
sensors

Article

A Bidirectional Interpolation Method for Post-Processing in
Sampling-Based Robot Path Planning

Tae-Won Kang 1, Jin-Gu Kang 2 and Jin-Woo Jung 2,*

����������
�������

Citation: Kang, T.-W.; Kang, J.-G.;

Jung, J.-W. A Bidirectional

Interpolation Method for

Post-Processing in Sampling-Based

Robot Path Planning. Sensors 2021, 21,

7425. https://doi.org/10.3390/

s21217425

Academic Editor: Andrzej Stateczny

Received: 29 September 2021

Accepted: 3 November 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Artificial Intelligence, Dongguk University, Seoul 04620, Korea; ktw3388@dgu.ac.kr
2 Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Korea;

kanggu12@dongguk.edu
* Correspondence: jwjung@dongguk.edu; Tel.: +82-2-2260-3812

Abstract: This paper proposes a post-processing method called bidirectional interpolation method
for sampling-based path planning algorithms, such as rapidly-exploring random tree (RRT). The
proposed algorithm applies interpolation to the path generated by the sampling-based path planning
algorithm. In this study, the proposed algorithm is applied to the path created by RRT-connect and
six environmental maps were used for the verification. It was visually and quantitatively confirmed
that, in all maps, not only path lengths but also the piecewise linear shape were decreased compared
to the path generated by RRT-connect. To check the proposed algorithm’s performance, visibility
graph, RRT-connect algorithm, Triangular-RRT-connect algorithm and post triangular processing of
midpoint interpolation (PTPMI) were compared in various environmental maps through simulation.
Based on these experimental results, the proposed algorithm shows similar planning time but shorter
path length than previous RRT-like algorithms as well as RRT-like algorithms with PTPMI having a
similar number of samples.

Keywords: bidirectional interpolation method; post-processing; RRT-connect; triangular RRT-connect;
midpoint interpolation; sampling-based path planning

1. Introduction

This study deals with the path planning of a mobile robot [1]. Strictly speaking, path
planning can be divided into global planning on an entire map and local planning on a
portion of the map [2]. In this paper, path planning refers to global planning.

Path planning involves plotting a path that a mobile robot can follow to efficiently
move from a starting point to a goal point in Euclidean space, avoiding obstacles, with
respect to optimality, clearance and completeness [3]. Optimality refers to always being able
to plan a path with the optimal path length. Clearance refers to how low the probability is
that the mobile robot will collide with an obstacle. Completeness indicates that a path can
always be planned in an environment in which a solution exists.

This paper mainly deals with the sampling-based rapidly-exploring random tree
(RRT)-like algorithm [4]. The RRT-like algorithms are being applied in various ways.
For example, there is a method that generates an optimal path by applying a triangular
inequality [5] and a method applicable to kinodynamic planning [6]. The RRT algorithm
can be summarized as a method of planning a path by repeatedly inserting a randomly
sampled location as a child node in a tree with the starting point as the root node until
reaching the goal point. In this method, the tree trunk extends in the shape of a stochastic
fractal and attempts to reach the goal.

Sampling-based algorithms, including RRT algorithm, have the advantage of being
able to plan a path with fewer computations than classical path planning algorithms
such as those for visibility-graph-based [7], cell-decomposition-based [8] and potential-
field-based [9] methods. However, RRT does not guarantee optimality and probabilistic
completeness [4]. Probabilistic completeness means that if the number of sampling nodes

Sensors 2021, 21, 7425. https://doi.org/10.3390/s21217425 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4262-7840
https://doi.org/10.3390/s21217425
https://doi.org/10.3390/s21217425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217425
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217425?type=check_update&version=2

Sensors 2021, 21, 7425 2 of 40

is unlimited, completeness is guaranteed, but if the number of sampling nodes is limited,
completeness is not guaranteed.

The purpose of this study is to guarantee completeness, improve optimality and
improve collision-avoidance of RRT-like algorithms for path planning. When a path is
planned by the RRT algorithm, it has a stochastic fractal shape, and locally it tends to have
a piecewise linear shape [10] as shown in Figure 1a. The piecewise linear contour can result
in collisions [11] owing to the kinematic constraints [12] of the mobile robot, as shown in
Figure 1b.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 41

bilistic completeness [4]. Probabilistic completeness means that if the number of sam-
pling nodes is unlimited, completeness is guaranteed, but if the number of sampling
nodes is limited, completeness is not guaranteed.

The purpose of this study is to guarantee completeness, improve optimality and
improve collision-avoidance of RRT-like algorithms for path planning. When a path is
planned by the RRT algorithm, it has a stochastic fractal shape, and locally it tends to
have a piecewise linear shape [10] as shown in Figure 1a. The piecewise linear contour
can result in collisions [11] owing to the kinematic constraints [12] of the mobile robot, as
shown in Figure 1b.

(a) (b)

Figure 1. Path of RRT-like algorithms with sharp angle: (a) piecewise linear path; (b) situation with turning radius φ as
per the kinematic constraints of mobile robot with velocity v at node (turn penalty θ).

When the mobile robot moves along the planned path or local planning [13] path, it
may collide with an obstacle as shown in Figure 2a because of kinematic constraints on
the path with sharp angles. As this leads to serious concerns from the perspective of
clearance, path planning must also consider kinodynamic planning [6,14,15]. In particu-
lar, as there are fewer waypoints on the planned path (a tree node in the RRT algorithm)
or, alternatively, the distance between waypoints is high, kinematic error is more likely
to occur. This may be exacerbated when the mobile robot travels at high speed and the
control error increases.

(a) (b)

Figure 2. Path needing kinodynamic planning (when a mobile robot with kinematic constraints
moves at a velocity v at an arbitral point qi): (a) situation in which the robot collides with the ob-
stacle; (b) situation in which the obstacle is avoided by increasing way points.

In this study, given that the RRT algorithm does not guarantee optimality, we aim
to generate a path that is closer to the optimum. Simultaneously, the scope of the study
includes solving the local clearance problem of the stochastic fractal-shaped path.

However, when the path is first plotted from the starting point to the goal point,
only the first complete path is dealt with. That is, the complete path or convergence path
that is closer to the optimum through additional sampling after the initial complete path
is not considered within the scope of the current study.

Figure 1. Path of RRT-like algorithms with sharp angle: (a) piecewise linear path; (b) situation with turning radius ϕ as per
the kinematic constraints of mobile robot with velocity v at node (turn penalty θ).

When the mobile robot moves along the planned path or local planning [13] path,
it may collide with an obstacle as shown in Figure 2a because of kinematic constraints
on the path with sharp angles. As this leads to serious concerns from the perspective of
clearance, path planning must also consider kinodynamic planning [6,14,15]. In particular,
as there are fewer waypoints on the planned path (a tree node in the RRT algorithm) or,
alternatively, the distance between waypoints is high, kinematic error is more likely to
occur. This may be exacerbated when the mobile robot travels at high speed and the control
error increases.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 41

bilistic completeness [4]. Probabilistic completeness means that if the number of sam-
pling nodes is unlimited, completeness is guaranteed, but if the number of sampling
nodes is limited, completeness is not guaranteed.

The purpose of this study is to guarantee completeness, improve optimality and
improve collision-avoidance of RRT-like algorithms for path planning. When a path is
planned by the RRT algorithm, it has a stochastic fractal shape, and locally it tends to
have a piecewise linear shape [10] as shown in Figure 1a. The piecewise linear contour
can result in collisions [11] owing to the kinematic constraints [12] of the mobile robot, as
shown in Figure 1b.

(a) (b)

Figure 1. Path of RRT-like algorithms with sharp angle: (a) piecewise linear path; (b) situation with turning radius φ as
per the kinematic constraints of mobile robot with velocity v at node (turn penalty θ).

When the mobile robot moves along the planned path or local planning [13] path, it
may collide with an obstacle as shown in Figure 2a because of kinematic constraints on
the path with sharp angles. As this leads to serious concerns from the perspective of
clearance, path planning must also consider kinodynamic planning [6,14,15]. In particu-
lar, as there are fewer waypoints on the planned path (a tree node in the RRT algorithm)
or, alternatively, the distance between waypoints is high, kinematic error is more likely
to occur. This may be exacerbated when the mobile robot travels at high speed and the
control error increases.

(a) (b)

Figure 2. Path needing kinodynamic planning (when a mobile robot with kinematic constraints
moves at a velocity v at an arbitral point qi): (a) situation in which the robot collides with the ob-
stacle; (b) situation in which the obstacle is avoided by increasing way points.

In this study, given that the RRT algorithm does not guarantee optimality, we aim
to generate a path that is closer to the optimum. Simultaneously, the scope of the study
includes solving the local clearance problem of the stochastic fractal-shaped path.

However, when the path is first plotted from the starting point to the goal point,
only the first complete path is dealt with. That is, the complete path or convergence path
that is closer to the optimum through additional sampling after the initial complete path
is not considered within the scope of the current study.

Figure 2. Path needing kinodynamic planning (when a mobile robot with kinematic constraints moves at a velocity v at an
arbitral point qi): (a) situation in which the robot collides with the obstacle; (b) situation in which the obstacle is avoided by
increasing way points.

In this study, given that the RRT algorithm does not guarantee optimality, we aim
to generate a path that is closer to the optimum. Simultaneously, the scope of the study
includes solving the local clearance problem of the stochastic fractal-shaped path.

However, when the path is first plotted from the starting point to the goal point, only
the first complete path is dealt with. That is, the complete path or convergence path that is
closer to the optimum through additional sampling after the initial complete path is not
considered within the scope of the current study.

The RRT* algorithm, an improved version of the RRT algorithm, further optimizes
the convergence path, wherein the convergence rate of the first complete path is higher

Sensors 2021, 21, 7425 3 of 40

than that of the RRT algorithm. Consequently, it is possible to plan a path closer to the
optimum. However, the amount of computation required to arrive at the convergence
path is very high [16]. Recently, the post triangular processing of midpoint interpolation
(PTPMI) method has been proposed to solve this problem [17]. Therefore, in this study, we
prioritize finding a solution, which is the advantage of the sampling-based algorithm. In
addition, the purpose of this study is to generate a path that is closer to the optimum for
a similar computation time without significantly increasing the amount of computation
compared to related studies.

We propose the bidirectional interpolation method for post-processing, which al-
lows the RRT algorithm to plan a path that is closer to optimal and to mitigate the local
clearance problem.

Visibility-graph-based path planning creates an optimal path. However, in order to
make this path clearer in a real environment, it is necessary to use a sensor device with
high resolution. The proposed method in this paper can generate a path that is close to
optimal even in sensor equipment with low resolution. Therefore, the cost for the sensor
could be saved.

The overall structure of this paper is as follows. Section 2 deals with related works.
Section 2.1 deals with classical path planning and Section 2.2 deals with the sampling-
based path planning algorithm. Section 3 deals with the proposed method (bidirectional
interpolation method for post-processing). Section 4 deals with experimental results in
which the path lengths and planning times are compared and analyzed through simulation
to verify the performance of the proposed method.

2. Related Works
2.1. Classical Path Planning
2.1.1. Visibility Graph

The visibility graph algorithm guarantees optimality and completeness, but the clear-
ance is very low. The cell decomposition algorithm guarantees completeness and high
clearance, but does not guarantee optimality. The potential field algorithm has very high
clearance, but cannot guarantee completeness and optimality by local minima [9].

In particular, as the visibility graph algorithm guarantees optimality in 2D configura-
tion space [18], it is often used as a comparative experiment target for path planning method
studies. We also compare the RRT algorithm post-processed using the proposed method to
the visibility graph in terms of path length, in order to gauge their relative optimality.

The visibility graph algorithm was proposed by Tomas Lozano-Perez in 1979. As
shown in Figure 3a, the start point, goal point and the vertices of all obstacle polygons are
connected in a graph form. As shown in Figure 3b, it guarantees optimality by searching
for the shortest path from the node at the starting point to the node at the goal. At this
time, the case with an edge connecting a node and a node passing through an obstacle
is excluded.

2.1.2. Limitation of Classical Path Planning

All the classical path planning methods, including the visibility graph algorithm, have
their own advantages and disadvantages, but a common limitation is that they are difficult
to apply to a dynamic environment because they involve a large amount of computation.

The path planning algorithms of the classical method introduced above plan the path
using obstacle area information, unlike the sampling-based algorithm. As the visibility
graph algorithm and the cell decomposition algorithm plan a path using the vertices of
the obstacle polygon, the amount of computation becomes very large when the number of
vertices of the entire obstacle is large. In addition, given that the visibility graph algorithm
and cell decomposition algorithm can be applied only when the shape of the obstacle is
polygonal, polygon approximation is required when a curved obstacle is given as an input
value in a vector map rather than a grid map [19,20].

Sensors 2021, 21, 7425 4 of 40Sensors 2021, 21, x FOR PEER REVIEW 4 of 41

(a) (b)

Figure 3. Overview of visibility graph: (a) graph (the number on the edge is the length of that edge) connecting start
point qstart, goal point qgoal and the vertices of all obstacle polygons; (b) shortest path from start point qstart node to goal
point qgoal node.

2.1.2. Limitation of Classical Path Planning
All the classical path planning methods, including the visibility graph algorithm,

have their own advantages and disadvantages, but a common limitation is that they are
difficult to apply to a dynamic environment because they involve a large amount of
computation.

The path planning algorithms of the classical method introduced above plan the
path using obstacle area information, unlike the sampling-based algorithm. As the visi-
bility graph algorithm and the cell decomposition algorithm plan a path using the verti-
ces of the obstacle polygon, the amount of computation becomes very large when the
number of vertices of the entire obstacle is large. In addition, given that the visibility
graph algorithm and cell decomposition algorithm can be applied only when the shape
of the obstacle is polygonal, polygon approximation is required when a curved obstacle
is given as an input value in a vector map rather than a grid map [19,20].

The precision of modern mobile robot sensing technology and equipment (such as
radar and LiDAR) is very high, so obstacles can be mapped with high resolution (the
number of polygonal vertices of obstacles is proportional to the sensing precision) [21].
Therefore, path planning through classical methods such as visibility graph algorithm is
difficult to apply to dynamic environments. One solution is to reduce the computational
amount of the classical method by reducing the number of obstacle polygon vertices
through the polygon approximation algorithm. However, this distorts the actual shape,
and therefore unintentional merging between polygons or obstacle collision problems
caused by distorted areas can cause fatal problems in route planning.

Unlike the classical method, the sampling-based method does not actively use the
obstacle area information for path planning; it is only used for obstacle collision inspec-
tion. Therefore, the amount of computation does not increase significantly depending on
the type of obstacle. In other words, it is suitable as a modern mobile robot route plan-
ning method because it can plan a route in a short time even in a dynamic environment
mapped at a high resolution.

2.2. Sampling-Based Path Planning Algorithms
Sampling-based path planning methods include the RRT algorithm and the proba-

bilistic roadmap method (PRM) algorithm [22]. Well-known improvements to the RRT
algorithm include RRT-connect [23], RRT* [14], informed RRT [24] and quick*-RRT [10]
algorithms. This section deals only with RRT and RRT-connect algorithms.

Figure 3. Overview of visibility graph: (a) graph (the number on the edge is the length of that edge) connecting start point
qstart, goal point qgoal and the vertices of all obstacle polygons; (b) shortest path from start point qstart node to goal point
qgoal node.

The precision of modern mobile robot sensing technology and equipment (such as
radar and LiDAR) is very high, so obstacles can be mapped with high resolution (the
number of polygonal vertices of obstacles is proportional to the sensing precision) [21].
Therefore, path planning through classical methods such as visibility graph algorithm is
difficult to apply to dynamic environments. One solution is to reduce the computational
amount of the classical method by reducing the number of obstacle polygon vertices
through the polygon approximation algorithm. However, this distorts the actual shape,
and therefore unintentional merging between polygons or obstacle collision problems
caused by distorted areas can cause fatal problems in route planning.

Unlike the classical method, the sampling-based method does not actively use the
obstacle area information for path planning; it is only used for obstacle collision inspection.
Therefore, the amount of computation does not increase significantly depending on the
type of obstacle. In other words, it is suitable as a modern mobile robot route planning
method because it can plan a route in a short time even in a dynamic environment mapped
at a high resolution.

2.2. Sampling-Based Path Planning Algorithms

Sampling-based path planning methods include the RRT algorithm and the proba-
bilistic roadmap method (PRM) algorithm [22]. Well-known improvements to the RRT
algorithm include RRT-connect [23], RRT* [14], informed RRT [24] and quick*-RRT [10]
algorithms. This section deals only with RRT and RRT-connect algorithms.

As the purpose of this paper is specifically to improve the performance of the first
complete path of the RRT algorithm, research on the efficient convergence path or the RRT*
algorithm for improving convergence speed or the informed RRT algorithm for improving
random sampling is not covered in this paper.

2.2.1. Rapidly Exploring Random Tree (RRT)

The RRT algorithm is a representative algorithm of the sampling-based path planning
method, and was proposed by Steven M. LaValle in 1998 [4]. It is useful for path planning,
considering the conditions of non-holonomic constraints, and is designed to have high
degrees of freedom [6].

