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Abstract: The intratumoral microbiome plays a significant role in many cancers, such as
lung, pancreatic, and colorectal cancer. Pancreatic cancer (PC) is one of the most lethal
malignancies and is often diagnosed at advanced stages. Fusobacterium nucleatum (Fn),
an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered
significant attention for its emerging role in several extra-oral human diseases and, lately,
in pancreatic cancer progression and prognosis. It is now recognized as oncobacterium.
Fn engages in pancreatic tumorigenesis and metastasis through multifaceted mechanisms,
including immune response modulation, virulence factors, control of cell proliferation,
intestinal metabolite interactions, DNA damage, and epithelial–mesenchymal transition.
Additionally, compelling research suggests that Fn may exert detrimental effects on cancer
treatment outcomes. This paper extends the perspective to pancreatic cancer associated
with Fn. The central focus is to unravel the oncogenomic changes driven by Fn in colo-
nization, initiation, and promotion of pancreatic cancer development. The presence of
Fusobacterium species can be considered a prognostic marker of PC, and it is also correlated
to chemoresistance. Furthermore, this review underscores the clinical research significance
of Fn as a potential tumor biomarker and therapeutic target, offering a novel outlook on
its applicability in cancer detection and prognostic assessment. It is thought that given
the role of Fn in tumor formation and metastasis processes via its FadA, FapA, Fap2, and
RadD, new therapies for tumor treatment targeting Fn will be developed.

Keywords: intratumoral microbiota; dysbiosis; fusobacterium nucleatum; oncobacterium;
pancreatic cancer; PDAC; Fap2; FadA; TIGIT; RadD

1. Microbiota in Healthy Pancreas
Several studies are being developed on the relationship between the pancreas and

host microbiota, consisting of the regulation of immunity and mutual communication [1,2].
Moreover, metabolism, immunity, and nutrition are only some of the examples in which
the role of bacteria can be influential [3].

Anatomically, the pancreas is connected to the gastrointestinal tract via the pancreatic
duct and can communicate with the liver via the common bile duct. The close communica-
tion between the gastrointestinal tract and pancreas induces one to wonder whether the
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intestinal microbes or an innate microbiota of the pancreas could have an impact on the
homeostatic pancreatic processes such as in the intestine. For this reason, more research is
directed to the study of the composition of pancreatic microbiota. At first, it was thought
that the pancreas was free of bacteria; however, several studies reported the existence of a
microbiota both in pathological and healthy conditions [1,4,5].

A potential route for bacterial introduction into the pancreas is translocation from
the gut. This explanation is anatomically plausible, and it is conceivable that the bacteria
translocate and reach the pancreas from the intestine, going through the mesenteric venous
drainage directed to the liver and passing by the pancreas. Commensal bacteria move from
the gut to the mesenteric lymph node independently or phagocytized by intestinal immune
mononuclear phagocytes CX3CR1hi and captured from the intestinal lumen [6,7]. For this
reason, bacteria enter the pancreas from the intestine by the lymphatic drain, although the
specifics of the trafficking remain still uncertain [1].

Given the anatomical closeness of the pancreas to the gastrointestinal tract, there
is another possible mechanism whereby the microbiota from the esophagus, stomach,
duodenum, or biliary tract could penetrate the pancreatic tissue via the pancreatic duct.
However, the possibility that the oral cavity or gastrointestinal tract microbiome could
reach the pancreas through blood, as well as lymphatic drainage, is not excluded [8].

Under normal conditions, portal blood may contain small amounts of potential
pathogens [9]. In cats, E. coli can penetrate through the colon’s transmural wall and
spread via the bloodstream to the pancreas, especially in those with acute pancreatitis [10].
Bacterial translocation was detectable in blood samples from patients with acute pancreati-
tis through 16S rDNA sequencing [11]. However, achieving this blood drainage appears
complex in the absence of disease.

Bacteria from the oral cavity, such as Porphyromonas gingivalis, may be captured by
lymphatic vessels during the flow from the oral cavity to the bloodstream, ultimately
entering the systemic circulation [12].

