other signal pathways such as Notch, Wnt, TGF,
BMP, and GPCR helps us to understand angiogenesis further
(89, 90). This provides a new perspective to explain physiological
angiogenesis and in turn helps design new therapeutic targets for
pathological angiogenesis.
HIPPO PATHWAY CROSSTALK WITH
OTHER PATHWAYS

The Hippo signal is related to various molecular inputs,
including other signaling pathways (Figure 5). To find more
efficient targets for cancer treatment, it is necessary to explore
these links, which are outlined below.

AMPK Pathway
AMP-activated protein kinase (AMPK) is a crucial energy
receptor that regulate cell growth and metabolism by
determining the energy status of the cell through monitoring
the AMP: ATP ratio. Studies have shown there is a relationship
between AMPK and the Hippo pathway. It is well known that the
Hippo pathway can regulate cell activity by sensing the energy
state, and it has been established that AMPK can regulate the
activity of YAP. However, there is some controversy about the
mechanism. Among the proposed mechanisms, it is accepted
that AMPK phosphorylates YAP directly in a way parallel to the
Hippo pathway. However, different studies have proposed
opposing theories to address the question of whether AMPK
regulates the activity of YAP by activating LATS, indicating that
FIGURE 3 | Hippo signaling in tumor immunity. YAP/TAZ promotes the transcription of target genes, and its products include regulatory factors and receptors,
which can promote the polarization of immune cells, recruit and enhance the stability of YAP/TAZ-TEAD complex, and finally inhibit the activity of CTLs. CTLs can be
restarted by blocking the binding of receptor ligands. The solid arrow represents promotion, the solid dot represents inhibition.
November 2021 | Volume 11 | Article 772134
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the relationship between them requires more research (91, 92).
While it is known that energy stress can activate AMPK and
Hippo to phosphorylate YAP at different sites in response to the
energy stress, it is important to mention glucose-transporter 3
(GLUT3) in this discussion. YAP and GLUT3 are highly
expressed in different human cancers, and their expressions
Frontiers in Oncology | www.frontiersin.org 7
in tumor samples are positively correlated. YAP promotes
glucose metabolism by upregulating the expression of
GLUT3, suggesting that YAP may lead to cancer by
stimulating glucose uptake and glycolysis (92). This discovery
of AMPK as a YAP kinase expands the understanding of the
classic Hippo pathway.
FIGURE 5 | Crosstalk between YAP/TAZ and other pathways. (A) AMPK mediates the inhibitory effect of LKB1 on YAP/TAZ, but whether AMPK can inhibit YAP/
TAZ through LATS remains to be studied. (B) YAP/TAZ can promote the expression of Notch receptor and Notch ligand. Once Hippo and Notch signaling are
activated at the same time, they not only regulate the expression of common target genes but also facilitate the nuclear translocation of NICD and YAP/TAZ. (C) The
target genes regulated by YAP/TAZ have different effects on different Wnt pathways. In Wnt-ROR1/2-FZD pathway, the activity of YAP/TAZ is enhanced by inhibiting
LATS. In Wnt-LPR5/6-Frz pathway, by promoting the detachment and nuclear translocation of YAP/TAZ from the destructive complex, YAP/TAZ and accumulated
b-catenin regulate the expression of common target genes. YAP/TAZ target genes include Notch receptor/ligand and Wnt5a/b, which regulate Notch pathway and
Wnt pathway respectively. The solid arrow represents promotion, the dotted arrow represents the movement of components, and the solid dot represents inhibition.
FIGURE 4 | VEGF promotes angiogenesis and CSCs self-renewal. VEGF activates RhoGTPases through SRC, which in turn inhibits LATS or promotes cytoskeleton
rearrangement to activate YAP/TAZ. The activation of YAP/TAZ can not only promote the movement of VEGFR to the cell membrane to form positive feedback, but
also promote angiogenesis and self-renewal of tumor stem cells. The solid arrow represents promotion, the solid dot represents inhibition.
November 2021 | Volume 11 | Article 772134
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Notch Pathway
Thebiological effects of activatedYAP/TAZare topromote cell growth
and inhibit differentiation. A sizeable part of the inhibition of
differentiation is achieved by the Notch pathway. YAP/TAZ and
Notch cascades interact mainly in two ways: one is transcriptional
regulation of Notch receptors or ligands mediated by YAP/TAZ, the
other one is the expected target gene of YAP/TAZ and NICD
transcriptional regulation. In epidermal cells, YAP/TAZ drives the
expression of theNotch ligand,mediates the cis-inhibition of cells, and
maintains an undifferentiated state. On the contrary, YAP/TAZ gene
knockout shuts down the expressionof theNotch ligand and releases a
Notch signal, which leads to cell differentiation (93). Inmost studies on
epidermal stem cells, Notch is located downstream of YAP/TAZ.
However, in a report on the liver, YAP is placed downstreamofNotch
(94), which means that the RBPJ/NICD complex plays a
transcriptional inhibitory role in YAP, suggesting that there may be
two-way crosstalk between them. In recent studies of human
embryonic rhabdomyosarcoma (ERMS), this two-way crosstalk is
described (95). In human ERMS tumors and rhabdomyosarcoma-
derived cell lines, both YAP/TAZ and Notch signaling are
hyperactivated (96, 97). Two assumptions have been put forward to
explain this phenomenon:One is thatNotch signalingup-regulates the
level of YAP at the transcriptional level, and the up-regulatedYAPup-
regulates Notch signaling by up-regulating Notch ligands and
transcription factors (97); The second is that YAP/TAZ maintains
theundifferentiated state by cis-inhibitingNotch signaling and induces
the proliferation of adjacent tumor cells by transactivating Notch
signaling (11). In a clinical study, researchers proposed a more
accurate explanation based on the above assumptions: YAP/TAZ
promotes Notch signaling transduction by activating the expression
of Jag1. At the same time, Notch signaling inhibits b-Trcp-mediated
degradation through NICD and stabilizes the TAZ protein in a way
that does not involve the Hippo pathway (89). In summary, there is a
positive feedback loop between YAP/TAZ and Notch signaling.