When a random sample is generated in the configuration space, as shown in Figure 4,
the node closest to the location of the random sample is found among the nodes constituting
the tree with the starting point as the root node. A new node is created at a position away
from the node by step length (λ) in the direction of the random sample position and
inserted into the tree. If the random sample position is closer than step length, a new node

Sensors 2021, 21, 7425 5 of 40

is created at the random sample position and inserted into the tree. This tree expansion
process is repeated until the destination is reached.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 41

As the purpose of this paper is specifically to improve the performance of the first
complete path of the RRT algorithm, research on the efficient convergence path or the
RRT* algorithm for improving convergence speed or the informed RRT algorithm for
improving random sampling is not covered in this paper.

2.2.1. Rapidly Exploring Random Tree (RRT)
The RRT algorithm is a representative algorithm of the sampling-based path plan-

ning method, and was proposed by Steven M. LaValle in 1998 [4]. It is useful for path
planning, considering the conditions of non-holonomic constraints, and is designed to
have high degrees of freedom [6].

When a random sample is generated in the configuration space, as shown in Figure
4, the node closest to the location of the random sample is found among the nodes con-
stituting the tree with the starting point as the root node. A new node is created at a po-
sition away from the node by step length (λ) in the direction of the random sample posi-
tion and inserted into the tree. If the random sample position is closer than step length, a
new node is created at the random sample position and inserted into the tree. This tree
expansion process is repeated until the destination is reached.

Figure 4. Process of RRT algorithm. A new node is created at location qnew separated by step length
λ in the direction of the random sampling position qrand based on the random sampling position
qrand and the nearest node (position) qnear in tree T with start point qstart as the root node.

2.2.2. RRT-Connect
As samples appear with the same probability in all regions, path planning through

the RRT algorithm may have the disadvantage that the tree easily extends in several
random directions irrespective of the destination, resulting in a longer convergence time
and inefficiency. The RRT-connect algorithm [23] proposed by James J. Kuffner Jr. in
2000 aims to compensate for this disadvantage by adopting two major new strategies.

The first idea is swapping. It involves designating a starting point and a target point
as each root node and alternately extending in the direction of each other. This prevents
the tree from extending in a direction independent of its destination and reduces the
time required to search for a path.

The second idea is extending. This means that when the tree is extended, it contin-
ues to extend to the tree on the other side if no collision with an obstacle occurs. As
shown in Figure 5, if there is no collision with an obstacle when a sample is generated,
the tree continues to expand as much as the step length in the direction of the opposite
tree, so that the destination can be reached faster.

Through this idea, the path planning through the RRT-connect algorithm can find
the first complete path at a much higher speed than the existing RRT algorithm.

Figure 4. Process of RRT algorithm. A new node is created at location qnew separated by step length
λ in the direction of the random sampling position qrand based on the random sampling position qrand

and the nearest node (position) qnear in tree T with start point qstart as the root node.

2.2.2. RRT-Connect

As samples appear with the same probability in all regions, path planning through
the RRT algorithm may have the disadvantage that the tree easily extends in several
random directions irrespective of the destination, resulting in a longer convergence time
and inefficiency. The RRT-connect algorithm [23] proposed by James J. Kuffner Jr. in
2000 aims to compensate for this disadvantage by adopting two major new strategies.

The first idea is swapping. It involves designating a starting point and a target point
as each root node and alternately extending in the direction of each other. This prevents
the tree from extending in a direction independent of its destination and reduces the time
required to search for a path.

The second idea is extending. This means that when the tree is extended, it continues
to extend to the tree on the other side if no collision with an obstacle occurs. As shown
in Figure 5, if there is no collision with an obstacle when a sample is generated, the tree
continues to expand as much as the step length in the direction of the opposite tree, so that
the destination can be reached faster.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 41

(a) (b)

Figure 5. Process of RRT-connect algorithm: (a) extend from tree Tb with root as goal position qgoal to tree Ta with root as
start position qstart (Ta’s qnear extends in Ta’s qnewA direction); (b) as the paths Pa and Pb created in each tree are connected
(“Connect”) to each other, path Pmerged is created.

2.2.3. Triangular-RRT-Connect
Triangular-RRT-Connect [25] is a method that applies the triangular-rewiring

method in the extend and connect stages of RRT-connect. Triangular-rewiring uses the
principle of triangular inequality. As shown in Figure 6, when there are qchild, qparent which
is the parent node of qchild and qancestor which is the parent node of qparent, triangu-
lar-rewiring eliminates the path through the qparent node when there is no obstacle be-
tween qchild and qancestor and connects directly between qchild and qancestor.

(a) (b) (c)

Figure 6. Overview of “Triangular-Rewiring” method: (a) example tree, (b) result of “Triangular-Rewiring”, (c) applied
trigonometric inequality (α + β > γ).

Figure 7 shows “extend” and “connect” of triangular-RRT-connect. In triangu-
lar-RRT-connect, there is a tree extending from the goal point and a tree extending from
the start point. In Figure 7a, TS and TG are trees extending from the start point and the
goal point, respectively. Extend occurs at TG when sampling is performed at a random
location qrand and a new node, qnewS, is created based on TS. At this time, the triangu-
lar-rewiring method works on all nodes generated during the “extend” process. Figure
7b is connect in triangular-RRT-connect. After the two trees are connected, the triangu-
lar-rewiring method is applied to the merged tree. Tconnect is a tree where TS and TG are
connected.

(a) (b)

Figure 5. Process of RRT-connect algorithm: (a) extend from tree Tb with root as goal position qgoal to tree Ta with root as
start position qstart (Ta’s qnear extends in Ta’s qnewA direction); (b) as the paths Pa and Pb created in each tree are connected
(“Connect”) to each other, path Pmerged is created.

Through this idea, the path planning through the RRT-connect algorithm can find the
first complete path at a much higher speed than the existing RRT algorithm.

2.2.3. Triangular-RRT-Connect

Triangular-RRT-Connect [25] is a method that applies the triangular-rewiring method
in the extend and connect stages of RRT-connect. Triangular-rewiring uses the principle of
triangular inequality. As shown in Figure 6, when there are qchild, qparent which is the parent

Sensors 2021, 21, 7425 6 of 40

node of qchild and qancestor which is the parent node of qparent, triangular-rewiring eliminates
the path through the qparent node when there is no obstacle between qchild and qancestor and
connects directly between qchild and qancestor.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 41

(a) (b)

Figure 5. Process of RRT-connect algorithm: (a) extend from tree Tb with root as goal position qgoal to tree Ta with root as
start position qstart (Ta’s qnear extends in Ta’s qnewA direction); (b) as the paths Pa and Pb created in each tree are connected
(“Connect”) to each other, path Pmerged is created.

2.2.3. Triangular-RRT-Connect
Triangular-RRT-Connect [25] is a method that applies the triangular-rewiring

method in the extend and connect stages of RRT-connect. Triangular-rewiring uses the
principle of triangular inequality. As shown in Figure 6, when there are qchild, qparent which
is the parent node of qchild and qancestor which is the parent node of qparent, triangu-
lar-rewiring eliminates the path through the qparent node when there is no obstacle be-
tween qchild and qancestor and connects directly between qchild and qancestor.

(a) (b) (c)

Figure 6. Overview of “Triangular-Rewiring” method: (a) example tree, (b) result of “Triangular-Rewiring”, (c) applied
trigonometric inequality (α + β > γ).

Figure 7 shows “extend” and “connect” of triangular-RRT-connect. In triangu-
lar-RRT-connect, there is a tree extending from the goal point and a tree extending from
the start point. In Figure 7a, TS and TG are trees extending from the start point and the
goal point, respectively. Extend occurs at TG when sampling is performed at a random
location qrand and a new node, qnewS, is created based on TS. At this time, the triangu-
lar-rewiring method works on all nodes generated during the “extend” process. Figure
7b is connect in triangular-RRT-connect. After the two trees are connected, the triangu-
lar-rewiring method is applied to the merged tree. Tconnect is a tree where TS and TG are
connected.

(a) (b)

Figure 6. Overview of “Triangular-Rewiring” method: (a) example tree, (b) result of “Triangular-Rewiring”, (c) applied
trigonometric inequality (α + β > γ).

Figure 7 shows “extend” and “connect” of triangular-RRT-connect. In triangular-
RRT-connect, there is a tree extending from the goal point and a tree extending from the
start point. In Figure 7a, TS and TG are trees extending from the start point and the goal
point, respectively. Extend occurs at TG when sampling is performed at a random location
qrand and a new node, qnewS, is created based on TS. At this time, the triangular-rewiring
method works on all nodes generated during the “extend” process. Figure 7b is connect in
triangular-RRT-connect. After the two trees are connected, the triangular-rewiring method
is applied to the merged tree. Tconnect is a tree where TS and TG are connected.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 41

(a) (b)

Figure 5. Process of RRT-connect algorithm: (a) extend from tree Tb with root as goal position qgoal to tree Ta with root as
start position qstart (Ta’s qnear extends in Ta’s qnewA direction); (b) as the paths Pa and Pb created in each tree are connected
(“Connect”) to each other, path Pmerged is created.

2.2.3. Triangular-RRT-Connect
Triangular-RRT-Connect [25] is a method that applies the triangular-rewiring

method in the extend and connect stages of RRT-connect. Triangular-rewiring uses the
principle of triangular inequality. As shown in Figure 6, when there are qchild, qparent which
is the parent node of qchild and qancestor which is the parent node of qparent, triangu-
lar-rewiring eliminates the path through the qparent node when there is no obstacle be-
tween qchild and qancestor and connects directly between qchild and qancestor.

(a) (b) (c)

Figure 6. Overview of “Triangular-Rewiring” method: (a) example tree, (b) result of “Triangular-Rewiring”, (c) applied
trigonometric inequality (α + β > γ).

Figure 7 shows “extend” and “connect” of triangular-RRT-connect. In triangu-
lar-RRT-connect, there is a tree extending from the goal point and a tree extending from
the start point. In Figure 7a, TS and TG are trees extending from the start point and the
goal point, respectively. Extend occurs at TG when sampling is performed at a random
location qrand and a new node, qnewS, is created based on TS. At this time, the triangu-
lar-rewiring method works on all nodes generated during the “extend” process. Figure
7b is connect in triangular-RRT-connect. After the two trees are connected, the triangu-
lar-rewiring method is applied to the merged tree. Tconnect is a tree where TS and TG are
connected.

(a) (b)

Figure 7. Extend and connect in triangular-RRT-connect: (a) extend method in triangular-RRT-connect; (b) connect method
in triangular-RRT-connect.

3. Bidirectional Interpolation Method for Post-Processing
3.1. Forward Interpolation Process

As shown in Figure 8a, when there is no obstacle between the newly inserted node and
its grandparent node (collision-free), as shown in Figure 8b, a connection is made between
the newly inserted node and its grandparent node, while its parent node is excluded
(rewiring). Based on the trigonometric inequality property, this can be corrected to a path
that is closer to the optimum than in the existing RRT algorithm.

If the current path is not collision-free from obstacle, as shown in Figure 9, the piece-
wise linear local path created between the node, its parent node and its grandparent node
is optimized through interpolation. In this process, new nodes are interpolated into the
existing path to deviate from the piecewise linear path, making it possible to create a
smooth path.

Sensors 2021, 21, 7425 7 of 40

Sensors 2021, 21, x FOR PEER REVIEW 7 of 41

Figure 7. Extend and connect in triangular-RRT-connect: (a) extend method in triangular-RRT-connect; (b) connect
method in triangular-RRT-connect.

3. Bidirectional Interpolation Method for Post-Processing
3.1. Forward Interpolation Process

As shown in Figure 8a, when there is no obstacle between the newly inserted node
and its grandparent node (collision-free), as shown in Figure 8b, a connection is made
between the newly inserted node and its grandparent node, while its parent node is ex-
cluded (rewiring). Based on the trigonometric inequality property, this can be corrected
to a path that is closer to the optimum than in the existing RRT algorithm.

(a) (b)

Figure 8. Overview of rewiring step in forward interpolation process: (a) line γ from node q0 to its grandparent node q2
in tree R is collision-free (distance: γ < α + β); (b) rewiring: grandparent node q2 of node q0 is connected to q0 as parent
node, and origin parent node q1 is excluded from tree R.

If the current path is not collision-free from obstacle, as shown in Figure 9, the
piecewise linear local path created between the node, its parent node and its grandpar-
ent node is optimized through interpolation. In this process, new nodes are interpolated
into the existing path to deviate from the piecewise linear path, making it possible to
create a smooth path.

Quick-RRT* [10] and triangular-RRT-connect [25] algorithms aim to create a path
that is close to optimal using triangular inequality. However, as the node is deleted in
the process, the distance between the waypoints on the planned path is longer than that
of the RRT algorithm, so the sharp angle on the path line is deepened.

(a) (b)

Figure 9. Overview of interpolation step in forward interpolation process: (a) line γ from node q0 to its grandparent node
q2 in tree R is trapped; (b) interpolation: node qa between node q0 and node q1 and node qb between node q1 and node q2 are
created. After connecting the parent node of q0 with qa, the parent of qa with qb and the parent of qb with q2, node q1 is ex-
cluded.

Forward interpolation process is effective for all path planning algorithms, such as
RRT algorithm, where optimality is not guaranteed and a local piecewise linear path
appears. After the route is planned, it can be applied as a post-processing technique.

Compared to the classical path planning methods [3], the major advantage of the
sampling-based path planning method is the high planning speed owing to a small
amount of computation, so there is a prerequisite that the amount of added computation
should not be large compared to that required by the existing RRT algorithm.

Figure 8. Overview of rewiring step in forward interpolation process: (a) line γ from node q0 to its grandparent node q2 in
tree R is collision-free (distance: γ < α + β); (b) rewiring: grandparent node q2 of node q0 is connected to q0 as parent node,
and origin parent node q1 is excluded from tree R.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 41

Figure 7. Extend and connect in triangular-RRT-connect: (a) extend method in triangular-RRT-connect; (b) connect
method in triangular-RRT-connect.

3. Bidirectional Interpolation Method for Post-Processing
3.1. Forward Interpolation Process

As shown in Figure 8a, when there is no obstacle between the newly inserted node
and its grandparent node (collision-free), as shown in Figure 8b, a connection is made
between the newly inserted node and its grandparent node, while its parent node is ex-
cluded (rewiring). Based on the trigonometric inequality property, this can be corrected
to a path that is closer to the optimum than in the existing RRT algorithm.

(a) (b)

Figure 8. Overview of rewiring step in forward interpolation process: (a) line γ from node q0 to its grandparent node q2
in tree R is collision-free (distance: γ < α + β); (b) rewiring: grandparent node q2 of node q0 is connected to q0 as parent
node, and origin parent node q1 is excluded from tree R.

If the current path is not collision-free from obstacle, as shown in Figure 9, the
piecewise linear local path created between the node, its parent node and its grandpar-
ent node is optimized through interpolation. In this process, new nodes are interpolated
into the existing path to deviate from the piecewise linear path, making it possible to
create a smooth path.

Quick-RRT* [10] and triangular-RRT-connect [25] algorithms aim to create a path
that is close to optimal using triangular inequality. However, as the node is deleted in
the process, the distance between the waypoints on the planned path is longer than that
of the RRT algorithm, so the sharp angle on the path line is deepened.

(a) (b)

Figure 9. Overview of interpolation step in forward interpolation process: (a) line γ from node q0 to its grandparent node
q2 in tree R is trapped; (b) interpolation: node qa between node q0 and node q1 and node qb between node q1 and node q2 are
created. After connecting the parent node of q0 with qa, the parent of qa with qb and the parent of qb with q2, node q1 is ex-
cluded.

Forward interpolation process is effective for all path planning algorithms, such as
RRT algorithm, where optimality is not guaranteed and a local piecewise linear path
appears. After the route is planned, it can be applied as a post-processing technique.

Compared to the classical path planning methods [3], the major advantage of the
sampling-based path planning method is the high planning speed owing to a small
amount of computation, so there is a prerequisite that the amount of added computation
should not be large compared to that required by the existing RRT algorithm.

Figure 9. Overview of interpolation step in forward interpolation process: (a) line γ from node q0 to its grandparent node
q2 in tree R is trapped; (b) interpolation: node qa between node q0 and node q1 and node qb between node q1 and node q2

are created. After connecting the parent node of q0 with qa, the parent of qa with qb and the parent of qb with q2, node q1

is excluded.

Quick-RRT* [10] and triangular-RRT-connect [25] algorithms aim to create a path that
is close to optimal using triangular inequality. However, as the node is deleted in the
process, the distance between the waypoints on the planned path is longer than that of the
RRT algorithm, so the sharp angle on the path line is deepened.

Forward interpolation process is effective for all path planning algorithms, such as
RRT algorithm, where optimality is not guaranteed and a local piecewise linear path
appears. After the route is planned, it can be applied as a post-processing technique.