In the normal pancreas, a relative increase in the genus Brevibacterium and the order
of Chlamydiales was detected [4]. The existence of bacteria in a healthy pancreas led us to
wonder what function could be covered in pancreatic physiology. In the gastrointestinal
system, the antimicrobial peptides (AMPs), mainly produced by Paneth cells of the intestine,
play a role in innate immunity against bacteria. It is very likely that the pancreas also
serves to enhance this innate defense system [13]. The pancreatic AMPs represent ~10%
of products of pancreatic juice; the remainder stands for digestive enzymes [14,15]. There
is a two-way connection between pancreatic AMPs and gut microbiota; the intestine
microbiota has an impact on AMPs of the pancreas to regulate the intrapancreatic immune
cells, but also the production of AMPs in the gastrointestinal system through pancreatic
liquid could modify the microbiome of the intestine and its immune system [16,17]. The
interaction among the gut microbiota metabolites represents a network that can affect some
host operations. During digestion, fermentation, and metabolization of protein, microbes
generate glycoproteins and fibers from the diet like acetic, propionic, and butyric acid,
called short-chain fatty acids (SCFAs). For example, the behavior of SCFAs in the colon
could have an impact on the production of glucagon-like peptide-1 (GLP-1), which can
regulate the liberation of hormones in the pancreas [18]. Enteric microbes and acetogens
like Blautia hydrogenotrophica, Firmicutes, and Bacteroidetes produce acetate across the acetyl-
CoA, the lactate, and the succinate pathways, respectively [19,20]. The generation of
propionate is also connected to a restricted number of genera of microbes, like Akkermansia
municiphila, also capable of the mucin degradation. Firmicutes, including Eubacterium
rectale, Faecalibacterium prausnitzii, Ruminococcus bromii, and Eubacterium hallii, can produce
butyrate, and these bacteria are capable of carrying out the fermentation of resistant
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starch [21]. Immunity, metabolism, and intestinal effects are influenced by SCFAs. They
activate receptors such as G-protein-coupled receptors (GPCRs) but also free fatty acid
receptors 1, 2, and 3 (FFA1, FFA2, FFA3). They are present in several types of tissue and play
a role in controlling metabolic processes and immunity [22]. The function of SCFA receptors
in the pancreas remains unknown. In mice, there is evidence that the interaction between
SCFAs and FFA2 leads to an increase in the production of glucose and a reduction in insulin
in plasma [23]. FFA3 might have an inhibitory role in liberation of insulin, and this could
be due to the downstream pathway following the link with Gi proteins. The inhibitory
effect on the production of insulin from the β cells of the pancreas is clarified via the signal
FFA3 linked with Gi proteins, whereas the stimulation in insulin production can be made
thanks to the FFA2 activation of Gq/11 signaling [24,25]. SCFAs could also play a role in
the preservation of the intestinal epithelium by suppressing host microbes competitively
and in the maintenance of intestinal barrier permeability. In this way, they protect from
metabolic endotoxemia connected to obesity, leaky gut-derived insulin resistance (IR), and
fat swelling [26,27].

2. Pancreatic Cancer Intratumoral Microbiota
Ninety-five percent of pancreatic cancer (PC) originates from its exocrine component

and is therefore constituted of ductal and acinar cells, and pancreatic ductal adenocarcinoma
(PDAC) is the most common class of carcinoma of the pancreas [28]. PDAC frequently
arises from pancreatic intraepithelial neoplasms (PanINs). Less than 10% of patients
affected by PDAC could reach survival at 5 years [29]. The diagnosis of PDAC is often
done in the last stages because there are not often early specific symptoms, and surgery
remains the curative treatment [30]. However, most patients do not survive [31]. Adjuvant
chemotherapy (gemcitabine with erlotinib or 5-fluorouracil and cisplatin) and radiotherapy
are ineffective [32–34]. In the USA, PC will become the second leading cause of cancer death
by 2030 [35,36]. Different risk factors like cigarette smoking, intake of heavy alcohol, chronic
pancreatitis, obesity, food, type 2 diabetes, late age (median 71 years), gender (men more
than women), or familiarity with PC are connected to the growth of PC [30,37]. A small
percentage (5–10%) is represented by hereditary forms such as familial pancreatic cancer or
associated with inherited syndromes like familial adenomatous polyposis, atypical multiple
mole melanoma, and Peutz–Jeghers syndrome [38,39]. A better comprehension of tumor
formation as well as the option of early diagnosis and supervision of tumor condition
is allowed thanks to the study of the cytogenetic, epigenetic, and genetic alterations in
pancreatic cancer [40].

Recurrent mutations of oncogenes and tumor suppressors, together with structural
and numerical chromosomal anomalies, characterize the complicated karyotype of PC [41].
The mutational spectrum that characterizes PC is represented by several somatic copy
alterations (CNAs) and genetic mutations in four genes: the oncogene KRAS and the
tumor suppressors TP53, SMAD4, and CDKN2A. This is well reported in The Cancer
Genome Atlas (TCGA) [40]. KRAS is mutated in 93% of patients, showing 19% of the
G12R allele, 27% of the G12V allele, and 41% of the G12D allele. KRAS activation is the
molecular trait of this disease, and it is the first event in pancreatic cancer formation [42].
The rate of mutation of the suppressor genes was 72% for TP53, 32% for SMAD4, and 30%
for CDKN2A. However, less common mutations of genes were found, such as BRCA1,
BRCAW, ATM, and PALB2, involved in the repair of DNA damage, or oncogenes such as
GATA6, GNAS, AKT2, FGFRQ, MYC, BRAF, and MDM2, tumor suppressors such as PTEN
or ARID1A, and PBRMQ and MLL31 involved in the changing of chromatin [40].

Through the innovative work of Warren and Marshall, which associated gastric cancer
with Helicobacter pylori [43], the study of the role of bacteria in oncogenesis and in the
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growth of carcinoma has been improved. It has been found that bacterial species have been
involved in the onset and progression of a wide range of tumors. Lately, oral bacteria like
Fusobacterium nucleatum (Fn) have been correlated to the development of tumors far from the
oral cavity [44,45]. This group of bacteria is now recognized as oncobacteria [46–48]. In the
last few years, the human microbiota has become a hot topic in biomedical research due to
the development of high-throughput methods that have made it possible to detect hundreds
of different species of microorganisms in a very short time [49]. In normal conditions,
commensal microbiota and human immunity are in a dynamic balance, leading the immune
system to react against host bacteria. But when this balance does not work efficiently, a
condition of dysbiosis is established, and the microbiota can induce proinflammatory or
immunosuppressive responses that can stimulate tumorigenesis [50,51]. This is the case
of PDAC, in which it has recently been reported that progression, diagnosis, treatment,
chemotherapy resistance, and immunity modulation can be influenced by the intratumoral
microbiota, probably originated from intestinal microbiota [52,53].