Wnt Pathway
Wnt proteins control body development and tissue homeostasis by
binding to different receptors. Two of its working ways are
mentioned here, namely the classic Wnt/b-catenin pathway and
alternative Wnt pathway. In the alternative Wnt pathway, YAP/
TAZ is the critical medium. The exact Wnt-YAP/TAZ signal
transduction pathway has been identified. Interestingly, Wnt5a/b
ligands are both upstream activators and downstream target genes
of YAP/TAZ-TEAD, suggesting the existence of potential positive
feedback loops. In addition, another critical role of the alternative
Wnt pathway is to antagonize the Wnt/b-catenin signal, which is
realized by the YAP/TAZ-TEAD-induced secretion of the Wnt/b-
catenin signal inhibitor (98). In the Wnt/b-catenin pathway, YAP/
TAZ, as a component of the destructive complex, dissociated from
the destructive complex, enters the nucleus and forms a complex
with accumulated b-catenin, which promotes the transcriptional
activation of a group of target genes such as SOX2、SNAI2、
BCL2L1 and BIRC5 (99), cooperatively inducing cell proliferation
and promoting tumorigenesis. A range of evidence supports these
effects: The nuclear localization of b-catenin and YAP/TAZ is found
in nearly 80% of hepatoblastoma tissues, and the expression level of
both is related to the growth rate of tumor (100); The expression of
Frontiers in Oncology | www.frontiersin.org 8
b-catenin and YAP/TAZ is considered to be a necessary condition
for the growth of colorectal cancer and LKB1 inhibits the nuclear
translocation of both to inhibit the proliferation of gastric cancer
(101). In intestinal tumorigenesis, some genes such as Myc and
CyclinD1 have been proven to be downstream of the Hippo
signaling pathway and the Wnt/b-catenin signaling pathway,
which are involved in the regulation of cell cycle and proliferation
(102, 103). The ubiquitination of the Wnt and Hippo pathways’
component participates in maintaining CSC stemness (104). A
series of trials using both of them as therapeutic targets showed
obvious results. We believe that a more in-depth study of the
crosstalk between Wnt and YAP/TAZ will help to improve the
understanding of tumorigenesis.
DISCUSSION

In this review, we explore the role of YAP/TAZ in some aspects of
tumorigenesis, development, and metastasis. The widespread
activation of YAP/TAZ in human cancer indicates that in addition
to some of the relationships mentioned above, the upstreamMST1/2
kinase and LATS1/2 kinase, the downstream binding factor TEADs,
YAP/TAZ itself, and the interaction between YAP/TAZ and TEADs
may be exploited as targets for cancer therapy. Although some
experiments have shown that Verteporfin and VGLL4 mimic
peptides that inhibit tumor growth by inhibiting YAP/TAZ
transcriptional activity in YAP/TAZ-dependent mouse tumor
models, there is also a recent, exciting finding that inhibiting
TEADs palmitoylation is likely to block YAP-dependent
transcription (105). However, the extensive role of the Hippo
pathway in vivo is limited. The consequences of the hasty use of
YAP/TAZ inhibitors can be catastrophic. As YAP/TAZ has a
powerful ability to promote regeneration, including myocardial
regeneration, the development of related drugs such as LATS
inhibitors is likely to be of great significance in promoting wound
healing, tissue repair, and regeneration. It should be noted that the
treatment of artificially activated YAP/TAZ for repair is likely to be
accompanied by specific risks to the tumor, so extra caution is
essential. Future research is required to explore the mechanism of
the Hippo pathway further, and advanced in technology will provide
a more comprehensive understanding towards the goal of making
treatment of the Hippo pathway, a feasible target in cancer treatment.
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