Compared to the classical path planning methods [3], the major advantage of the
sampling-based path planning method is the high planning speed owing to a small amount
of computation, so there is a prerequisite that the amount of added computation should
not be large compared to that required by the existing RRT algorithm.

Forward interpolation process was designed based on the polygon approximation
algorithm [18,26]. As shown in Figure 10, the constant value (ε > 0) of ε (the threshold of
minimum collision stability) determines how closely the path is approximated to the obstacle.

dn in Figure 10 follows Equation (1):

dn(qi) =

{
(dn−1(qi))/2, n > 0(

2
√

s(s− α)(s− β)(s− γ)
)

/γ, n = 0
(s = (α + β + γ)/2) (1)

For an arbitrary waypoint qi, the value of d decreases by 1/2 as interpolation proceeds
(n). The initial value d0 is the height of the triangle consisting of the length α from qi to the
next waypoint of qi, the length β from the next waypoint of qi to the next waypoint of the
next waypoint of qi and the length γ from qi to the next waypoint of the next waypoint of
qi(γ < α + β). The value of dn becomes (dn − 1)/2. As the path gets closer to the obstacle as
d gets smaller, it is compared to ε functions as a measure to confirm clearance.

Sensors 2021, 21, 7425 8 of 40

Sensors 2021, 21, x FOR PEER REVIEW 8 of 41

Forward interpolation process was designed based on the polygon approximation
algorithm [18,26]. As shown in Figure 10, the constant value (ε > 0) of ε (the threshold of
minimum collision stability) determines how closely the path is approximated to the ob-
stacle.

(a) (b)

Figure 10. Condition of interpolation step at forward interpolation process: (a) interpolation con-
tinues: the height d0 of a triangle made from waypoint q0, q1 and q2 in random path is higher than ε;
(b) interpolation break: the height d1 of a triangle made from midpoint mF(q0,1) (between q0 and q1),
node q1 and midpoint mF(q1,1) (between q1 and q2) is less than ε.

dn in Figure 10 follows Equation (1):

𝑑(𝑞) = ൝ ൫𝑑ିଵ(𝑞)൯ 2⁄ , 𝑛 > 0 ቀ2ඥ𝑠(𝑠 − 𝛼)(𝑠 − 𝛽)(𝑠 − 𝛾)ቁ 𝛾,ൗ 𝑛 = 0 (𝑠 = (𝛼 + 𝛽 + 𝛾) 2⁄) (1)

For an arbitrary waypoint qi, the value of d decreases by 1/2 as interpolation pro-
ceeds (n). The initial value d0 is the height of the triangle consisting of the length α from
qi to the next waypoint of qi, the length β from the next waypoint of qi to the next way-
point of the next waypoint of qi and the length γ from qi to the next waypoint of the next
waypoint of qi(γ < α + β). The value of dn becomes (dn − 1)/2. As the path gets closer to the
obstacle as d gets smaller, it is compared to ε functions as a measure to confirm clear-
ance.

However, optimality and clearance are conflicting properties; as shown in Figure
11, the smaller the ε value (the minimum value of ε: 0), the higher the optimality and the
lower the clearance. Conversely, the larger the ε value, the higher the clearance and the
lower the optimality. Therefore, ε should be set to an appropriate value based on the en-
vironment.

(a) (b) (c)

Figure 11. Difference according to ε value in forward interpolation process: (a) result when the value of ε is equal to
random value n; (b) result when ε value is more than random value n; (c) result when ε value is less than random value
n.

Figure 10. Condition of interpolation step at forward interpolation process: (a) interpolation contin-
ues: the height d0 of a triangle made from waypoint q0, q1 and q2 in random path is higher than ε;
(b) interpolation break: the height d1 of a triangle made from midpoint mF(q0,1) (between q0 and q1),

node q1 and midpoint mF(q1,1) (between q1 and q2) is less than ε.

However, optimality and clearance are conflicting properties; as shown in Figure 11,
the smaller the ε value (the minimum value of ε: 0), the higher the optimality and the lower
the clearance. Conversely, the larger the ε value, the higher the clearance and the lower the
optimality. Therefore, ε should be set to an appropriate value based on the environment.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 41

Forward interpolation process was designed based on the polygon approximation
algorithm [18,26]. As shown in Figure 10, the constant value (ε > 0) of ε (the threshold of
minimum collision stability) determines how closely the path is approximated to the ob-
stacle.

(a) (b)

Figure 10. Condition of interpolation step at forward interpolation process: (a) interpolation con-
tinues: the height d0 of a triangle made from waypoint q0, q1 and q2 in random path is higher than ε;
(b) interpolation break: the height d1 of a triangle made from midpoint mF(q0,1) (between q0 and q1),
node q1 and midpoint mF(q1,1) (between q1 and q2) is less than ε.

dn in Figure 10 follows Equation (1):

𝑑(𝑞) = ൝ ൫𝑑ିଵ(𝑞)൯ 2⁄ , 𝑛 > 0 ቀ2ඥ𝑠(𝑠 − 𝛼)(𝑠 − 𝛽)(𝑠 − 𝛾)ቁ 𝛾,ൗ 𝑛 = 0 (𝑠 = (𝛼 + 𝛽 + 𝛾) 2⁄) (1)

For an arbitrary waypoint qi, the value of d decreases by 1/2 as interpolation pro-
ceeds (n). The initial value d0 is the height of the triangle consisting of the length α from
qi to the next waypoint of qi, the length β from the next waypoint of qi to the next way-
point of the next waypoint of qi and the length γ from qi to the next waypoint of the next
waypoint of qi(γ < α + β). The value of dn becomes (dn − 1)/2. As the path gets closer to the
obstacle as d gets smaller, it is compared to ε functions as a measure to confirm clear-
ance.

However, optimality and clearance are conflicting properties; as shown in Figure
11, the smaller the ε value (the minimum value of ε: 0), the higher the optimality and the
lower the clearance. Conversely, the larger the ε value, the higher the clearance and the
lower the optimality. Therefore, ε should be set to an appropriate value based on the en-
vironment.

(a) (b) (c)

Figure 11. Difference according to ε value in forward interpolation process: (a) result when the value of ε is equal to
random value n; (b) result when ε value is more than random value n; (c) result when ε value is less than random value
n.

Figure 11. Difference according to ε value in forward interpolation process: (a) result when the value of ε is equal to random
value n; (b) result when ε value is more than random value n; (c) result when ε value is less than random value n.

3.1.1. Pseudocode of Forward Interpolation Process

Forward interpolation process is a post-processing method applied after the path is
planned in RRT-like algorithms. Mathematical modeling is based on a two-dimensional
Euclidean space.

Algorithm 1 presents the pseudocode of forward interpolation process. Two functions
can be called internally: post triangular (Algorithm 2) and interpolation (Algorithm 3).

Algorithm 1 Pseudocode of Forward Interpolation Process.

Input:
R← path from {RRT/RRT-Connect/Tri-RRT/Tri-RRT-Connect/ . . . }
C← position set of all (measured) boundary points in all (known) obstacles
ε← threshold value of minimum clearance
Output:
R←modified path R
Initialize:
fmodify ← true

Procedure ForwardInterpolationProcess

Sensors 2021, 21, 7425 9 of 40

Begin
1 While fmodify Do
2 fmodify ← false //is the path modified
3 t← 0 //index of the currently focused point
4 qchild ← first point in R
5 qparent ← next point of qchild in R
6 While not [qparent is last point in R] Do
7 qancestor ← next point of qparent in R
8 If not isTrapped(qchild, qancestor, C) Then R← postTriangular(R, ε, t, fmodify)
9 Else

10 R← interpolation(R, C, ε, t, fmodify)
11 qchild ← t-th point in R
12 qparent ← next point of qchild in R
End

Algorithm 2 Pseudocode of the Post Triangular Function.

Input:
R← path R from postTriProcOfMidInterpolation
t← point index t from postTriProcOfMidInterpolation
fmodify ← boolean fmodify from postTriProcOfMidInterpolation
Output:
R←modified path R
fmodify ← result of boolean fmodify //return by reference

Procedure postTriangular from ForwardInterpolationProcess
Begin
1 qchild ← t-th point in R
2 qparent ← next point of qchild in R
3 qancestor ← next point of qparent in R
4 R← Delete path<qchild, qparent> and path<qparent, qancestor> from R
5 R← Insert path<qchild, qancestor> to R
6 fmodify ← true

End

Algorithm 3 Pseudocode of the Interpolation Function.

Input:
R← path R from ForwardInterpolationProcess
C← position set C from ForwardInterpolationProcess
ε← threshold value ε from ForwardInterpolationProcess
t← point index t from ForwardInterpolationProcess
fmodify ← boolean fmodify from ForwardInterpolationProcess
Output:
R←modified path R
t← updated point Index t //return by reference
fmodify ← result of boolean fmodify //return by reference
Initialize:
qchild ← t-th point in R
qparent ← next point of qchild in R
qancestor ← next point of qparent in R

Procedure interpolation from ForwardInterpolationProcess
Begin
1 d← altitude of triangle consisting of qchild, qparent, and qancestor with base<qchild, qancestor>
2 ma ←midpoint between qchild and qparent

Sensors 2021, 21, 7425 10 of 40

3 mb ←midpoint between qparent and qancestor
4 While true Do
5 If d >= ε Then
6 If not isTrapped(ma, mb, C) Then
7 R← Delete path<qchild, qparent> and path<qparent, qancestor> from R

8
R← Insert path<qchild, ma>, path<ma, mb>, and path<mb, qancestor>

to R
9 fmodify ← true

10 Break
11 Else
12 d← d/2
13 ma ←midpoint between ma and qparent
14 mb ←midpoint between mb and qparent
15 Else
16 t← t + 1
17 Break
End

The input value of forward interpolation process consists of the path R planned
through the RRT-like algorithms, the obstacle area information C and the threshold value ε
of the minimum clearance.

fmodify is a variable that checks whether the input path R has been modified by this
method, and if the path is modified even once, the entire process is repeated. If path
correction does not occur when the process is repeated, the algorithm is terminated. t refers
to the index of the waypoint of R that is currently focused. That is, if t is 0, it refers to the
starting point, which is the first point of R.

In R, when the first starting point is qchild, the next point is qparent and the next point
after that point is called qancestor, the algorithm checks whether the line between qchild
and qancestor is collision-free (isTrapped() function). If it is collision-free, the postTriangular()
function is called; if not, the interpolation() function is called. The postTriangular() function
connects qchild and qancestor, and qparent is excluded from the existing path. The interpolation()
function finds a random point between (qchild and qparent) and (qparent and qancestor) that is
collision-free when connected (interpolation), and rewires qchild, qancestor and the two points
found. If R and t are updated by the postTriangular() or interpolation() function, qchild (the
t-th waypoint of R), qparent and qancestor are updated accordingly. If qparent is the last point in
R, fmodify is checked. Otherwise, the above process is repeated again for the updated qchild
and qancestor.

Here, the path modification by the postTriangular() function deletes the existing way-
points and creates a path that is close to optimal, but has the effect of sharpening the path
shape. Path modification by the interpolation() function has the effect of creating a path
that is close to an optimal path and smoothing the path shape while adding/inserting new
waypoints between existing waypoints. For creating a path that is close to optimal, the
postTriangular() function modifies the path more efficiently than the interpolation() function.

3.1.2. Pseudocode of the Post Triangular Function from Forward Interpolation Process

The input value of the postTriangular() function consists of the path R, the waypoint
index t and fmodify, which states whether the path has been modified by forward interpola-
tion process.

Rewiring is performed on the t-th waypoint qchild of R, the next point qparent and the
next point qancestor of qparent. First, the path between qchild and qparent and the existing path
between qparent and qancestor are deleted. Then, the path between qchild and qancestor is inserted.
Finally, fmodify returns ‘true’ because the path has been modified.

Sensors 2021, 21, 7425 11 of 40

3.1.3. Pseudocode of Interpolation Function from Forward Interpolation Process

As shown in Figure 12, the interpolation of forward interpolation process is performed
at three points (random interpolation point (q0), the next interpolation point (q1) and the
next interpolation point (q2) of point q1). It aims to find the interpolation point (mF(q0),
mF(q1)) that is collision-free from the obstacle between the waypoints (q0~q1, q1~q2) while
descending in the direction of the midpoint (q1).

Sensors 2021, 21, x FOR PEER REVIEW 11 of 41

refers to the index of the waypoint of R that is currently focused. That is, if t is 0, it refers
to the starting point, which is the first point of R.

In R, when the first starting point is qchild, the next point is qparent and the next point
after that point is called qancestor, the algorithm checks whether the line between qchild and
qancestor is collision-free (isTrapped() function). If it is collision-free, the postTriangular()
function is called; if not, the interpolation() function is called. The postTriangular() func-
tion connects qchild and qancestor, and qparent is excluded from the existing path. The interpola-
tion() function finds a random point between (qchild and qparent) and (qparent and qancestor) that is
collision-free when connected (interpolation), and rewires qchild, qancestor and the two points
found. If R and t are updated by the postTriangular() or interpolation() function, qchild (the
t-th waypoint of R), qparent and qancestor are updated accordingly. If qparent is the last point in
R, fmodify is checked. Otherwise, the above process is repeated again for the updated qchild
and qancestor.

Here, the path modification by the postTriangular() function deletes the existing
waypoints and creates a path that is close to optimal, but has the effect of sharpening the
path shape. Path modification by the interpolation() function has the effect of creating a
path that is close to an optimal path and smoothing the path shape while add-
ing/inserting new waypoints between existing waypoints. For creating a path that is
close to optimal, the postTriangular() function modifies the path more efficiently than the
interpolation() function.

3.1.2. Pseudocode of the Post Triangular Function from Forward Interpolation Process
The input value of the postTriangular() function consists of the path R, the waypoint

index t and fmodify, which states whether the path has been modified by forward interpo-
lation process.

Rewiring is performed on the t-th waypoint qchild of R, the next point qparent and the
next point qancestor of qparent. First, the path between qchild and qparent and the existing path be-
tween qparent and qancestor are deleted. Then, the path between qchild and qancestor is inserted. Fi-
nally, fmodify returns ‘true’ because the path has been modified.

3.1.3. Pseudocode of Interpolation Function from Forward Interpolation Process
As shown in Figure 12, the interpolation of forward interpolation process is per-

formed at three points (random interpolation point (q0), the next interpolation point (q1)
and the next interpolation point (q2) of point q1). It aims to find the interpolation point
(mF(q0), mF(q1)) that is collision-free from the obstacle between the waypoints (q0~q1, q1~q2)
while descending in the direction of the midpoint (q1).

Figure 12. Details of forward interpolation process: (a) when the midpoint mF(q0,1) of the waypoints q0, q1 and the mid-
point mF(q1,1) of q1, q2 are not collision-free from the obstacle; (b) when the midpoint mF(q0,2) of the midpoint mF(q0,1), q1
and the midpoint mF(q1,2) of midpoint mF(q1,1), q1 are not collision-free from the obstacle.

The interpolation point mF follows Equations (2) and (3):

(a) (b)

Figure 12. Details of forward interpolation process: (a) when the midpoint mF(q0,1) of the waypoints q0, q1 and the midpoint
mF(q1,1) of q1, q2 are not collision-free from the obstacle; (b) when the midpoint mF(q0,2) of the midpoint mF(q0,1), q1 and
the midpoint mF(q1,2) of midpoint mF(q1,1), q1 are not collision-free from the obstacle.

The interpolation point mF follows Equations (2) and (3):

ξn(qi) :=

n

(
︷ ︸︸ ︷
ξ ◦ ξ ◦ . . . ◦ ξ)(qi), n > 0

qi, n = 0
(2)

First, ξ() is a function that receives a random node as a variable and returns the parent
node of that node. The n-th square of ξ() (n ≥ 0) can be expressed as in Equation (2), when
n = 0, ξ0(qi) := qi holds.

mF(qi, k) =

{ (
mF(qi ,k−1)·x+ζ(qi)·x

2 , mF(qi ,k−1)·y+ζ(qi)·y
2

)
, k > 0

qi, k = 0
(k ∈ N) (3)

When the k-th interpolation point of a random waypoint qi is mF(qi,k), the 0-th interpo-
lation point itself becomes qi. The first interpolation point is the midpoint of qi and the next
point ξ(qi) of qi, and the second interpolation point becomes the midpoint of mF(qi,1) and
ξ(qi). That is, mF(qi, k) (k > 0) becomes the midpoint between mF(qi, k − 1) and ξ(qi). At this
time, d becomes (dk−1)/2.

Algorithm 3 is the pseudocode of the interpolation() function in forward interpola-
tion process.

The input value of the interpolation() function of forward interpolation process consists
of the path R, the obstacle area information C, the waypoint index t and whether to modify
the path fmodify from in forward interpolation process.