Tumors arising from non-digestive tract areas, such as breast cancer, are more likely to
have an intratumoral microbiome introduced through blood or lymphatic drainage [45,54].
Although there is currently no direct experimental proof proving that the microbiome can
reach PC via blood or lymph from microbial-rich areas like the oral cavity or gastrointestinal
tract, considerable indirect evidence sustains the plausibility of such a transport route.

While the accurate mechanism remains unclear, microbial staining of various tu-
mors has shown that the intracellular microbiome is present within macrophages [55,56].
Immunohistochemical (IHC) staining of LPS within macrophages could result from the
phagocytosis of local microbiota. Macrophages that test positive for IHC LPS indicate
that the LPS staining in macrophages may come from bacterial elements that were not
fully processed [55,56]. Thus, it is reasonable that the microbiome within a tumor could be
moved to the pancreas through macrophage-mediated lymphatic drainage.

While the origin of the intratumoral microbiome in PC remains uncertain, multiple
possible origins are likely involved.

Riquelme et al. suggested that the gut microbiota can colonize pancreatic tumors
specifically. This was demonstrated by comparing the microbiota of tumor tissue, adjacent
nontumor, and stool samples from PDAC patients undergoing Whipple surgery. They
found that 25% of the intratumoral microbiota was derived from gut microbiota, while
there was no trace of it in adjacent healthy tissue [52]. This suggests that the direct transfer
of intestinal bacteria and subsequent modifications of its composition lead to pancreatic
intratumoral microbiota [52]. In cancer, the immunosuppressive microenvironment dis-
cussed above, together with hypoxia and an altered vascular system, are the conditions to
allow bacteria to rapidly colonize, grow, and replicate [57]. In particular, the intratumoral
pancreatic microbiota may originate from the disruption of the mucosal barrier, from the
digestive and cardiovascular systems, and from the normal adjacent tissue (NAT). The
different microbiota of the oral cavity, gastrointestinal system, reproductive tract, and skin
are in eubiosis with the host. They have not had the opportunity to enter the organism
and cause diseases because they are isolated from the host thanks to a mucosal barrier [58].
It has been reported that PDAC intratumoral bacteria can metastasize from the intestinal
tract, where the epithelial (mucosal) barrier is disrupted, and enter the pancreas through
the pancreatic duct, remodeling the tumor microenvironment (TME) and inducing innate
and adaptive immunosuppression (Figure 1). This encourages additional microbial translo-
cations [59]. In pancreatic cancer, the microbiota populates the TME via hematogenic
diffusion, and through compromised vessels, it can reach the tumor [60]. During pancreatic
cancerogenesis the main origin of gastrointestinal and circulatory system intratumoral
microbiota is the oral microbiota. The oral microbiota can disseminate the respiratory
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and digestive systems thanks to the connection between the oral cavity and these two
systems [61]. An elevated rate of pancreatic cancer related to oral dissemination of Aggre-
gatibacter actino-mycetemcomitans and Porphyromonas gingivalis, together with the presence
of antibodies against Porphyromonas gingivalis, has been reported during an association
study about the incidence of pancreatic cancer and the composition of the microbiota
of saliva [62]. In addition, the oral bacteria Treponema denticola, Tannerella forsythia, and
Prevotella intermedia, carriers of peptidyl arginine deaminase, can be found in pancreatic
cancer as the main cause of the mutation of p53 [63]. The existence of other sources of
intratumoral microbiota and normal adjacent tissues (NATs) has been suggested based
on a study that investigated seven different types of tumors and their NATs. The authors
found a comparable composition of NATs microbiota of breast and lung cancer and their
intratumoral microbiota [56]. An explanation for the analogy between intratumoral and
NAT microbiota could be due to the origin of NAT from the TME [64].
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gut are potential sources of microbiota found in PDAC. Microbiota from the oral cavity and gut can
access the pancreas through the pancreatic duct, blood, or lymph. The PDAC intratumoral microbiota
is found within tumor cells, immune cells, and the surrounding extracellular environment. Created
with BioRender.com.

H. pylori was the first pathogenic bacterium found in pancreatic tumor tissue [65]. The
DNA of H. pylori was found in 75% of pancreatic samples of PDAC patients, in 60% of
chronic pancreatitis patients, but in none of the healthy controls [66]; thus, its association
with pancreatic cancer was hypothesized. In another study in which the oral microbiota
was investigated by 16S rRNA sequencing, Porphyromonas gingivalis and Aggregatibacter
actinomycetemcomitans were associated with a risk of developing PDAC [67]. Streptococ-
cus and Leptotrichina were also associated with an increased risk of PDAC development
compared to healthy controls. A reduced risk of PDAC has been instead related to the
presence of Veillonella and Neisseria in addition to having protective functions. Patients
with a high presence of oral Porphyromonas, Fusobacterium, and Alloprevotella tended to

BioRender.com


Pathogens 2025, 14, 2 6 of 22

usually report bloating. Furthermore, a considerably higher increase in the commensal oral
bacteria Fusobacterium spp. was detected in PDAC samples in comparison to controls, and
its presence was associated with a worse prognosis [68,69]. A large presence of Prevotella
has been reported in patients presenting with jaundice [70]. Dark-brown urine was found in
patients with a high presence of Veillonella, whereas patients with a low number of Neisseria,
Campylobacter, and Alloprevotella presented with diarrhea and vomiting, respectively. The
symptoms mentioned above should lead patients to seek medical care, which could lead to
early diagnosis and better prognosis. Through the study of Chung et al., the microbiota of
oral cavity, pancreatic, and intestinal tissues was isolated from 52 subject samples [70]. 16S
rRNA genes were characterized using high-throughput DNA sequencing. Different taxa
of bacteria in samples of oral cavity and intestinal and pancreatic tissue were detected. It
was observed that PC patients and healthy controls had different co-abundance patterns,
with oral, intestinal, or pancreatic samples from Fn subsp. vincentii and Gemella morbillorum
present or absent. These results show that the presence or lack of specific groups of bacteria
throughout different positions is related to the development of PC or other diseases of the
gastrointestinal system [70]. Different studies comparing healthy and cancerous tissue have
shown the presence of Firmicutes and Proteobacteria, which are the same bacteria present
in the healthy intestine [8,56,65]. Contrarily, healthy controls show a higher presence of
Lactobacillus than in PDAC patients [68]. In pancreatic cancer patients, an increased number
of Selenomonas, Enterobacter, Klebsiella, and Prevotella was detected both in the pancreas and
in stools [56,68,71]. An increment of Capnocytophaga, Citrobacter, Haemophilus, and Parvi-
monas was also reported within the pancreatic TME [56,68]. Intriguingly, unique microbiota
have been detected in the fluid of pancreatic cysts [72], with a predominance of the oral Fn
and Granulicatella adiances in the fluid of pancreatic cysts of intraductal papillary mucinous
neoplasms (IPMNs) in comparison to non-IPMN pancreatic cystic neoplasia. Considering
the development of IPMN in invasive PC, these data suggest the pathogenicity of these
bacterial species and underline their possible colonization from the oral cavity [62].

The pathway through which the intratumoral microbiota promotes tumor generation
acquired more and more attention. Changes in intratumoral or neighboring microbial
communities in cancer patients are referred to as the tumor-associated microbiome [73].
Intratumoral microbiota is able to hamper the defense mechanism of the body related to
genetic mutation, and this can lead to the promotion of tumorigenesis of the pancreas [74].
The main hypothesized mechanisms are the damage to DNA due to the secretion of
metabolites and the alteration in the tumor immune microenvironment. In pancreatic
tumorigenesis, an important role in inducing DNA damage and mutations is exerted by
metabolites produced by the microbiome, such as cytolethal distending toxin, colibactin,
and Bacteroides fragilis toxin [75,76]. Some Gram-negative bacteria, which belong to the
ε and g classes of the Proteobacteria phylum, generate CDT [77]. This is composed of
three protein subunits, CdtA, CdtB, and CdtC, and CdtB is especially connected to DNA
damage [78,79]. Bacteroides fragilis generates BFT, which can produce an increased number
of reactive oxygen species, and through the upregulation of spermine oxidase, it can lead to
DNA damage, which could be implicated in the induction of tumorigenesis of the colon [76].
It also has the ability to release PGE2, which is responsible for the inflammatory reaction
across the activation of the expression of cyclooxygenase-2, connected to the development
of colon cancer [80]. The most marked metabolite secreted by intratumoral microbiota and
involved in the DNA damage is colibactin. It is generated by group B2 of E. coli strains
and has the potential to induce cancerous changes across genomic instability and break
DNA double strands [81]. In addition, mutation of arginine in oncogene KRAS and tumor
suppressor gene TP53, which are considered the cause of PDAC, are determined by the
degradation of arginine by peptidyl–arginine deiminase secreted by oral microbiota in the
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pancreas [82]. Also, the secretion of SCFAs by the intestinal microbiota has been considered
of considerable importance for PC development, progression, and clinical outcomes [83].
These metabolites, including acetate, propionate, and butyrate, are derived from the gut
microbiota across the fermentation of nutritional fiber or other supports [84]. An important
number of tumor-associated mechanisms like inflammation, cell proliferation, and immune
response are regulated by SCFAs, as emerging evidence proposes [85]. In PDAC, prognosis
can be influenced by SCFAs and intestinal microbiota through the control of the tumor
microenvironment and host immunity [86]. On the other hand, an immunosuppressive
microenvironment and worse outcomes are generated by dysbiosis and alterations in
SCFAs [86]. The intratumoral microbiota can produce metabolites that can lead to tumor
development through inflammatory and immunosuppressive reactions and to the creation
of an immunosuppressive microenvironment favorable for tumor progression [3]. It also
has the potential to trigger pancreatic tumorigenesis by suppressing immunity through
the alteration in myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and
presentation of antigens [73].