A triangle is made of three waypoints (the t-th waypoint qchild of R, the next point
qparent of qchild and the next point qancestor of qparent), and the height d of the triangle can
be found. ma is the midpoint of qchild and qparent, and mb is the midpoint of qparent and
qancestor. If the path between ma and mb is collision-free from the obstacle (isTrapped()), the
existing path between qchild and qparent is deleted and the path between qchild and ma, the
path between ma and mb and the path between mb and qancestor are inserted. Furthermore,
as the path has been modified, fmodify becomes ‘true’, returns it, and the function ends. If
the distance between ma and mb is not collision-free from obstacles, the value of d is 1/2,
ma is the midpoint of ma and qparent, and mb is updated to the midpoint of mb and qparent, so
it must be determined whether ma and mb are collision-free from obstacles.

Sensors 2021, 21, 7425 12 of 40

This iterative process proceeds until a case is found in which ma and mb are collision-
free from obstacles or d becomes smaller than ε. If d becomes smaller than ε, the value of t
is increased by 1 and the function is terminated.

3.2. Backward Interpolation Process

As shown in Figure 13, a collision-free interpolation point is found while descending
in the direction of the midpoint (q1) among the three points (a random interpolation point
(q0), the next interpolation point (q1) of q0 and the next interpolation point (q2) of q1). From
the interpolation point, it ascends again in the direction of the obstacle as far as possible
(d >= ε), and a waypoint collision-free from obstacle is found between the interpolation
point and the waypoint (mF(q0)~q1, q1~mF(q1)).

Sensors 2021, 21, x FOR PEER REVIEW 12 of 41

𝜉(𝑞) ∶= ൝(𝜉 ∘ 𝜉 ∘ … ∘ 𝜉ᇩᇭᇭᇪᇭᇭᇫ) (𝑞), 𝑛 > 0𝑞, 𝑛 = 0 (2)

First, ξ() is a function that receives a random node as a variable and returns the
parent node of that node. The n-th square of ξ() (n ≥ 0) can be expressed as in Equation
(2), when n = 0, 𝜉(𝑞) ∶= 𝑞 holds. 𝑚ி(𝑞, 𝑘) = ቊ(ಷ(,ିଵ).௫ା().௫ଶ , ಷ(,ିଵ).௬ା().௬ଶ), 𝑘 > 0 𝑞, 𝑘 = 0 (𝑘 ∈ ℕ) (3)

When the k-th interpolation point of a random waypoint qi is mF(qi,k), the 0-th in-
terpolation point itself becomes qi. The first interpolation point is the midpoint of qi and
the next point ξ(qi) of qi, and the second interpolation point becomes the midpoint of
mF(qi,1) and ξ(qi). That is, mF(qi, k) (k > 0) becomes the midpoint between mF(qi, k-1) and
ξ(qi). At this time, d becomes (dk−1)/2.

Algorithm 3 is the pseudocode of the interpolation () function in forward interpolation
process.

The input value of the interpolation() function of forward interpolation process con-
sists of the path R, the obstacle area information C, the waypoint index t and whether to
modify the path fmodify from in forward interpolation process.

A triangle is made of three waypoints (the t-th waypoint qchild of R, the next point
qparent of qchild and the next point qancestor of qparent), and the height d of the triangle can be
found. ma is the midpoint of qchild and qparent, and mb is the midpoint of qparent and qancestor. If
the path between ma and mb is collision-free from the obstacle (isTrapped()), the existing
path between qchild and qparent is deleted and the path between qchild and ma, the path be-
tween ma and mb and the path between mb and qancestor are inserted. Furthermore, as the
path has been modified, fmodify becomes ‘true’, returns it, and the function ends. If the dis-
tance between ma and mb is not collision-free from obstacles, the value of d is 1/2, ma is the
midpoint of ma and qparent, and mb is updated to the midpoint of mb and qparent, so it must be
determined whether ma and mb are collision-free from obstacles.

This iterative process proceeds until a case is found in which ma and mb are colli-
sion-free from obstacles or d becomes smaller than ε. If d becomes smaller than ε, the
value of t is increased by 1 and the function is terminated.

3.2. Backward Interpolation Process
As shown in Figure 13, a collision-free interpolation point is found while descend-

ing in the direction of the midpoint (q1) among the three points (a random interpolation
point (q0), the next interpolation point (q1) of q0 and the next interpolation point (q2) of q1).
From the interpolation point, it ascends again in the direction of the obstacle as far as
possible (d >= ε), and a waypoint collision-free from obstacle is found between the in-
terpolation point and the waypoint (mF(q0)~q1, q1~mF(q1)).

Accordingly, the proposed method can obtain a path that is close to optimal com-
pared to the existing PTPMI [17] method.

(a) (b)

Sensors 2021, 21, x FOR PEER REVIEW 13 of 41

(c) (d)

Figure 13. Details of backward interpolation process: (a) the path between midpoint mR(q0,2,0) of interpolation point
mF(q0,1), mF(q0,2) for existing q0~q1 and midpoint mR(q1,2,0) of interpolation point mF(q1,2), mF(q1,1) for existing q1~q2 is col-
lision-free; (b) the path between midpoint mR(q0,2,1) of mF(q0,1), mR(q0,2,0) and midpoint mR(q1,2,1) of mR(q1,2,0), mF(q1,1) is
not collision-free; (c) collision-free interpolation point mR(q0,2,0), mR(q1,2,0) is closest to the obstacle (when d < ε); (d) re-
wiring: interpolation points mR(q0,2,0) and mR(q1,2,0) are inserted between the existing paths q0~q2.

The interpolation point mr follows Equation (4):

𝑚ோ(𝑞, 𝑘, 𝑢) = ⎩⎪⎨
⎪⎧ቆ𝑚ோ(𝑞, 𝑘, 𝑢 − 1). 𝑥 + 𝑚ி(𝑞, 𝑘 − 1). 𝑥2 , 𝑚ோ(𝑞, 𝑘, 𝑢 − 1). 𝑦 + 𝑚ி(𝑞, 𝑘 − 1). 𝑦2 ቇ , 𝑢 > 0

 ቆ𝑚ி(𝑞, 𝑘). 𝑥 + 𝑚ி(𝑞, 𝑘 − 1). 𝑥2 , 𝑚ி(𝑞, 𝑘). 𝑦 + 𝑚ி(𝑞, 𝑘 − 1). 𝑦2 ቇ , 𝑢 = 0 (𝑢 ∈ ℕ) (4)

The u-th interpolated point in the direction of the obstacle from the k-th interpola-
tion point mF(qi,k) of a random waypoint qi is called mR(qi, k, u) (the value of k is fixed). At
this time, if u is 0, it becomes the midpoint of mF(qi, k) and mF(qi, k−1). If u is 1, it is the
midpoint of mR(qi, k, 0) and mF(qi, k−1). That is, mR(qi, k, u) (u > 0) becomes the midpoint
between mR(qi, k, u−1) and mF(qi, k−1). For reference, d becomes (dk+u−1)/2. Here, (when u is
0) mF(qi, k) (and mF(ξ2(qi),k)) goes down in the ξ(qi) direction and becomes the first obsta-
cle collision point. mF(qi, k−1) (and mF(ξ2(qi), k−1)) is the point at which it did not collide
with the last obstacle. Therefore, Equation (4) interpolates within the region between the
obstacle collision point and the obstacle non-impact collision point.

mR(qi, k, u) in Equation (4) can also be expressed as Equation (7) through Equations
(5) and (6):

𝑚ி(𝑞, 𝑘) + 𝑚ி(𝑞, 𝑘 − 1)2 = 3(𝑚ி(𝑞, 𝑘)) − 𝜁(𝑞)2 (5)𝑚ோ(𝑞, 𝑘, 𝑢 − 1) + 𝑚ி(𝑞, 𝑘 − 1)2 = 3(𝑚ோ(𝑞, 𝑘, 𝑢 − 1)) − 𝑚ோ(𝑞, 𝑘, 𝑢 − 2)2 (6)

It starts with mF(qi,k) and ξ(qi) when u = 0. Then, mR(qi,k,u) is found as a point that
divides the line segment connecting the previous two points mR(qi,k,u−1) and mR(qi,k,u−2)
in a 3:1 ratio (k value is fixed).

∴ 𝑚ோ(𝑞, 𝑘, 𝑢) = ⎩⎪⎨
⎪⎧ቆ3(𝑚ோ(𝑞, 𝑘, 𝑢 − 1). 𝑥) − 𝑚ோ(𝑞, 𝑘, 𝑢 − 2). 𝑥2 , 3(𝑚ோ(𝑞, 𝑘, 𝑢 − 1). 𝑦) − 𝑚ோ(𝑞, 𝑘, 𝑢 − 2). 𝑦2 ቇ , 𝑢 > 0

 ቆ3(𝑚ி(𝑞, 𝑘). 𝑥) − 𝜁൫𝑞𝑖൯. 𝑥2 , 3(𝑚ி(𝑞, 𝑘). 𝑦) − 𝜁൫𝑞𝑖൯. 𝑦2 ቇ , 𝑢 = 0 (7)

In the end, Equation (7) shows the same result as Equation (4), and it is more effi-
cient in terms of the space complexity of the algorithm.

Pseudocode Backward Interpolation Process
Algorithm 4 presents the pseudocode of the interpolation() function of backward in-

terpolation process.

Figure 13. Details of backward interpolation process: (a) the path between midpoint mR(q0,2,0) of interpolation point
mF(q0,1), mF(q0,2) for existing q0~q1 and midpoint mR(q1,2,0) of interpolation point mF(q1,2), mF(q1,1) for existing q1~q2

is collision-free; (b) the path between midpoint mR(q0,2,1) of mF(q0,1), mR(q0,2,0) and midpoint mR(q1,2,1) of mR(q1,2,0),
mF(q1,1) is not collision-free; (c) collision-free interpolation point mR(q0,2,0), mR(q1,2,0) is closest to the obstacle (when d < ε);
(d) rewiring: interpolation points mR(q0,2,0) and mR(q1,2,0) are inserted between the existing paths q0~q2.

Accordingly, the proposed method can obtain a path that is close to optimal compared
to the existing PTPMI [17] method.

The interpolation point mr follows Equation (4):

mR(qi, k, u) =

(

mR(qi ,k,u−1)·x+mF(qi ,k−1)·x
2 , mR(qi ,k,u−1)·y+mF(qi ,k−1)·y

2

)
, u > 0(

mF(qi ,k)·x+mF(qi ,k−1)·x
2 , mF(qi ,k)·y+mF(qi ,k−1)·y

2

)
, u = 0

(u ∈ N) (4)

The u-th interpolated point in the direction of the obstacle from the k-th interpolation
point mF(qi,k) of a random waypoint qi is called mR(qi, k, u) (the value of k is fixed). At
this time, if u is 0, it becomes the midpoint of mF(qi, k) and mF(qi, k − 1). If u is 1, it is the
midpoint of mR(qi, k, 0) and mF(qi, k − 1). That is, mR(qi, k, u) (u > 0) becomes the midpoint
between mR(qi, k, u − 1) and mF(qi, k − 1). For reference, d becomes (dk+u−1)/2. Here,
(when u is 0) mF(qi, k) (and mF(ξ2(qi),k)) goes down in the ξ(qi) direction and becomes the
first obstacle collision point. mF(qi, k − 1) (and mF(ξ2(qi), k − 1)) is the point at which it did
not collide with the last obstacle. Therefore, Equation (4) interpolates within the region
between the obstacle collision point and the obstacle non-impact collision point.

Sensors 2021, 21, 7425 13 of 40

mR(qi, k, u) in Equation (4) can also be expressed as Equation (7) through Equations (5)
and (6):

mF(qi, k) + mF(qi, k− 1)
2

=
3(mF(qi, k))− ζ(qi)

2
(5)

mR(qi, k, u− 1) + mF(qi, k− 1)
2

=
3(mR(qi, k, u− 1))−mR(qi, k, u− 2)

2
(6)

It starts with mF(qi,k) and ξ(qi) when u = 0. Then, mR(qi,k,u) is found as a point
that divides the line segment connecting the previous two points mR(qi,k,u − 1) and
mR(qi,k,u − 2) in a 3:1 ratio (k value is fixed).

∴ mR(qi, k, u) =

(

3(mR(qi ,k,u−1)·x)−mR(qi ,k,u−2)·x
2 , 3(mR(qi ,k,u−1)·y)−mR(qi ,k,u−2)·y

2

)
, u > 0(

3(mF(qi ,k)·x)−ζ(qi)·x
2 , 3(mF(qi ,k)·y)−ζ(qi)·y

2

)
, u = 0

(7)

In the end, Equation (7) shows the same result as Equation (4), and it is more efficient
in terms of the space complexity of the algorithm.

Pseudocode Backward Interpolation Process

Algorithm 4 presents the pseudocode of the interpolation() function of backward
interpolation process.

Algorithm 4 Pseudocode of Backward Interpolation Process.

Input:
R← path R from ForwardInterpolationProcess
C← position set C from ForwardInterpolationProcess
ε← threshold value ε from ForwardInterpolationProcess
t← point index t from ForwardInterpolationProcess
fmodify ← boolean fmodify from ForwardInterpolationProcess
Output:
R←modified path R
t← updated point index t //return by reference
fmodify ← result of boolean fmodify //return by reference
Initialize:
qchild ← t-th point in R
qparent ← next point of qchild in R
qancestor ← next point of qparent in R

Procedure interpolation from ForwardInterpolationProcess
Begin
1 d← altitude of triangle consisting of qchild, qparent, and qancestor with base<qchild, qancestor>
2 ma ←midpoint between qchild and qparent
3 mb ←midpoint between qparent and qancestor
4 While true Do
5 If d >= ε Then
6 If not isTrapped(ma, mb, C) Then
7 R← Delete path<qchild, qparent> and path<qparent, qancestor> from R

8
mbackA ← external division point of line segment<qparent, ma> with

the ratio 3:1

9
mbackB ← external division point of line segment<qparent, mb> with

the ratio 3:1
10 While true Do
11 mfreeA ← ma
12 mfreeB ← mb
13 If not isTrapped(mbackA, mbackB, C) Then
14 ma ← mbackA

Sensors 2021, 21, 7425 14 of 40

15 mb ← mbackB
16 Else Break
17 d← d/2
18 If not d >= ε Then Break

19
mbackA ← external division point of line segment <mfreeA,

ma> with
the ratio 3:1

20
mbackB ← external division point of line segment <mfreeB,

mb> with
the ratio 3:1

21 R← Insert path<qchild, ma>, path<ma, mb> and path<mb, qancestor> to R
22 fmodify ← true
23 Break
24 Else
25 d← d/2
26 ma ←midpoint between ma and qparent
27 mb ←midpoint between mb and qancestor
28 Else
29 t← t + 1
30 Break
End

The input value of the interpolation() function of backward interpolation process con-
sists of path R, obstacle area information C, waypoint index t and path modification fmodify.

Compared to the interpolation() function in forward interpolation process, lines 8–20
have been inserted in this interpolation() function. These contents are interpolated again
in the direction of the obstacle after the unidirectional (qparent direction) interpolation is
completed (when collision-free from the obstacle). From the 8th line, mbackA is the point
where the line segment connecting qparent and ma is externalized in a 3:1 ratio, mbackB is
the point where the line connecting qparent and mb is externalized in a 3:1 ratio, mfreeA is ma
and mfreeB is mb. If the route between mbackA and mbackB is collision-free from the obstacle
(isTrapped()), ma is updated to mbackA and mb to mbackB. If it is not collision-free from the
obstacle, based on the current ma and mb, a path connecting qchild and ma, a path connecting
ma and mb and a path connecting mb and qancestor are inserted, and the function is terminated.
In the case of being collision-free from the obstacle, if ma and mb are updated, d becomes
1/2. If d is less than ε, the value of t is incremented by 1 and the function terminates.
Otherwise, mbackA is updated to the point where the line segment connecting mfreeA and
ma is externalized in a 3:1 ratio, mbackB is updated to the point where the line segment
connecting mfreeB and mb is externalized in a 3:1 ratio, mfreeA is updated to ma and mfreeB to
mb, and the previous process is repeated.

3.3. Overview of Bidirectional Interpolation Method

Figure 14 shows the overall flowchart of bidirectional interpolation method. Here, ξt

(qgoal) means the t-th next waypoint from the starting point qgoal of the path R, and ξt+n(qgoal)
means the n-th next waypoint in the ξt(qgoal). That is, there are n waypoints between ξt(qgoal)
and ξt+n(qgoal).

Sensors 2021, 21, 7425 15 of 40Sensors 2021, 21, x FOR PEER REVIEW 16 of 41

Figure 14. Flowchart of bidirectional interpolation method.

Figure 15 shows, in detail, the intermediate steps in the process followed by bidi-
rectional interpolation method to correct the planned path R from the starting point qgoal
to the destination point qstart.

(a) (b)

(c) (d)

Figure 14. Flowchart of bidirectional interpolation method.

Figure 15 shows, in detail, the intermediate steps in the process followed by bidirec-
tional interpolation method to correct the planned path R from the starting point qgoal to
the destination point qstart.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 41

Figure 14. Flowchart of bidirectional interpolation method.

Figure 15 shows, in detail, the intermediate steps in the process followed by bidi-
rectional interpolation method to correct the planned path R from the starting point qgoal
to the destination point qstart.

(a) (b)

(c) (d)

Figure 15. Cont.

Sensors 2021, 21, 7425 16 of 40Sensors 2021, 21, x FOR PEER REVIEW 17 of 41

(e) (f)

Figure 15. Process of bidirectional interpolation method: (a) (t = 1) between the waypoints q7 and q2 is not collision-free
from the obstacle; (b) find the interpolation point m(q7) between q7 and q8 and the interpolation point m(q8) between q8
and q2, insert the interpolation points between the paths and delete the q8 path; (c) the route between q7 and q10 (from
m(q8)) is collision-free from the obstacle, so join the path and delete path q9 (from m(q7)); (d) the route between q7 and q2 is
not collision-free from the obstacle; (e) in the process of interpolation between q7 and q2, assuming that d becomes small-
er than ε, move the focusing point (ξt(qgoal)) to the next point (t ← t + 1) and (t = 2). The route between q10 and q3 is colli-
sion-free from the obstacle; (f) as it is collision-free from the obstacle from q10 to qstart, q10 and qstart are connected, the
waypoint between them is deleted.

Figure 15a starts when the waypoint index t is 1. That is, as ξt(qgoal) is ξ(qgoal), it be-
comes q7 in the figure. As q7 and the next waypoint q2 are not collision-free from the ob-
stacle, interpolation proceeds. Figure 15b shows that the interpolation point m(q7) of q7~q8
and the interpolation point m(q8) of q8~q2 are free from obstacle collision. This is a case
where the vertical distance d between the obstacle and the line segment formed by the
interpolation points is smaller than the set threshold ε. The interpolation points m(q7)
and m(q8) are inserted between the existing paths q7 to q2, and the path is modified. Ex-
isting paths q7 to q8 and q8 to q2 are deleted, and paths q7 to m(q7), m(q7) to m(q8), and m(q8)
to q2 are inserted. In Figure 15c, the existing paths q7~q9, q9~q10 are deleted and q7~q10 is
inserted because the distance between q7 and q10 is free from obstacle collision. In this
case, q9 and q10 refer to m(q7) and m(q8) in Figure 15b. In Figure 15d, interpolation is per-
formed for q7~q10 and q10~q2 because the line between q7 and q2 is not collision-free from
the obstacle. Accordingly, index t becomes 2, and the focused waypoint becomes q10,
which is ξ2(qgoal). At this time, it can be seen that the space between q10 and q3 is free from
obstacle collision. Figure 15f shows that all the waypoints on the path q10~qstart are free
from obstacle collision, so the existing path between q10~qstart is deleted, and a path that
connects qstart in a straight line is inserted in q10. Finally, the path R is modified to (qgoal, q7,
q10, qgoal).

4. Experimental Results
To check the performance of the bidirectional interpolation method proposed in

this paper, the path planning results between visibility graph, RRT-connect, PTPMI and
bidirectional interpolation method upon various environments were compared through
simulation.

The performance measure is the average path length (px) and planning time (ms)
until the first complete path is created when each algorithm (excluding visibility graph
algorithm) is repeated 100 times (sampling location changes with every trial).

4.1. Experimental Environment
This section introduces the environment map used in the simulation and the com-

puter specifications (i.e., hardware) for the simulation.
Figure 16 shows the six environmental maps used in the experiment. Here, the

green circle (S) refers to the starting point, and the purple circle (G) refers to the destina-
tion point. A black polygon with a yellow border (blue in the experimental results) indi-
cates an obstacle. The size of all environment maps is 600 × 600 px, and the step length is
30 px.

Figure 15. Process of bidirectional interpolation method: (a) (t = 1) between the waypoints q7 and q2 is not collision-free
from the obstacle; (b) find the interpolation point m(q7) between q7 and q8 and the interpolation point m(q8) between q8 and
q2, insert the interpolation points between the paths and delete the q8 path; (c) the route between q7 and q10 (from m(q8))
is collision-free from the obstacle, so join the path and delete path q9 (from m(q7)); (d) the route between q7 and q2 is not
collision-free from the obstacle; (e) in the process of interpolation between q7 and q2, assuming that d becomes smaller than
ε, move the focusing point (ξt(qgoal)) to the next point (t← t + 1) and (t = 2). The route between q10 and q3 is collision-free
from the obstacle; (f) as it is collision-free from the obstacle from q10 to qstart, q10 and qstart are connected, the waypoint
between them is deleted.

Figure 15a starts when the waypoint index t is 1. That is, as ξt(qgoal) is ξ(qgoal), it
becomes q7 in the figure. As q7 and the next waypoint q2 are not collision-free from the
obstacle, interpolation proceeds. Figure 15b shows that the interpolation point m(q7) of
q7~q8 and the interpolation point m(q8) of q8~q2 are free from obstacle collision. This is
a case where the vertical distance d between the obstacle and the line segment formed
by the interpolation points is smaller than the set threshold ε. The interpolation points
m(q7) and m(q8) are inserted between the existing paths q7 to q2, and the path is modified.
Existing paths q7 to q8 and q8 to q2 are deleted, and paths q7 to m(q7), m(q7) to m(q8), and
m(q8) to q2 are inserted. In Figure 15c, the existing paths q7~q9, q9~q10 are deleted and
q7~q10 is inserted because the distance between q7 and q10 is free from obstacle collision.
In this case, q9 and q10 refer to m(q7) and m(q8) in Figure 15b. In Figure 15d, interpolation
is performed for q7~q10 and q10~q2 because the line between q7 and q2 is not collision-free
from the obstacle. Accordingly, index t becomes 2, and the focused waypoint becomes q10,
which is ξ2(qgoal). At this time, it can be seen that the space between q10 and q3 is free from
obstacle collision. Figure 15f shows that all the waypoints on the path q10~qstart are free
from obstacle collision, so the existing path between q10~qstart is deleted, and a path that
connects qstart in a straight line is inserted in q10. Finally, the path R is modified to (qgoal, q7,
q10, qgoal).

4. Experimental Results

To check the performance of the bidirectional interpolation method proposed in this pa-
per, the path planning results between visibility graph, RRT-connect, PTPMI and bidirectional
interpolation method upon various environments were compared through simulation.

The performance measure is the average path length (px) and planning time (ms)
until the first complete path is created when each algorithm (excluding visibility graph
algorithm) is repeated 100 times (sampling location changes with every trial).

4.1. Experimental Environment

This section introduces the environment map used in the simulation and the computer
specifications (i.e., hardware) for the simulation.

Figure 16 shows the six environmental maps used in the experiment. Here, the green
circle (S) refers to the starting point, and the purple circle (G) refers to the destination
point. A black polygon with a yellow border (blue in the experimental results) indicates an
obstacle. The size of all environment maps is 600 × 600 px, and the step length is 30 px.

Sensors 2021, 21, 7425 17 of 40Sensors 2021, 21, x FOR PEER REVIEW 18 of 41

(a) (b) (c)

(d) (e) (f)

Figure 16. Environmental maps for the experiment: (a) Map 1; (b) Map 2; (c) Map 3; (d) Map 4; (e) Map 5; (f) Map 6.

Various environmental maps were considered and utilized to gauge the perfor-
mance of bidirectional interpolation method. The environment maps used are important
because the results of the performance measurement expected during the experiment are
different depending on their composition, i.e., the number, arrangement and shape of
the obstacles within the map. In this paper, the six environmental maps shown in Figure
16 are used to verify the performance of bidirectional interpolation method. These maps
are part of the experimental environment [27] proposed by Jihee Han in 2017, and the
following characteristics and efficiency of performance measures are expected for each
map. Figure 16a shows Map 1, an environment in which the completeness of the path
planning method can be easily verified, which is also an environment mainly used to
show the local minima problem solving in the potential field algorithm [28]. Figure 16b
shows Map 2, in which the optimality and completeness of the path planning method
can be verified. Figure 16c shows Map 3, which is suited to verifying the optimality and
completeness. Figure 16d shows Map 4, which is suited to verifying the optimality of the
path planning method, as well as the planning time, because it is composed of obstacles
(50 squares) that resemble a curved shape. Figure 16e shows Map 5, which is an envi-
ronment in which it is easy to comprehensively verify the optimality and completeness
of the path planning method as well as the planning time. Figure 16f shows Map 6, in
which it is easy to verify the completeness and planning time of the path planning
method. Furthermore, Map 6 is an environment that is unfavorable to sampling-based
path planning methods such as the RRT algorithm.

As the sampling-based path planning method relies on probabilistic completeness,
the number of sampling times and the planning time required increase considerably as
there are narrow or few entrances in the direction to the destination.

Figure 16. Environmental maps for the experiment: (a) Map 1; (b) Map 2; (c) Map 3; (d) Map 4; (e) Map 5; (f) Map 6.

Various environmental maps were considered and utilized to gauge the performance
of bidirectional interpolation method. The environment maps used are important because
the results of the performance measurement expected during the experiment are different
depending on their composition, i.e., the number, arrangement and shape of the obstacles
within the map. In this paper, the six environmental maps shown in Figure 16 are used
to verify the performance of bidirectional interpolation method. These maps are part of
the experimental environment [27] proposed by Jihee Han in 2017, and the following char-
acteristics and efficiency of performance measures are expected for each map. Figure 16a
shows Map 1, an environment in which the completeness of the path planning method
can be easily verified, which is also an environment mainly used to show the local minima
problem solving in the potential field algorithm [28]. Figure 16b shows Map 2, in which
the optimality and completeness of the path planning method can be verified. Figure 16c
shows Map 3, which is suited to verifying the optimality and completeness. Figure 16d
shows Map 4, which is suited to verifying the optimality of the path planning method, as
well as the planning time, because it is composed of obstacles (50 squares) that resemble
a curved shape. Figure 16e shows Map 5, which is an environment in which it is easy to
comprehensively verify the optimality and completeness of the path planning method
as well as the planning time. Figure 16f shows Map 6, in which it is easy to verify the
completeness and planning time of the path planning method. Furthermore, Map 6 is an
environment that is unfavorable to sampling-based path planning methods such as the
RRT algorithm.

As the sampling-based path planning method relies on probabilistic completeness,
the number of sampling times and the planning time required increase considerably as
there are narrow or few entrances in the direction to the destination.

Sensors 2021, 21, 7425 18 of 40

Table 1 summarizes the performance of the computer used in the simulation. The
simulator used for the simulation was developed based on C# WPF (Microsoft Visual
Studio Community 2019 Version 16.1.6 Microsoft .NET Framework Version 4.8.03752),
and only a single thread was used for calculations except for the visual part. There may
be differences in planning time during simulation depending on computer performance.
Therefore, in the experiment in this study, the planning time is compared not absolutely
but relatively, based on the RRT-connect algorithm.

Table 1. Computer specifications for the simulation.

H/W Spec.

CPU Intel Core i7-6700k 4.00 GHz (8 CPUs)
RAM 32,768 MB (32 GB DDR4)

4.2. Experimental Results and Analysis for Each Map

In this section, the experimental results of applying the algorithms to the environment
map presented in Figure 16 are stated and analyzed. The algorithms used are visibility
graph, RRT-connect, triangular-RRT-connect, PTPMI and the proposed algorithm. PTPMI
and the proposed algorithm were applied to the path created by RRT-connect, and the ε
value was set to 50, 30 and 10 px, respectively. As ε requires a higher amount of computation
as it decreases, it was set to an appropriate value nearby depending on the step length
(30 px) of the experimental environment.

The experimental results will show the planned path for each algorithm for each map
and show the piecewise linear shape of the path. In addition, as the results of the visibility
graph for each map are presented together, the optimality of each algorithm could be
visually confirmed.

The contents to be checked through the table are the path length and planning time,
which are performance measures. The length of the path created through each algorithm and
the relative ratio for the length of the path created by the visibility graph were considered.

PTPMI and the proposed algorithm are methods for post-processing the generated
path. In this study, given that PTPMI and the proposed algorithm are applied based on
RRT-connect, the planning time is compared based on the RRT-connect algorithm. The
planning time is compared to basic RRT-connect and the difference between planning times
of PTPMI and the proposed algorithm must be checked. The path length and planning
time are presented in Table 2.

Table 2. Experimental result based on RRT-connect of Map 1 (the parentheses to the right of each value of path length are
the relative ratios based on visibility graph (253 px)).

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 379 (150%) 283 (112%) 264 (104%) 258 (102%) 278 (110%) 263 (104%) 257 (101%)
Planning time (ms) <0 <0 <0 <0 1 <0 <0

Figure 17 shows the path planning results for Map 1 for each algorithm. Looking at the
generated path (yellow line), compared to Figure 17a, which is the result of RRT-connect,
when PTPMI (Figure 17d–f) and the proposed algorithm (Figure 17g–i) were each applied
for post-processing, the piecewise linear shape with sharp curves was reduced. In addition,
it can be seen that the smaller the ε value, the higher the similarity with the path generated
by the visibility graph (Figure 15c).

Sensors 2021, 21, 7425 19 of 40Sensors 2021, 21, x FOR PEER REVIEW 20 of 41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 17. Cont.

Sensors 2021, 21, 7425 20 of 40
Sensors 2021, 21, x FOR PEER REVIEW 21 of 41

(m) (n) (o)

Figure 17. Experimental result of Map 1: (a) RRT-connect; (b) triangular-RRT-connect (c) visibility graph; (d)
RRT-connect PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bi-
directional interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i)
RRT-connect bidirectional interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε:50 px); (k) triangu-
lar-RRT-connect PTPMI (ε: 30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional
interpolation method (ε: 50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangu-
lar-RRT-connect bidirectional interpolation method (ε: 10 px).

Table 2. Experimental result based on RRT-connect of Map 1 (the parentheses to the right of each value of path length are

the relative ratios based on visibility graph (253 px)).

Table 2 summarizes the experimental results numerically for Map 1 based on
RRT-connect among the presented environmental maps. It can be seen that the path
length is the shortest when the ε value of the proposed algorithm is 10 (px) and is also
closest to the path generated by the visibility graph (relative ratio is 257 (px)/253 (px),
which is about 101%). The planning time was approximately 1 ms when the ε value of
the proposed algorithm was 50 (px), and it takes less than 1 ms in most cases except for
this case, similar to the standard RRT-connect. Thus, in Map 1, it can be confirmed that
the proposed algorithm is more efficient and optimal than PTPMI.

Table 3 summarizes the experimental results numerically for Map 1 based on tri-
angular-RRT-connect. It can be seen that the path length is the shortest when the ε value
of the proposed algorithm is 10 (px) and is also closest to the path generated by the visi-
bility graph (relative ratio is 257 (px)/253 (px), which is about 101%). The planning time
takes less than 1 ms in all cases, similar to the standard RRT-connect. Thus, in Map 1, it
can be confirmed that the proposed algorithm is a little more efficient and optimal than
PTPMI.

Figure 18 shows the path planning results for Map 2 for each algorithm. Looking at
the generated path (yellow line), compared to Figure 18a, which is the result of
RRT-connect, when PTPMI (Figure 18d–f) and the proposed algorithm (Figure 18g–i)
were each applied for post-processing, the piecewise linear shape with sharp curves was
reduced. In addition, it can be seen that the smaller the ε value, the higher the similarity
with the path generated by the visibility graph (Figure 16c).

Table 3. Experimental result based on triangular-RRT-connect of Map 1 (the parentheses to the right of each value of path
length are the relative ratios based on visibility graph (253 px)).

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px
Path length (px) 379 (150%) 283 (112%) 264 (104%) 258 (102%) 278 (110%) 263 (104%) 257 (101%)

Planning time (ms) <0 <0 <0 <0 1 <0 <0

Figure 17. Experimental result of Map 1: (a) RRT-connect; (b) triangular-RRT-connect (c) visibility graph; (d) RRT-connect
PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bidirectional
interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i) RRT-connect bidirectional
interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangular-RRT-connect PTPMI (ε:
30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional interpolation method (ε:
50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangular-RRT-connect bidirectional
interpolation method (ε: 10 px).

Table 2 summarizes the experimental results numerically for Map 1 based on RRT-
connect among the presented environmental maps. It can be seen that the path length is the
shortest when the ε value of the proposed algorithm is 10 (px) and is also closest to the path
generated by the visibility graph (relative ratio is 257 (px)/253 (px), which is about 101%).
The planning time was approximately 1 ms when the ε value of the proposed algorithm
was 50 (px), and it takes less than 1 ms in most cases except for this case, similar to the
standard RRT-connect. Thus, in Map 1, it can be confirmed that the proposed algorithm is
more efficient and optimal than PTPMI.