3. Fn Oncobacterium and Its Pathogenic Mechanism in Pancreatic
Cancer Development

Fn is a non-spore-forming, obligatory anaerobic Gram-negative bacillus that is a
member of the genus Fusobacterium, which gets its name from its slender form and spindle-
like tips on both ends [87]. First identified as an oral pathobiont, Fn is known to coaggregate
with different types of microorganisms in the oral cavity, influencing the state of periodontal
health and disease by playing a crucial role in the formation of dental plaque [88–91]. The
expression of some adhesion proteins, like Fusobacterium outer membrane protein A (FapA),
Fusobacterium autotransporter protein 2 (Fap2), and radiation-sensitive DNA adhesins
(RadD), allows residues 68–123 to 68–125 Fn to function as a link between early colonizers
(e.g., Streptococcus species) and later invaders (e.g., Porphyromonas gingivalis) [92]. This
makes it easier for biofilms to form and stick firmly to the surfaces of teeth. Fn directly
influences host responses and makes other pathogens more infectious. For this reason, it
is significant in periodontitis even though the oral biofilms are present on tooth surfaces
in healthy people. In the oral epithelium, Fn can specifically stimulate the expression
of proinflammatory cytokines like IL-6 and IL-8 as well as the antimicrobial peptide β-
defensin 2 [93–95]. This type of Fn-driven inflammation advances the course of the disease
in an oral tumorigenesis model [96,97]. In these pathogenic environments, Fn affects the
function of immune cells, including myeloid cells, by activating NF-κB, which leads to the
production of TNF [98]. Fn not only alters these host reactions but also makes Porphyromonas
gingivalis more invasive, implying that these bacteria work together to avoid immune
system destruction and create an environment that is inflammatory and permissive during
periodontitis [99,100]. When it infiltrates sterile areas like the root canal, Fn functions as an
opportunistic pathogen in patients with weakened immune systems [46,89].

Fn is the most studied oncobacterium in a variety of cancer types such as colon, breast,
oral, pancreatic, esophageal, gastric, and cervical cancer [45,96,101–107]. Frequently it
occurs as a commensal in different sites of the body, particularly the oral cavity [87]. Due to
its virulence mechanisms, which include the capacity to cause tumorigenesis and abnormal
inflammation, and to its dissemination through the hematogenous route, it has frequently
been associated with several extra-oral diseases, including cancers [88,108]. It is logical to
assume that Fn found in gut tumors may have originated from the oral cavity given the
anatomical relationship between the intestinal tract and the oral cavity and the discovery
of identical Fn strains in both oral and gastrointestinal cancer samples [44]. The ability
of Fn to survive in acidic environments and move through the gastrointestinal tract is
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due to another Fn protein, the adhesin FadA. It is the primary Fn virulence factor, as
has been clarified by recent studies [103,109]. FadA is also an invasin [110]. Constant
swallowing of bacterial-rich saliva offers a possible route of transmission through the
gastrointestinal tract. The increased frequency of Fn and FadA in fecal samples from
patients with colorectal cancer [111] supports this. Furthermore, post-intravenous injection
detection of Fn strains in colon cancer tissues raises the possibility of systemic colonization
via circulation [112]. Moreover, glycan–lectin interactions are responsible for the localization
of Fn within tumors. Fap2, a galactose-adhesive hemagglutinin, has been demonstrated
to mediate Fn colonization through its binding to the host factor Gal-GalNAc, which is
overexpressed in tumors [113]. Ovarian, prostate, colorectal, pancreatic, and breast cancers
show Gal-GalNAc overexpression [91,114]. At the same time, the Fn DNA load in these
tumors dramatically increases, suggesting that Fn may accumulate in cancers with high Gal-
GalNAc levels [45,115]. When taken together, these results suggest a tenable mechanism
for Fn translocation. Numerous studies have demonstrated the important role that Fn plays
in the pathogenicity, development, and prognosis of CRC and have offered epidemiological
and/or experimental evidence of a significant association between Fn and CRCs [103,116].
When compared to controls, Fn was found in pancreatic tumor cells at noticeably higher
levels, indicating a possible link between it and the development of pancreatic cancer [56].

Intratumoral Fn in pancreatic cancer activates oncogenic pathways and regulates the
signaling molecules that promote pancreatic tumorigenesis. Fn presence and its role as a
possible risk factor for pancreatic tumorigenesis have been reported in a study of early cys-
tic precursors in invasive pancreatic cancer by the use of PacBio and qPCR sequencing [117].
FadA facilitates bacterial adhesion to the host mucosal surface and induces damage to
endothelial or epithelial cells. In addition, FadA promotes β-catenin signaling and regulates
E-cadherin, which increases the expression of Wnt genes, inflammatory genes, transcription
factors, and oncogenes [96,118]. Wnt/β-catenin is a signaling pathway that influences stem
cell growth, polarization, and self-renewal and controls physiological processes. Through
frequent modifications to signaling pathways in the pancreas, Wnt/β-catenin stimulates
the transcription of cyclin D and c-Myc, resulting in the development and progression of
pancreatic tumors [119,120]. Furthermore, Fn triggers toll-like receptor 4 (TLR4) signaling
to NF-κB and MyD88, targeting RASA1 and upregulating the expression of miR-4802
and miR-18a, promoting tumorigenesis [121]. Additionally, through the Fap2 adhesin,
Fn interacts with pancreatic cancer cells, promoting Fn infection in pancreatic cancer by
causing infected tumor cells to release cytokines such as GM-CSF, CXCL1, IL-8, and MIP-3α,
thereby promoting further tumor progression (Figure 2). GM-CSF substantially speeds
up the proliferation of pancreatic cancer cells, and CXCL1 is essential for metastasis and
chemotherapy resistance in pancreatic cancer. Furthermore, it has been discovered that Fn
invades healthy pancreatic epithelial cells, promoting tumor cell migration and prolifera-
tion [122]. Moreover, it has recently been discovered that Fn in pancreatic tumors can affect
the development of pancreatic cancer by altering the immune environment surrounding
the tumor. To enhance tumorigenesis, Fn modifies the tumor immune microenvironment
by specifically attracting tumor-infiltrating myeloid cells, including dendritic cells (DC),
tumor-associated macrophages (TAMs), MDSC, and CD11b myeloid cells [123]. Inflamma-
tion and immune responses are influenced by the chemokine CXCL1, which also serves as
an immune cell chemoattractant. It affects tumor migration and proliferation by binding to
a particular receptor called CXCR2, which initiates a series of various signaling events. This
research has demonstrated that intratumoral Fn stimulates tumor growth by increasing
pancreatic cancer cells’ autocrine production of CXCL1. To further aid the tumor’s immune
evasion, intratumoral Fn paracrinely suppresses CD8+ T cells and recruits MDSCs in the
tumor microenvironment through the CXCL1/CXCR2 axis [104]. PTEN dysfunction has
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been reported as an example of immune evasion mechanisms. It has been demonstrated
that Fn down-regulates PTEN expression by upregulating miR-21 levels, which promotes
immune evasion by pancreatic cancer cells [91]. PTEN dysfunctions or mutations result in
an immune-suppressive tumor microenvironment characterized by the modulation of M2
macrophages, MDSCs, and Tregs [91]. By interacting with the TIGIT receptor, Fap2 of Fn
inhibits T cell activation and natural killer (NK) cell cytotoxicity, disrupting the anti-tumor
response and generating an immunosuppressive environment [96] (Figure 2).
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4/nuclear factor-kappa B (NF-κB) pathway promotes chemoresistance. It activates the MYD88 innate
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Intratumoral Fn has an impact on pancreatic cancer metastases. Two potential path-
ways that encourage pancreatic tumor metastasis are disruption of the gut vascular barrier
and small extracellular vesicles (sEVs) released by pancreatic cancer cells. Vesicles with a
phospholipid bilayer membrane structure that are 150 nm in size are known as sEVs. They
can mediate communication between cells and carry proteins, lipids, DNA, and RNA [124].
Intratumoral microbiota-infected pancreatic tumor cells secrete more sEVs by transferring
proteins and miRNAs to healthy cells, which encourages the spread of pancreatic can-
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cer [125]. Intratumoral Fn can accelerate the development of pancreatic cancer by infecting
sEVs carrying miR-92b-3p/27a-3p/1246 in pancreatic tumors, which in turn activates the
Wnt/β-catenin pathway [126]. Furthermore, the intratumoral Fn’s activation of TLR4 via
secreted sEVs encourages the metastasis of pancreatic tumors [127]. Several studies have
shown that sEVs mediate communication between cells in distant organs and between
pancreatic cancer cells and their surrounding microenvironment, remodel the extracellular
matrix, encourage angiogenesis, and create an immunosuppressive environment. This
creates a pre-metastatic niche that facilitates pancreatic cancer metastasis [128].

4. Fusobacterium nucleatum and Pancreatic Cancer Prognosis, Therapy,
and Biomarkers

Fn could be considered a biomarker for the detection of cancer, as its presence is related
to cancer status in CRC patients [103,129]. In our previously published study, the presence
of the bacterium in the colon tumor tissue from 36 patients had a statistically significant
influence (p = 0.016) on staging [97]. Furthermore, an increase in oral Fn concentrations
was correlated with an increase in colorectal tissue Fn quantity. For this reason, Fn could
be considered a prognostic marker of staging. Furthermore, a cut-off amount of Fn in the
oral cavity could be considered as one of the identifying markers of PC or at least as a
risk factor.

Mitsuhashi and colleagues analyzed 283 patients with PDAC to seek in cancerous
tissue samples the presence of Fn and to examine the role played by Fn in this disease.
They found species of Fusobacterium in 8.8% of a sample of PC tissue and compared it to
median cancer survival in two groups; the life expectancy of the Fusobacterium species-
positive group decreased considerably (17.2 months versus 32.5; log-rank p = 0.021). It
was concluded that the presence of Fusobacterium species can be considered a prognostic
marker of PC [69]. Chemotherapy resistance with a high presence of Fn in cancers was
noted [105,130,131]. This is due to the interactions of the oncobacterium with the ther-
apeutic factors or to modifications in the immunological milieu of cancer, reducing the
effectiveness of these methods. These connections lead to the mitigation of the sensitivity
of drug [132]. The study of Michaud et al. was the first report that demonstrated an
association of tumor presence of Fusobacterium species with the outcome of pancreatic
cancer in patients with stories of periodontal disease [133]. Despite the absence of any
significant connection, species of Fusobacterium were found in cancer of the pancreatic tail
(4/18; 22%) more than in body (5/62; 8.0%) or head cancer (16/203; 7.9%) [69]. The reason
why there is this important presence of species of Fusobacterium in cancer of the pancreatic
tail remains unclear. The divergence of circulatory supply between these components of
the pancreas could be considered as one likely interpretation. Furthermore, in the cases
of Fusobacterium species-positive cancer, this bacterium was found in 28% of the adjacent
normal tissue, suggesting that it may play a role in carcinogenesis [69]. The results of
this study might clarify key concepts of carcinogenesis and develop new diagnostic ther-
apeutic methodologies (i.e., eradication) for pancreatic cancer patients. However, owing
to cross-sectional (observational) design and the risk of bias, such as selection criteria,
different treatments, and exclusion of cases without available tumor tissue. Mitsuhashi
et al. corrected regression analysis results to exclude potential confounding factors, which
include disease stage, year of diagnosis, and genetic factors such as CpG island methylator
phenotype (CIMP) and miRNA expression. The greater presence of DNA of Fn in can-
cerous tissue, added to worse clinical outcomes, could be explained through its function
in promoting alterations connected to mutation of molecular traits in tumors, like high
microsatellite instability (MSI) [134]. Furthermore, Fn plays a role in the prognosis of
metastatic colon cancer patients. A study focused on the analysis of DNA in tissue of
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metastatic colon cancer patients showed the absence of progress and low survival rates in
patients with the presence of Fn in tumors and in feces [134,135]. Considering the tumor
microbiota of PDAC short-term (STS) and long-term survival (LTS) patients, through a
study, Riquelme and collaborators discovered a higher alpha-diversity in LTS patients.
Additionally, in LTS patients, an intratumoral microbiota containing Pseudoxanthomonas,
Streptomyces, Saccharopolyspora and Bacillus clausii was identified. This has been identified as
a long-term survival indicator, so it can also be considered a good prognostic marker [52].