Table 3 summarizes the experimental results numerically for Map 1 based on triangular-
RRT-connect. It can be seen that the path length is the shortest when the ε value of the
proposed algorithm is 10 (px) and is also closest to the path generated by the visibility
graph (relative ratio is 257 (px)/253 (px), which is about 101%). The planning time takes
less than 1 ms in all cases, similar to the standard RRT-connect. Thus, in Map 1, it can be
confirmed that the proposed algorithm is a little more efficient and optimal than PTPMI.

Table 3. Experimental result based on triangular-RRT-connect of Map 1 (the parentheses to the right of each value of path
length are the relative ratios based on visibility graph (253 px)).

Performance Triangular-RRT-
Connect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 282 (111%) 277 (109%) 264 (104%) 258 (102%) 274 (108%) 264 (104%) 257 (101%)
Planning time (ms) <0 <0 <0 <0 <0 <0 <0

Figure 18 shows the path planning results for Map 2 for each algorithm. Looking at the
generated path (yellow line), compared to Figure 18a, which is the result of RRT-connect,
when PTPMI (Figure 18d–f) and the proposed algorithm (Figure 18g–i) were each applied
for post-processing, the piecewise linear shape with sharp curves was reduced. In addition,
it can be seen that the smaller the ε value, the higher the similarity with the path generated
by the visibility graph (Figure 16c).

Sensors 2021, 21, 7425 21 of 40

Sensors 2021, 21, x FOR PEER REVIEW 22 of 41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Performance
Triangu-

lar-RRT-Con
nect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 282 (111%) 277 (109%) 264 (104%) 258 (102%) 274 (108%) 264 (104%) 257 (101%)
Planning time (ms) <0 <0 <0 <0 <0 <0 <0

Figure 18. Cont.

Sensors 2021, 21, 7425 22 of 40
Sensors 2021, 21, x FOR PEER REVIEW 23 of 41

(j) (k) (l)

(m) (n) (o)

Figure 18. Experimental result of Map 2: (a) RRT-connect; (b) triangular-RRT-connect (c) visibility graph; (d)
RRT-connect PTPMI (ε:50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bi-
directional interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i)
RRT-connect bidirectional interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε:50 px); (k) triangu-
lar-RRT-connect PTPMI (ε: 30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional
interpolation method (ε: 50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangu-
lar-RRT-connect bidirectional interpolation method (ε: 10 px).

Table 4 summarizes the experimental results numerically for Map 2 based on
RRT-connect. The path length is the shortest when the ε value of the proposed algorithm
is 10 (px) and is closest to the visibility graph (relative ratio is 1223/1172, which is about
104%). It can be seen that the planning time takes longer than RRT-connect when
post-processing techniques are applied. However, as expected, as the value of ε de-
creased, PTPMI and the proposed algorithm did not take longer. Rather, it can be seen
that in the proposed algorithm, which requires more steps than PTPMI, the case where
ε: 10 (px) (which is expected to take the longest time) shows the smallest difference from
RRT-connect. This deviation in planning time is not due to any issues related to the
post-processing technique, but is due to the random sampling effect of the RRT-like al-
gorithms. In other words, it is difficult to find a solution for Map 2 using the RRT-based
algorithm. In summary, in Map 2, it was confirmed that the proposed algorithm guar-
antees the optimality of the path length compared to other algorithms.

Table 4. Experimental result based on RRT-connect of Map 2 (the parentheses to the right of each value of path length are
relative ratios based on visibility graph (1172 px)).

Figure 18. Experimental result of Map 2: (a) RRT-connect; (b) triangular-RRT-connect (c) visibility graph; (d) RRT-connect
PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bidirectional
interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i) RRT-connect bidirectional
interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangular-RRT-connect PTPMI (ε:
30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional interpolation method (ε:
50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangular-RRT-connect bidirectional
interpolation method (ε: 10 px).

Table 4 summarizes the experimental results numerically for Map 2 based on RRT-
connect. The path length is the shortest when the ε value of the proposed algorithm is
10 (px) and is closest to the visibility graph (relative ratio is 1223/1172, which is about 104%).
It can be seen that the planning time takes longer than RRT-connect when post-processing
techniques are applied. However, as expected, as the value of ε decreased, PTPMI and
the proposed algorithm did not take longer. Rather, it can be seen that in the proposed
algorithm, which requires more steps than PTPMI, the case where ε: 10 (px) (which is
expected to take the longest time) shows the smallest difference from RRT-connect. This
deviation in planning time is not due to any issues related to the post-processing technique,
but is due to the random sampling effect of the RRT-like algorithms. In other words, it is
difficult to find a solution for Map 2 using the RRT-based algorithm. In summary, in Map 2,
it was confirmed that the proposed algorithm guarantees the optimality of the path length
compared to other algorithms.

Sensors 2021, 21, 7425 23 of 40

Table 4. Experimental result based on RRT-connect of Map 2 (the parentheses to the right of each value of path length are
relative ratios based on visibility graph (1172 px)).

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 1843 (157%) 1399 (119%) 1326 (113%) 1230 (105%) 1395 (119%) 1324 (112%) 1223 (104%)
Planning time (ms) 220 242 264 250 243 272 223

Table 5 summarizes the experimental results numerically for Map 2 based on triangular-
RRT-connect. The path length is the shortest when the ε value of the proposed algorithm
is 10 (px) and is closest to the visibility graph (relative ratio is 1229/1172, which is about
105%). However, as expected, as the value of ε decreased, PTPMI and the proposed al-
gorithm did not take longer. Even some results (ε: 30 px, 10 px) have a shorter planning
time than triangular-RRT-connect. Rather, it can be seen that in the proposed algorithm,
which requires more steps than PTPMI, the case where ε: 10 (px) (which is expected to
take the longest time) shows shorter time than triangular-RRT-connect. This difference
in planning time is not due to any issues related to the post-processing technique, but is
due to the random sampling effects of the RRT-like algorithms. In other words, it is more
difficult to find a solution for Map 2 using the RRT-based algorithm. In summary, in Map 2,
it was confirmed that the proposed algorithm guarantees the optimality of the path length
compared with other algorithms.

Table 5. Experimental result based on triangular-RRT-connect of Map 2 (the parentheses to the right of each value of path
length are relative ratios based on visibility graph (1172 px)).

Performance Triangular-RRT-
Connect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 1478 (126%) 1405 (120%) 1331 (113%) 1230 (105%) 1404 (120%) 1331 (113%) 1229 (105%)
Planning time (ms) 195 197 194 214 205 181 194

Figure 19 shows the path planning results for Map 3 for each algorithm. Looking at the
generated path (yellow line), compared to Figure 19a, which is the result of RRT-connect,
when PTPMI (Figure 19d–f) and the proposed algorithm (Figure 19g–i) were each applied
for post-processing, the piecewise linear shape with sharp curves was reduced. In addition,
it can be seen that the smaller the ε value, the higher the similarity with the path generated
by the visibility graph (Figure 17c).

Sensors 2021, 21, x FOR PEER REVIEW 24 of 41

Table 5 summarizes the experimental results numerically for Map 2 based on tri-
angular-RRT-connect. The path length is the shortest when the ε value of the proposed
algorithm is 10 (px) and is closest to the visibility graph (relative ratio is 1229/1172,
which is about 105%). However, as expected, as the value of ε decreased, PTPMI and the
proposed algorithm did not take longer. Even some results (ε: 30 px, 10 px) have a
shorter planning time than triangular-RRT-connect. Rather, it can be seen that in the
proposed algorithm, which requires more steps than PTPMI, the case where ε: 10 (px)
(which is expected to take the longest time) shows shorter time than triangu-
lar-RRT-connect. This difference in planning time is not due to any issues related to the
post-processing technique, but is due to the random sampling effects of the RRT-like al-
gorithms. In other words, it is more difficult to find a solution for Map 2 using the
RRT-based algorithm. In summary, in Map 2, it was confirmed that the proposed algo-
rithm guarantees the optimality of the path length compared with other algorithms.

Figure 19 shows the path planning results for Map 3 for each algorithm. Looking at
the generated path (yellow line), compared to Figure 19a, which is the result of
RRT-connect, when PTPMI (Figure 19d–f) and the proposed algorithm (Figure 19g–i)
were each applied for post-processing, the piecewise linear shape with sharp curves was
reduced. In addition, it can be seen that the smaller the ε value, the higher the similarity
with the path generated by the visibility graph (Figure 17c).

Table 5. Experimental result based on triangular-RRT-connect of Map 2 (the parentheses to the right of each value of path

length are relative ratios based on visibility graph (1172 px)).

(a) (b) (c)

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px
Path length (px) 1843 (157%) 1399 (119%) 1326 (113%) 1230 (105%) 1395 (119%) 1324 (112%) 1223 (104%)

Planning time (ms) 220 242 264 250 243 272 223

Performance
Triangu-

lar-RRT-Con
nect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 1478 (126%) 1405 (120%) 1331 (113%) 1230 (105%) 1404 (120%) 1331 (113%) 1229 (105%)
Planning time (ms) 195 197 194 214 205 181 194

Figure 19. Cont.

Sensors 2021, 21, 7425 24 of 40

Sensors 2021, 21, x FOR PEER REVIEW 25 of 41

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 19. Experimental result of Map 3: (a) RRT-connect; (b) triangular-RRT-connect; (c) visibility graph; (d) RRT-connect

Sensors 2021, 21, 7425 25 of 40

PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bidirectional
interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i) RRT-connect bidirectional
interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangular-RRT-connect PTPMI (ε:
30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional interpolation method (ε:
50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangular-RRT-connect bidirectional
interpolation method (ε: 10 px).

Table 6 summarizes the experimental results numerically for Map 3 based on RRT-
connect. The case where the ε value of the proposed algorithm is 10 (px) results in the
shortest path length compared to other cases and is closest to the path generated by the
visibility graph (the relative ratio is 726/714, which is about 102%). It can be seen that
the planning time of RRT-connect is shorter than that of PTPMI and BPTPMI. The biggest
difference from RRT-Connect occurs when using the proposed algorithm with ε: 10 px.
However, the difference between the values is very insignificant at 3 ms. Furthermore,
the shortest planning time occurred when using the proposed algorithm with ε:50 px.
At this time, compared to RRT-connect, the path was reduced by 218 px, and compared
to PTPMI, it was reduced by 4 px. This means that for Map 3, the proposed algorithm
guarantees optimality compared to other algorithms and has a similar planning time to
basic RRT-connect.

Table 6. Experimental result based on RRT-connect of Map 3 (the parentheses to the right of each value of path length are
relative ratios based on visibility graph (714 px)).

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 1002 (140%) 788 (110%) 757 (106%) 729 (102%) 784 (110%) 755 (106%) 726 (102%)
Planning time (ms) 9 10 10 9 8 11 12

Table 7 summarizes the experimental results numerically for Map 3 based on triangular-
RRT-connect. The case where the ε value of the proposed algorithm is ε: 10 px results in the
shortest path length compared to other cases and is closest to the path generated by the
visibility graph (the relative ratio is 727/714, which is about 102%). It can be seen that the
planning time of triangular-RRT-connect is shorter than that of PTPMI and BPTPMI. The
biggest difference from triangular-RRT-connect occurs when using the proposed algorithm.
However, the difference between the values is very insignificant at 2 ms. Furthermore, the
shortest path length occurred when using the proposed algorithm with ε: 10 px. At this
time, compared to triangular-RRT-connect, the path was reduced by 86 px, and compared
to PTPMI, it was reduced by 7 px. This means that for Map 3, the proposed algorithm
guarantees optimality compared with other algorithms and has a similar planning time to
basic RRT-connect.

Table 7. Experimental result based on triangular-RRT-connect of Map 3 (the parentheses to the right of each value of path
length are relative ratios based on visibility graph (714 px)).

Performance Triangular-RRT-
Connect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 813 (114%) 787 (110%) 753 (105%) 729 (102%) 781 (109%) 750 (105%) 727 (102%)
Planning time (ms) 7 10 9 10 9 9 9

Figure 20 shows the path planning results for Map 4 for each algorithm. Looking at the
generated path (yellow line), compared to Figure 20a, which is the result of RRT-connect,
when PTPMI (Figure 20d–f) and the proposed algorithm (Figure 20g–i) were each applied
for post-processing, the piecewise linear shape with sharp curves was reduced. In addition,

Sensors 2021, 21, 7425 26 of 40

it can be seen that the smaller the ε value, the higher the similarity with the path generated
by the visibility graph (Figure 18c).

Sensors 2021, 21, x FOR PEER REVIEW 27 of 41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Performance
Triangu-

lar-RRT-Con
nect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 813 (114%) 787 (110%) 753 (105%) 729 (102%) 781 (109%) 750 (105%) 727 (102%)
Planning time (ms) 7 10 9 10 9 9 9

Figure 20. Cont.

Sensors 2021, 21, 7425 27 of 40
Sensors 2021, 21, x FOR PEER REVIEW 28 of 41

(j) (k) (l)

(m) (n) (o)

Figure 20. Experimental result of Map 4: (a) RRT-connect; (b) triangular-RRT-connect; (c) visibility graph; (d)
RRT-connect PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bi-
directional interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i)
RRT-connect bidirectional interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangu-
lar-RRT-connect PTPMI (ε: 30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional
interpolation method (ε: 50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangu-
lar-RRT-connect bidirectional interpolation method (ε: 10 px).

Table 8 summarizes the experimental results numerically for Map 4 based on
RRT-connect. It can be seen that the case where the ε value of the proposed algorithm is
10 (px) results in the shortest path length compared to other cases and is closest to the
path generated by the visibility graph (relative ratio is 475/470, which is about 101%). It
can be seen that the planning time of RRT-connect is shorter than that of PTPMI and bi-
directional interpolation method. The biggest difference from RRT-connect occurs when
using PTPMI with ε: 30 px. However, the difference between the values is very insignif-
icant at 3 ms. Furthermore, the shortest planning time occurs when using the proposed
algorithm with ε: 50 px. At this time, compared to RRT-connect, the path length is re-
duced by 72 px and has the same planning time as PTPMI. This means that the proposed
algorithm for Map 4 guarantees optimality compared to other algorithms and has a sim-
ilar planning time to basic RRT-connect.

Table 8. Experimental result based on RRT-connect of Map 4 (the parentheses to the right of each value of path length are
relative ratios based on visibility graph (470 px)).

Figure 20. Experimental result of Map 4: (a) RRT-connect; (b) triangular-RRT-connect; (c) visibility graph; (d) RRT-connect
PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bidirectional
interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i) RRT-connect bidirectional
interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangular-RRT-connect PTPMI (ε:
30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional interpolation method (ε:
50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangular-RRT-connect bidirectional
interpolation method (ε: 10 px).

Table 8 summarizes the experimental results numerically for Map 4 based on RRT-
connect. It can be seen that the case where the ε value of the proposed algorithm is 10 (px)
results in the shortest path length compared to other cases and is closest to the path
generated by the visibility graph (relative ratio is 475/470, which is about 101%). It can be
seen that the planning time of RRT-connect is shorter than that of PTPMI and bidirectional
interpolation method. The biggest difference from RRT-connect occurs when using PTPMI
with ε: 30 px. However, the difference between the values is very insignificant at 3 ms.
Furthermore, the shortest planning time occurs when using the proposed algorithm with
ε: 50 px. At this time, compared to RRT-connect, the path length is reduced by 72 px and
has the same planning time as PTPMI. This means that the proposed algorithm for Map 4
guarantees optimality compared to other algorithms and has a similar planning time to
basic RRT-connect.

Sensors 2021, 21, 7425 28 of 40

Table 8. Experimental result based on RRT-connect of Map 4 (the parentheses to the right of each value of path length are
relative ratios based on visibility graph (470 px)).

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 576 (122%) 506 (108%) 496 (105%) 488 (104%) 504 (107%) 494 (105%) 475 (101%)
Planning time (ms) 1 2 4 2 1 3 2

Table 9 summarizes the experimental results numerically for Map 4 based on triangular-
RRT-connect. It can be seen that the case where the ε value of the proposed algorithm is
10 (px) results in the shortest path length compared to other cases and is closest to the path
generated by the visibility graph (relative ratio is 479/470, which is about 102%). Planning
time is expressed as 1–2 ms in all cases. The biggest difference from triangular-RRT-connect
occurs when using proposed algorithm with ε: 10 px. However, the difference between
the values is very insignificant at 1 ms. This means that the proposed algorithm for Map 4
guarantees optimality compared to other algorithms and has a similar planning time to
basic triangular-RRT-connect.

Table 9. Experimental result based on triangular-RRT-connect of Map 4 (the parentheses to the right of each value of path
length are relative ratios based on visibility graph (470 px)).

Performance TriangularRRT-
Connect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 514 (109%) 508 (108%) 499 (106%) 480 (102%) 514 (109%) 499 (106%) 479 (102%)
Planning time (ms) 1 1 1 2 1 2 2

Figure 21 shows the path planning results for Map 5 for each algorithm. Looking at the
generated path (yellow line), compared to Figure 21a, which is the result of RRT-connect,
when PTPMI (Figure 21d–f) and the proposed algorithm (Figure 21g–i) were each applied
for post-processing, the piecewise linear shape with sharp curves was reduced. In addition,
it can be seen that the smaller the ε value, the higher the similarity with the path generated
by the visibility graph (Figure 19c).

Sensors 2021, 21, x FOR PEER REVIEW 29 of 41

Table 9 summarizes the experimental results numerically for Map 4 based on tri-
angular-RRT-connect. It can be seen that the case where the ε value of the proposed al-
gorithm is 10 (px) results in the shortest path length compared to other cases and is
closest to the path generated by the visibility graph (relative ratio is 479/470, which is
about 102%). Planning time is expressed as 1–2 ms in all cases. The biggest difference
from triangular-RRT-connect occurs when using proposed algorithm with ε: 10 px.
However, the difference between the values is very insignificant at 1 ms. This means that
the proposed algorithm for Map 4 guarantees optimality compared to other algorithms
and has a similar planning time to basic triangular-RRT-connect.

Figure 21 shows the path planning results for Map 5 for each algorithm. Looking at
the generated path (yellow line), compared to Figure 21a, which is the result of
RRT-connect, when PTPMI (Figure 21d–f) and the proposed algorithm (Figure 21g–i)
were each applied for post-processing, the piecewise linear shape with sharp curves was
reduced. In addition, it can be seen that the smaller the ε value, the higher the similarity
with the path generated by the visibility graph (Figure 19c).

Table 9. Experimental result based on triangular-RRT-connect of Map 4 (the parentheses to the right of each value of path

length are relative ratios based on visibility graph (470 px)).

(a) (b) (c)

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px
Path length (px) 576 (122%) 506 (108%) 496 (105%) 488 (104%) 504 (107%) 494 (105%) 475 (101%)

Planning time (ms) 1 2 4 2 1 3 2

Performance Triangular-
RRT-Connect

PTPMI Method Bidirectional Interpolation Method
ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 514 (109%) 508 (108%) 499 (106%) 480 (102%) 514 (109%) 499 (106%) 479 (102%)
Planning time (ms) 1 1 1 2 1 2 2

Figure 21. Cont.

Sensors 2021, 21, 7425 29 of 40
Sensors 2021, 21, x FOR PEER REVIEW 30 of 41

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 21. Cont.

Sensors 2021, 21, 7425 30 of 40
Sensors 2021, 21, x FOR PEER REVIEW 31 of 41

(m) (n) (o)

Figure 21. Experimental result of Map 5: (a) RRT-connect; (b) triangular-RRT-connect; (c) visibility graph; (d)
RRT-connect PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bi-
directional interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i)
RRT-connect bidirectional interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangu-
lar-RRT-connect PTPMI (ε: 30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional
interpolation method (ε: 50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangu-
lar-RRT-connect bidirectional interpolation method (ε: 10 px).

Table 10 summarizes the experimental results numerically for Map 5 based on
RRT-connect. It can be seen that the case where the ε value of the proposed algorithm is
10 (px) results in the shortest path length compared to other cases, and the path is closest
to the one generated by the visibility graph (the relative ratio is 646/576, which is about
112%). It can be seen that the planning time of RRT-connect is shorter than that of
PTPMI and bidirectional interpolation method. The biggest difference from RRT-connect
occurs when using PTPMI with ε: 10 px. However, the difference between the values is
very insignificant at 3 ms. In other situations, it can be confirmed that the planned time
is always 2 ms. This means that the proposed algorithm guarantees optimality for trav-
ersing Map 5 compared to other algorithms and the planning time differs from
RRT-connect by 1 ms.

Table 10. Experimental result based on RRT-connect of Map 5 (the parentheses to the right of each value of path length

are relative ratios based on visibility graph (576 px)).

Table 11 summarizes the experimental results numerically for Map 5 based on tri-
angular-RRT-connect. It can be seen that the case where the ε value of the proposed al-
gorithm is 10 (px) results in the shortest path length compared to other cases, and the
path is closest to the one generated by the visibility graph (the relative ratio is 641/576,
which is about 111%). Planning time is expressed as 1–2 ms in all cases. The biggest dif-
ference from triangular-RRT-connect occurs when using proposed algorithm with ε: 50
px. However, the difference between the values is very insignificant at 1 ms. This means
that the proposed algorithm guarantees optimality compared with other algorithms and
the planning time differs from triangular-RRT-connect by 1 ms.

Figure 22 shows the path planning results for Map 6 for each algorithm. Looking at
the generated path (yellow line), compared to Figure 22a, which is the result of

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px
Path length (px) 759 (132%) 689 (120%) 657 (114%) 653 (113%) 666 (117%) 655 (114%) 646 (112%)

Planning time (ms) 1 2 2 4 2 2 2

Figure 21. Experimental result of Map 5: (a) RRT-connect; (b) triangular-RRT-connect; (c) visibility graph; (d) RRT-connect
PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bidirectional
interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i) RRT-connect bidirectional
interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangular-RRT-connect PTPMI (ε:
30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional interpolation method (ε:
50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangular-RRT-connect bidirectional
interpolation method (ε: 10 px).

Table 10 summarizes the experimental results numerically for Map 5 based on RRT-
connect. It can be seen that the case where the ε value of the proposed algorithm is 10 (px)
results in the shortest path length compared to other cases, and the path is closest to the
one generated by the visibility graph (the relative ratio is 646/576, which is about 112%).
It can be seen that the planning time of RRT-connect is shorter than that of PTPMI and
bidirectional interpolation method. The biggest difference from RRT-connect occurs when
using PTPMI with ε: 10 px. However, the difference between the values is very insignificant
at 3 ms. In other situations, it can be confirmed that the planned time is always 2 ms. This
means that the proposed algorithm guarantees optimality for traversing Map 5 compared
to other algorithms and the planning time differs from RRT-connect by 1 ms.

Table 10. Experimental result based on RRT-connect of Map 5 (the parentheses to the right of each value of path length are
relative ratios based on visibility graph (576 px)).

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 759 (132%) 689 (120%) 657 (114%) 653 (113%) 666 (117%) 655 (114%) 646 (112%)
Planning time (ms) 1 2 2 4 2 2 2

Table 11 summarizes the experimental results numerically for Map 5 based on triangular-
RRT-connect. It can be seen that the case where the ε value of the proposed algorithm is
10 (px) results in the shortest path length compared to other cases, and the path is closest
to the one generated by the visibility graph (the relative ratio is 641/576, which is about
111%). Planning time is expressed as 1–2 ms in all cases. The biggest difference from
triangular-RRT-connect occurs when using proposed algorithm with ε: 50 px. However, the
difference between the values is very insignificant at 1 ms. This means that the proposed
algorithm guarantees optimality compared with other algorithms and the planning time
differs from triangular-RRT-connect by 1 ms.

Sensors 2021, 21, 7425 31 of 40

Table 11. Experimental result based on triangular-RRT-connect of Map 5 (the parentheses to the right of each value of path
length are relative ratios based on visibility graph (576 px)).

Performance Triangular-RRT-
Connect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 673 (117%) 669 (116%) 666 (116%) 665 (115%) 663 (115%) 658 (114%) 641 (111%)
Planning time (ms) 1 1 1 2 2 1 1

Figure 22 shows the path planning results for Map 6 for each algorithm. Looking at the
generated path (yellow line), compared to Figure 22a, which is the result of RRT-connect,
when PTPMI (Figure 22d–f) and the proposed algorithm (Figure 22g–i) were each applied
for post-processing, the piecewise linear shape with sharp curves was reduced. In addition,
it can be seen that the smaller the ε value, the higher the similarity with the path generated
by the visibility graph (Figure 20c).

Table 12 summarizes the experimental results numerically for Map 6 based on RRT-
connect. The case where the ε value of the proposed algorithm is ε: 10 px results in the
shortest path length compared to other cases and is closest to the visibility graph (the
relative ratio is 1187/1165, which is about 101%). It can be seen that the planning time of
RRT-Connect is shorter than that of PTPMI and the bidirectional interpolation method. The
biggest difference from RRT-connect occurs when ε: 50 px of the algorithm is to be bounded.
However, the difference between the values is very insignificant at 6 ms. Furthermore,
the shortest planning time occurred when using PTPMI with ε: 50 px. This means that
the proposed algorithm guarantees optimality compared to other algorithms, but takes an
average of 4 ms longer for Map 6.

Sensors 2021, 21, x FOR PEER REVIEW 32 of 41

RRT-connect, when PTPMI (Figure 22d–f) and the proposed algorithm (Figure 22g–i)
were each applied for post-processing, the piecewise linear shape with sharp curves was
reduced. In addition, it can be seen that the smaller the ε value, the higher the similarity
with the path generated by the visibility graph (Figure 20c).

Table 11. Experimental result based on triangular-RRT-connect of Map 5 (the parentheses to the right of each value of

path length are relative ratios based on visibility graph (576 px)).

(a) (b) (c)

(d) (e) (f)

Performance
Triangu-

lar-RRT-Con
nect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 673 (117%) 669 (116%) 666 (116%) 665 (115%) 663 (115%) 658 (114%) 641 (111%)
Planning time (ms) 1 1 1 2 2 1 1

Figure 22. Cont.

Sensors 2021, 21, 7425 32 of 40
Sensors 2021, 21, x FOR PEER REVIEW 33 of 41

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 22. Experimental result of Map 6: (a) RRT-connect; (b) triangular-RRT-connect; (c) visibility graph; (d)
RRT-connect PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bi-
directional interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i)
RRT-connect bidirectional interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangu-
lar-RRT-connect PTPMI (ε: 30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional
interpolation method (ε: 50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangu-
lar-RRT-connect bidirectional interpolation method (ε: 10 px).

Table 12 summarizes the experimental results numerically for Map 6 based on
RRT-connect. The case where the ε value of the proposed algorithm is ε: 10 px results in
the shortest path length compared to other cases and is closest to the visibility graph (the
relative ratio is 1187/1165, which is about 101%). It can be seen that the planning time of
RRT-Connect is shorter than that of PTPMI and the bidirectional interpolation method.
The biggest difference from RRT-connect occurs when ε: 50 px of the algorithm is to be

Figure 22. Experimental result of Map 6: (a) RRT-connect; (b) triangular-RRT-connect; (c) visibility graph; (d) RRT-connect
PTPMI (ε: 50 px); (e) RRT-connect PTPMI (ε: 30 px); (f) RRT-connect PTPMI (ε: 10 px); (g) RRT-connect bidirectional
interpolation method (ε: 50 px); (h) RRT-connect bidirectional interpolation method (ε: 30 px); (i) RRT-connect bidirectional
interpolation method (ε: 10 px); (j) triangular-RRT-connect PTPMI (ε: 50 px); (k) triangular-RRT-connect PTPMI (ε:
30 px); (l) triangular-RRT-connect PTPMI (ε: 10 px); (m) triangular-RRT-connect bidirectional interpolation method (ε:
50 px); (n) triangular-RRT-connect bidirectional interpolation method (ε: 30 px); (o) triangular-RRT-connect bidirectional
interpolation method (ε: 10 px).

Sensors 2021, 21, 7425 33 of 40

Table 12. Experimental result based on RRT-connect of Map 6 (the parentheses to the right of each value of path length are
relative ratios based on visibility graph (1165 px)).

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 1478 (127%) 1292 (111%) 1257 (108%) 1189 (102%) 1286 (110%) 1254 (108%) 1187 (102%)
Planning time (ms) 24 24 27 26 30 26 28

Table 13 summarizes the experimental results numerically for Map 6 based on tri-
angular RRT-connect. The case where the ε value of the proposed algorithm is ε: 10 px
results in the shortest path length compared to other cases and is closest to the visibility
graph (the relative ratio is 1186/1165, which is about 102%). The planning time is sim-
ilar to triangular-RRT-connect with the proposed method. The biggest difference from
triangular-RRT-connect occurs when ε: 50 px of the algorithm is to be bounded. However,
the difference between the values is very insignificant at 1 ms. Furthermore, the shortest
planning time occurred when using PTPMI with ε: 30 px. This means that the proposed
algorithm guarantees optimality compared with other algorithms.

Table 13. Experimental result based on triangular-RRT-connect of Map 6 (the parentheses to the right of each value of path
length are relative ratios based on visibility graph (1165 px)).

Performance RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Path length (px) 1293 (111%) 1282 (110%) 1253 (108%) 1189 (102%) 1279 (110%) 1250 (107%) 1186 (102%)
Planning time (ms) 23 24 23 22 23 22 23

4.3. Experimental Results and Analysis

In this section, the experimental results of Maps 1 to 6 are summarized.
Table 14 is a table summarizing the experimental results on the path length. It can

be seen that, for all maps, the proposed algorithm creates a shorter path compared to
RRT-connect. The RRT-connect algorithm generates a path whose length is approximately
138% ((150 + 157 + 140 + 122 + 132 + 127)/6) longer on average compared to the visibility
graph. Similarly, PTPMI generated about 113% longer paths with ε: 50 px, about 108%
with ε: 30 px and about 105% longer with ε: 10 px compared to the visibility graph. In the
case of the proposed algorithm, it can be seen that the path generated on average is about
112% longer with ε: 50 px, about 108% with ε: 30 px and about 104% longer at ε: 10 px
compared to the visibility graph. Thus, the proposed algorithm has a path length closer to
the visibility graph as the value of epsilon decreases. Based on the ε: 10 px of the proposed
algorithm, the average path length decreased by about 34% compared to RRT-connect, and
it was improved by about 1% compared to PTPMI.

Table 14. Total experimental result for path length based on RRT-connect (the parentheses to the right of each value of path
length are relative ratios based on the visibility graph) (unit: px).

Map No. RRT-
Connect

PTPMI Method Bidirectional Interpolation Method Visibility
Graphε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Map 1 379 (150%) 283 (112%) 264 (104%) 258 (102%) 278 (110%) 263 (104%) 257 (101%) 253
Map 2 1843 (157%) 1399 (119%) 1326 (113%) 1230 (105%) 1395 (119%) 1324 (112%) 1223 (104%) 1172
Map 3 1002 (140%) 788 (110%) 757 (106%) 729 (102%) 784 (110%) 755 (106%) 726 (102%) 714
Map 4 576 (122%) 506 (108%) 496 (105%) 488 (104%) 504 (107%) 494 (105%) 475 (101%) 470
Map 5 759 (132%) 689 (120%) 657 (114%) 653 (113%) 666 (117%) 655 (114%) 646 (112%) 576
Map 6 1478 (127%) 1292 (111%) 1257 (108%) 1189 (102%) 1286 (110%) 1254 (108%) 1187 (102%) 1165

Sensors 2021, 21, 7425 34 of 40

Table 15 is a table summarizing the experimental results on the path length based on
triangular-RRT-connect. It can be seen that, for all maps, the proposed algorithm creates a
shorter path compared to triangular-RRT-connect. The triangular-RRT-connect algorithm
generates a path whose length is approximately 115% ((111 + 126 + 114 + 109 + 117 + 111)/6)
longer on average compared to the visibility graph. Similarly, PTPMI generated about
112% longer paths with ε: 50 px, about 108% with ε: 30 px and about 105% longer with ε:
10 px compared to the visibility graph. In the case of the proposed algorithm, it can be
seen that the path generated on average is about 112% longer with ε: 50 px, about 108%
with ε: 30 px and about 104% longer at ε: 10 px compared to the visibility graph. Thus,
the proposed algorithm has a path length a little closer to the visibility graph as the value
of epsilon decreases. Based on the ε: 10 px of the proposed algorithm, the average path
length decreased by about 11% compared to triangular-RRT-connect, and it was improved
by about 1% compared to PTPMI.

Table 15. Total experimental result for path length based on triangular-RRT-connect (the parentheses to the right of each
value of path length are relative ratios based on the visibility graph) (unit: px).

Map No. Triangular-
RRT-Connect

PTPMI Method Bidirectional Interpolation Method Visibility
Graphε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Map 1 282 (111%) 277 (109%) 264 (104%) 257 (101%) 274 (108%) 264 (104%) 257 (101%) 253
Map 2 1478 (126%) 1405 (120%) 1331 (113%) 1230 (105%) 1404 (120%) 1331 (113%) 1229 (105%) 1172
Map 3 813 (114%) 787 (110%) 753 (105%) 729 (102%) 781 (109%) 750 (105%) 727 (102%) 714
Map 4 514 (109%) 508(108%) 499(106%) 480(102%) 514(109%) 499(106%) 479(102%) 470
Map 5 673 (117%) 669 (116%) 666 (116%) 665 (115%) 663 (115%) 658 (114%) 641 (111%) 576
Map 6 1293 (111%) 1282 (110%) 1253 (108%) 1189 (102%) 1279 (110%) 1250 (107%) 1186 (102%) 1165

Table 16 summarizes the experimental results on the planning time. In all maps, it
can be seen that the proposed algorithm takes longer than RRT-connect. However, the
difference is not large. Based on ε: 10 px, which was confirmed to be closest to optimality
through Table 13, the biggest difference with RRT-connect, of 4 ms, occurs for Map 6.