Immunotherapy, with a focus on the PD-1/PD-L1 axis, is currently the main objective
of tumor therapy [136]. Fn can interfere with anti-PD-1 inhibitors’ action. Recent stud-
ies have revealed that succinic acid, a derivative by Fn, interferes with the GMP-AMP
synthase-interferon-β pathway, making the body less sensitive to anti-PD-1 monoclonal
antibodies and reducing the effectiveness of the immune system in colorectal cancer [137].
Chemotherapeutic agents such as 5-fluorouracil and oxaliplatin produce their therapeutic
effects by disrupting the cell cycle [138]. Interestingly, experimental data highlight Fn’s abil-
ity to trigger cancer autophagy, which is achieved by selectively inhibiting the expression
of miR-18a and miR-4802 through the TLR4 and MYD88 pathways. This affects chemother-
apy resistance in colorectal cancer [121]. However, by upregulating the expression of the
chloride channel protein ANO1 or the apoptosis inhibitor protein BIRC3, Fn can also cause
resistance to these medications [91]. Furthermore, research has shown that Fn activates
NLRP3 in ESCC cells (esophageal squamous cell carcinoma), which increases MDSCs and
significantly reduces the therapeutic efficacy of cisplatin chemotherapy [139]. Chemother-
apy often causes senescence in cancer cells, which is known as therapy-induced senescence.
Chemoresistance can be promoted by senescent cells through the senescence-associated
secretory phenotype (SASP). Fn, following invasion in senescent ESCC cells and induction
of DNA damage, can further activate the DNA damage repair pathway, enhancing the
SASP. Fn thus encourages the release of SASP induced by chemotherapy, which drives the
progression of ESCC and chemoresistance [140]. Finally, Fn decreases p53 and E-cadherin
expression levels in OSCC, primarily via the Wnt/NFAT pathway, which increases tumor
cells’ resistance to cisplatin [141].

The utilization of bacteria in tumor diagnosis and prognosis biomarkers holds signif-
icant hopes, but the lack of extensive clinical samples and deeper exploration evidence
reduces its potential. At the same time, the future prediction is to deepen the unexplored
clinical role of Fn using multi-omic techniques [92].

Targeting the intratumoral microbiota could be considered an important potentiality
in the treatment of PC, but additional research is required to expedite its clinical translation.

In any case, there are some areas that could be promising. The reshaping of the struc-
ture of intratumoral microbiota allowed for defining microbial homeostasis. Intratumoral
microbiota in PC could be regulated by antibiotics, probiotics, and fecal microbiota trans-
plantation (FMT). Moreover, mostly in the gastrointestinal tract, diet plays a regulatory role
for microbiota [142]. The consumption of vegetables, fruits, soy, and fish is connected to a
lower risk of pancreatic cancer; on the contrary, the risk becomes higher with the ingestion
of meat, fatty products, and sweets [142]. It would therefore be helpful to create a combi-
nation therapy relying on the intratumoral microbiota. Through clinical and preclinical
studies, it was shown that such functional disturbance of the intestine barrier (IBFD) and
apoptosis of crypts in the intestine are determined using radiotherapy [143]. Despite the
presence of only a few studies based on the connection between the intratumoral micro-
biome in pancreatic cancer patients and radiotherapy, it was shown that the composition
of microbiota was changed after radiotherapy treatment, especially the decrease in the
variety and number of intestinal bacteria species [144]. Hopeful new treatment formulas,
including precision therapy, also joined with learning artificial intelligence (AI), are then
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represented by the typing of bacteria. Some factors, like meal timing, circadian rhythm,
sleep, and exercise, were shown to have a role in the influence of postprandial metabolism
and the variety of intestinal microbiota [145], so it should be considered for the elaboration
of individual-specific treatments.

The gastrointestinal microbiota utilizes prebiotics, helpful nutrients for the host, to
manipulate the intestinal microenvironment [146]. There are some dietary nutrients that are
defined as prebiotics, such as resistant starches that have an impact on the community of
microbiota, like through the increased synthesis of SCFAs and protection of DNA from dam-
age [147,148]. Probiotics, prebiotics, and dietary fiber supplementation, meant as specific
interventions on intestinal microbiome and SCFA production, may be considered a solution
to improve the modulation of the tumor microenvironment and immunotherapy [149,150].
The method by which prebiotics act is antiadhesion against pathogens. To perform this
mechanism, prebiotics interact with bacterial receptors mimicking glycoconjugated mi-
crovilli in such a way that the pathogens do not attach to the epithelial cells [151,152]. In
some tumors, the use of prebiotics is well established (Figure 3). In PC, however, their
applications as clinical treatment options need to be better understood [153]. To help in the
modulation of dysbiosis and associated tumors, FMT can be utilized due to its significant
effectiveness against gastrointestinal pathogens [154]. The substitution of the microbial
ecosystem could be representing a possibility to replace the microbiota of patients that host
Fn. The new microbiota utilizes accurate cocktails of isolates, human-derived or a pool of
targeted microorganisms [155].
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The end of 2023 (NCT04975217) was designed as the final date for the first phase of
trials conducted by the M.D. Anderson Cancer Center to analyze the safety, tolerability,
and feasibility of FMT in patients with resectable PDAC [156,157]. The extensive use of
FMT encounters a number of difficulties in spite of hopeful progress. The mutable results
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after FMT are influenced by the donor–recipient affinity, complementary microbiota, own
physiology variations, responses of immunity, diet, lifestyle, and genetics [156,157].

The use of probiotics and FMT has been reported to reduce the colonization of Fn
and to improve the integrity of the gastrointestinal barrier in CRC. In addition to the
above treatments, antimicrobial peptides (AMPs) have been presented as aspirant new
antimicrobial drugs with significant anti-Fn activity [158]. AMPs act as bactericides in me-
chanically suppressing the Fn-induced inflammation. Moreover, AMPs have the advantage
of minimal cytotoxicity to colon epithelial cells even at high doses [159].

To measure the Fn charge in feces, an approach by search of the fecal occult blood
and immunochemical test is proposed as a noninvasive screening, as has been reported
for CRC [91]. The search for anti-Fn antibodies in saliva and serum by the enzyme-linked
immunosorbent assay (ELISA) has been reported for CRC [113]. Fn codifies a distinctive
amyloid adhesin complex, FadAc, that influences tumor formation. In CRC, anti-FadAc-IgA
may represent a biomarker for early diagnosis [160]. The detection of anti-Fn antibodies in
the blood through ELISA could be a useful PC screening.

The status of mutation of KRAS and TP53, the unstable microsatellite, and the epige-
netic dysregulation, which remain undiscussed but relevant [161], can have an impact on
the tumoral charge of Fn [162].

It has been shown that the majority of isolated clinical cases of Fn are sensitive to
metronidazole, clindamycin, and some β-lactam antibiotics, except penicillin, to which
they are resistant [163]. Another interesting target may be represented by the Fn adhesin
Fap2 since it promotes the presence of the Fn in cancer tissues [112] and affects anti-tumor
immunity [164].

Bacteriophages can cut off biofilms [165] and eradicate intracellular bacteria [166].
Phages can modify the immune response during infections of bacteria both in the innate
immunity through the release of cytokines and the selection of phagocytes and in specific
immunity across the release of antibodies [167]. Kabwe et al. reported that Klebsiella and Fn
are among those microbes whose phages have been detected that could represent a new
modality of therapy for PC [168]. Unfortunately, Porphyromonas gingivalis bacteria promote
their spread and colonization through outer membrane vesicles (OMVs) that allow the
systemic spread of the bacteria to colonize distant organs [169,170]. Such a mechanism
permits Porphyromonas gingivalis to contribute to pancreatic cancer. One lytic bacteriophage
against Fn has been isolated and characterized. However, no bacteriophage has been
found against Porphyromonas. As a treatment prospect, the use of bacteriophages to treat
antibiotic-resistant pancreatic infections is being considered (Figure 3).

Yamamoto S. et al. [171] investigated the expression of Ki-67, a nuclear marker linked
to cell proliferation, in 46 surgical CRC samples to confirm the involvement of Fn in the
progression of this cancer. High levels of Ki-67 expression correspond to poorer overall
survival rates in CRC [172]. Fn-positive cancer tissues exhibited a higher Ki-67 index
compared to Fn-negative tissues, suggesting a significant relationship between Fn and
cancer cell proliferation.

It is thought that based on the above-mentioned role of Fn in tumor formation and
metastasis processes, new Fn-targeted therapies for tumor treatment will be developed.

5. Conclusions
In recent years, the role of the opportunistic oral pathogen has been extensively stud-

ied in CRC, while it is still ongoing in PC. Given the anatomic position of the pancreas in
the gastrointestinal system, different studies highlighted their attention on the microbiota
of the intestine and oral cavity. The mechanisms behind dysbiosis and PC development are
not completely clear. There is no doubt that an altered microbiota can lead to oncogenomic
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changes, and among these bacteria, Fn certainly plays an important role. In PC, it has re-
cently been reported that the intratumoral microbiota can influence progression, diagnosis,
treatment, chemotherapy resistance, and immunity modulation. An altered oral Fn may
colonize the pancreas and cause local inflammation by the action of its metabolites, which
may lead to carcinogenesis. Fn could, therefore, be considered a diagnostic and prognostic
biomarker for the detection of cancer. Hopeful new treatments, including precision therapy,
oral administration of probiotics, and FMT, are represented by the typing of bacteria. Fn is
correlated to chemoresistance, and the use of probiotics can improve the effectiveness and
the patient’s tolerance to chemotherapy. The utilization of bacteria in tumor diagnosis and
prognosis biomarkers holds significant hope, but further studies on a greater sample size
are required to expedite its clinical translation.
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