Table 16. Experimental result for planning time based on RRT-connect (unit: ms).

Map No. RRT-Connect
PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Map 1 <0 <0 <0 <0 1 <0 <0
Map 2 220 242 264 250 243 272 223
Map 3 9 10 10 9 8 11 12
Map 4 1 2 4 2 1 3 2
Map 5 1 2 2 4 2 2 2
Map 6 24 24 27 26 30 26 28

As the proposed algorithm comprises an additional procedure to approach obstacles
compared to PTPMI, it is predicted that it would require more planning time compared to
PTPMI. The case in which the proposed algorithm takes the most time compared to PTPMI
is when the ε value in Map 2 is 30 px, and the difference between the two is 8 ms. However,
there are cases where the time of the proposed algorithm is reduced compared to PTPMI.
In particular, for Map 2, when ε: 10 px, the proposed algorithm requires 223 ms, whereas
PTPMI requires 250 ms, which is a reduction of 27 ms for the proposed algorithm. This
may be due to the reason that the planning time of the proposed algorithm is more affected
by the random sampling effects, an intrinsic problem of the RRT-series algorithm, than by
the time required to process the additional procedure.

Table 17 summarizes the experimental results on the planning time. It can be seen that
the proposed algorithm takes longer than triangular-RRT-connect in most maps. However,
the difference is not large. Based on ε: 10 px, which was confirmed to be closest to optimality

Sensors 2021, 21, 7425 35 of 40

through Table 14, the biggest difference with RRT-Connect, of 2 ms, occurs for Map 3. Even
in Maps 2 and 6, it can be seen that the time is reduced. %clearpage

Table 17. Experimental result for planning time based on triangular-RRT-connect (unit: ms).

Map No. TriangularRRT-
Connect

PTPMI Method Bidirectional Interpolation Method

ε: 50 px ε: 30 px ε: 10 px ε: 50 px ε: 30 px ε: 10 px

Map 1 <0 <0 <0 <0 <0 <0 <0
Map 2 195 197 194 214 205 181 194
Map 3 7 10 9 10 9 9 9
Map 4 1 1 1 2 1 2 2
Map 5 1 1 1 2 2 1 1
Map 6 27 24 20 22 19 22 23

As the proposed algorithm comprises an additional procedure to approach obstacles
compared to PTPMI, it is predicted that it would require more planning time compared to
PTPMI. The case in which the proposed algorithm takes the most time compared to PTPMI
is when the ε value in Map 2 is 50 px, and the difference between the two is 8 ms. However,
there are cases where the time of the proposed algorithm is reduced compared to PTPMI.
In particular, for Map 2, when ε: 30 px, the proposed algorithm requires 181 ms, whereas
PTPMI requires 194 ms, which is a reduction of 13 ms for the proposed algorithm. Thus, it
can be confirmed that the planning time of the proposed algorithm is more affected by the
probabilistic integrity, an intrinsic problem of the RRT-like algorithms, than by the time
required to process the additional procedure.

Figure 23 shows the overall result for Map 1. The rectangle represents worst path
length, the circle represents average path length and the triangle represents best path length.
First of all, it can be seen that the results similar to the visibility graph appear in all cases
except for RRT-connect in best path length (triangle). Average path length (circle) is shorter
when the post-processing method (PTPMI or proposed method) is applied than the original
RRT-connect and triangular-RRT-connect. It can be seen that worst path length (rectangle)
gradually approaches average as the ε value decreases in the post-processing method. In
other words, if the post-processing method is applied, worst path length (rectangle) is
enhanced. Moreover, the proposed method enhanced worst path length better than PTPMI.

Sensors 2021, 21, x FOR PEER REVIEW 37 of 41

cle) is shorter when the post-processing method (PTPMI or proposed method) is applied
than the original RRT-connect and triangular-RRT-connect. It can be seen that worst
path length (rectangle) gradually approaches average as the ε value decreases in the
post-processing method. In other words, if the post-processing method is applied, worst
path length (rectangle) is enhanced. Moreover, the proposed method enhanced worst
path length better than PTPMI.

Figure 23. Best, average and worst path length by algorithm in Map 1.

Figure 24 shows the overall result for Map 2. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied
rather than the original algorithm. In addition, as the ε value decreased in the
post-processing method, the path length was enhanced in all cases (best, worst, aver-
age). If the ε value is the same, the proposed method is more enhanced than the PTPMI
in all cases (best, worst, average).

Figure 24. Best, average and worst path length by algorithm in Map 2.

Figure 23. Best, average and worst path length by algorithm in Map 1.

Figure 24 shows the overall result for Map 2. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied

Sensors 2021, 21, 7425 36 of 40

rather than the original algorithm. In addition, as the ε value decreased in the post-
processing method, the path length was enhanced in all cases (best, worst, average). If the
ε value is the same, the proposed method is more enhanced than the PTPMI in all cases
(best, worst, average).

Sensors 2021, 21, x FOR PEER REVIEW 37 of 41

cle) is shorter when the post-processing method (PTPMI or proposed method) is applied
than the original RRT-connect and triangular-RRT-connect. It can be seen that worst
path length (rectangle) gradually approaches average as the ε value decreases in the
post-processing method. In other words, if the post-processing method is applied, worst
path length (rectangle) is enhanced. Moreover, the proposed method enhanced worst
path length better than PTPMI.

Figure 23. Best, average and worst path length by algorithm in Map 1.

Figure 24 shows the overall result for Map 2. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied
rather than the original algorithm. In addition, as the ε value decreased in the
post-processing method, the path length was enhanced in all cases (best, worst, aver-
age). If the ε value is the same, the proposed method is more enhanced than the PTPMI
in all cases (best, worst, average).

Figure 24. Best, average and worst path length by algorithm in Map 2.

Figure 24. Best, average and worst path length by algorithm in Map 2.

Figure 25 shows the overall result for Map 3. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied
rather than the original algorithm. In addition, as the ε value decreased in the post-
processing method, the path length was enhanced in all cases (best, worst, average). If the
ε value is the same, the proposed method is more enhanced than the PTPMI in all cases
(best, worst, average).

Sensors 2021, 21, x FOR PEER REVIEW 38 of 41

Figure 25 shows the overall result for Map 3. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied
rather than the original algorithm. In addition, as the ε value decreased in the
post-processing method, the path length was enhanced in all cases (best, worst, average).
If the ε value is the same, the proposed method is more enhanced than the PTPMI in all
cases (best, worst, average).

Figure 25. Best, average and worst path length by algorithm in Map 3.

Figure 26 shows the overall result for Map 4. It can be seen that the results similar
to the visibility graph appear in all cases except for RRT-connect in best path length (tri-
angle). When the post-processing method is applied, if ε value is reduced, average and
worst are enhanced. Moreover, if ε value is the same in the post-processing method, the
proposed method enhanced worst more than PTPMI.

Figure 26. Best, average and worst path length by algorithm in Map 4.

Figure 27 shows the overall result for Map 5. It can be seen that the results similar
to the visibility graph appear in all cases. When the post-processing method is applied, if
ε value is reduced, worst is enhanced. Moreover, if ε value is the same in the
post-processing method, the proposed method improves worst more than PTPMI.

Figure 25. Best, average and worst path length by algorithm in Map 3.

Sensors 2021, 21, 7425 37 of 40

Figure 26 shows the overall result for Map 4. It can be seen that the results similar to
the visibility graph appear in all cases except for RRT-connect in best path length (triangle).
When the post-processing method is applied, if ε value is reduced, average and worst are
enhanced. Moreover, if ε value is the same in the post-processing method, the proposed
method enhanced worst more than PTPMI.

Sensors 2021, 21, x FOR PEER REVIEW 38 of 41

Figure 25 shows the overall result for Map 3. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied
rather than the original algorithm. In addition, as the ε value decreased in the
post-processing method, the path length was enhanced in all cases (best, worst, average).
If the ε value is the same, the proposed method is more enhanced than the PTPMI in all
cases (best, worst, average).

Figure 25. Best, average and worst path length by algorithm in Map 3.

Figure 26 shows the overall result for Map 4. It can be seen that the results similar
to the visibility graph appear in all cases except for RRT-connect in best path length (tri-
angle). When the post-processing method is applied, if ε value is reduced, average and
worst are enhanced. Moreover, if ε value is the same in the post-processing method, the
proposed method enhanced worst more than PTPMI.

Figure 26. Best, average and worst path length by algorithm in Map 4.

Figure 27 shows the overall result for Map 5. It can be seen that the results similar
to the visibility graph appear in all cases. When the post-processing method is applied, if
ε value is reduced, worst is enhanced. Moreover, if ε value is the same in the
post-processing method, the proposed method improves worst more than PTPMI.

Figure 26. Best, average and worst path length by algorithm in Map 4.

Figure 27 shows the overall result for Map 5. It can be seen that the results similar to
the visibility graph appear in all cases. When the post-processing method is applied, if ε
value is reduced, worst is enhanced. Moreover, if ε value is the same in the post-processing
method, the proposed method improves worst more than PTPMI.

Sensors 2021, 21, x FOR PEER REVIEW 39 of 41

Figure 27. Best, average and worst path length by algorithm in Map 5.

Figure 28 shows the overall result for Map 6. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied
rather than the original algorithm. In addition, as the ε value reduced in the
post-processing method, the path length was enhanced in all cases (best, worst, aver-
age). If the ε value is the same, the proposed method is more enhanced than the PTPMI
in all cases (best, worst, average).

.

Figure 28. Best, Average and Worst path length by algorithm in Map 6.

5. Conclusions
In this paper, we proposed the bidirectional interpolation method. The proposed

method can minimize the planning time and overcome the limit of optimality of sam-
pling-based algorithms and kinodynamic error.

It was confirmed that bidirectional interpolation method plans a path close to the
optimum when applied to the existing RRT-like algorithms through mathematical mod-
eling. Simulations were performed to confirm the performance of bidirectional interpo-
lation method. In six different environment maps, it was confirmed that the path length
was shortened by 34% on average compared to when the basic RRT-connect algorithm

Figure 27. Best, average and worst path length by algorithm in Map 5.

Figure 28 shows the overall result for Map 6. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied
rather than the original algorithm. In addition, as the ε value reduced in the post-processing
method, the path length was enhanced in all cases (best, worst, average). If the ε value

Sensors 2021, 21, 7425 38 of 40

is the same, the proposed method is more enhanced than the PTPMI in all cases (best,
worst, average).

Sensors 2021, 21, x FOR PEER REVIEW 39 of 41

Figure 27. Best, average and worst path length by algorithm in Map 5.

Figure 28 shows the overall result for Map 6. It can be seen that the path length is
improved in all cases (best, worst, average) when the post-processing method is applied
rather than the original algorithm. In addition, as the ε value reduced in the
post-processing method, the path length was enhanced in all cases (best, worst, aver-
age). If the ε value is the same, the proposed method is more enhanced than the PTPMI
in all cases (best, worst, average).

Figure 28. Best, Average and Worst path length by algorithm in Map 6.

5. Conclusions
In this paper, we proposed the bidirectional interpolation method. The proposed

method can minimize the planning time and overcome the limit of optimality of sam-
pling-based algorithms and kinodynamic error.

It was confirmed that bidirectional interpolation method plans a path close to the
optimum when applied to the existing RRT-like algorithms through mathematical mod-
eling. Simulations were performed to confirm the performance of bidirectional interpo-
lation method. In six different environment maps, it was confirmed that the path length
was shortened by 34% on average compared to when the basic RRT-connect algorithm

Figure 28. Best, Average and Worst path length by algorithm in Map 6.

5. Conclusions

In this paper, we proposed the bidirectional interpolation method. The proposed
method can minimize the planning time and overcome the limit of optimality of sampling-
based algorithms and kinodynamic error.

It was confirmed that bidirectional interpolation method plans a path close to the
optimum when applied to the existing RRT-like algorithms through mathematical modeling.
Simulations were performed to confirm the performance of bidirectional interpolation
method. In six different environment maps, it was confirmed that the path length was
shortened by 34% on average compared to when the basic RRT-connect algorithm was
applied, and the path length was, on average, only 4% longer than the visibility graph. In
addition, bidirectional interpolation method has the advantage of being applicable to all
path planning methods that plan a locally piecewise linear path.

Compared with the PTPMI algorithm, it was confirmed that the proposed method
shows a little better but is staggered with performance by 1–3% in terms of path length,
and there was no significant difference in terms of planning time.

In most cases with all maps, the proposed method shows that worst path length was
greatly reduced when the post-processing method was applied. In addition, if the ε value
is the same, worst path length of the proposed algorithm is improved over PTPMI.

In this paper, a method applicable to the RRT-likes is proposed. However, the proposed
method is a technique that can be applied to sampling-based planning algorithms such as
RRT. Therefore, it can be applied in various fields where motion planning of robots is used,
such as mobile robots, manipulators and drones.

Author Contributions: Idea and conceptualization: J.-G.K., T.-W.K. and J.-W.J.; methodology: J.-G.K.,
T.-W.K. and J.-W.J.; software: T.-W.K., J.-G.K. and J.-W.J.; experiment: T.-W.K., J.-G.K. and J.-W.J.;
validation: T.-W.K., J.-G.K. and J.-W.J.; investigation: T.-W.K., J.-G.K. and J.-W.J.; resources: J.-G.K.
and J.-W.J.; writing: T.-W.K., J.-G.K. and J.-W.J.; visualization: T.-W.K., J.-G.K. and J.-W.J.; project
administration: J.-W.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2020R1F1A1074974) and by the Ministry of Trade,
Industry, and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT)
through the International Cooperative R&D program (Project No. P0016096). It was also supported

Sensors 2021, 21, 7425 39 of 40

by the Technology development Program (S3041234) funded by the Ministry of SMEs and Startups
(MSS, Korea) and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2021-2020-0-01789) supervised by the IITP
(Institute for Information & Communications Technology Planning & Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schwab, K. The Fourth Industrial Revolution; Currency: New York, NY, USA, 2017.
2. Marin-Plaza, P.; Hussein, A.; Martin, D.; Escalera, A.D.L. Global and local path planning study in a ROS-based research platform

for autonomous vehicles. J. Adv. Transp. 2018, 2018, 6392697. [CrossRef]
3. Sariff, N.; Buniyamin, N. An overview of autonomous mobile robot path planning algorithms. In Proceedings of the IEEE 4th

Student Conference on Research and Development, Selangor, Malaysia, 28–29 June 2006; pp. 183–188.
4. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Springer: London, UK, 1998.
5. Kang, J.-G.; Jung, J.-W. Post Triangular Rewiring Method for Shorter RRT Robot Path Planning. Int. J. Fuzzy Log. Intell. Syst. 2021,

21, 213–221. [CrossRef]
6. LaValle, S.M.; Kuffner, J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
7. Roy, D. Visibility graph based spatial path planning of robots using configuration space algorithms. Robot. Auton. Syst. 2009, 24,

1–9. [CrossRef]
8. Katevas, N.I.; Tzafestas, S.G.; Pnevmatikatos, C.G. The approximate cell decomposition with local node refinement global path

planning method: Path nodes refinement and curve parametric interpolation. J. Intell. Robot. Syst. 1998, 22, 289–314. [CrossRef]
9. Warren, C.W. Global Path Planning using Artificial Potential Fields. In Proceedings of the International Conference on Robotics

and Automation, Scottsdale, AZ, USA, 14–19 May 1989; pp. 316–321.
10. Jeong, I.-B.; Lee, S.-J.; Kim, J.-H. Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution

and convergence rate. Expert Syst. Appl. 2019, 123, 82–90. [CrossRef]
11. Kwon, J.; Choi, K. Kinodynamic Model Identification: A Unified Geometric Approach. IEEE Trans. Robot. 2021, 37, 1100–1114.

[CrossRef]
12. Kurzer, K. Path Planning in Unstructured Environments: A Real-Time Hybrid A* Implementation for Fast and Deterministic Path

Generation for the KTH Research Concept Vehicle. Master’s Thesis, KTH Royal Institute of Technology School of Engineering
Sciences, Stockholm, Sweden, 2016.

13. Buniyamin, N.; Ngah, W.W.; Sariff, N.; Mohamad, Z. A simple local path planning algorithm for autonomous mobile robots. Int.
J. Syst. Appl. Eng. Dev. 2011, 5, 151–159.

14. Donald, B.; Xavier, P.; Canny, J.; Reif, J. Kinodynamic motion planning. J. ACM 1993, 40, 1048–1066. [CrossRef]
15. Wang, J.; Li, B.; Meng, M.Q.-H. Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning.

Expert Syst. Appl. 2021, 170, 114541. [CrossRef]
16. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
17. Kang, J.-G.; Choi, Y.-S.; Jung, J.-W. An Enhancement Method of Rapidly-exploring Random Tree Robot Path Planning using

Midpoint Interpolation. Appl. Sci. 2021, 11, 8483. [CrossRef]
18. Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.; Pearson Education: Delhi, India, 2009.
19. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
20. Jung, J.-W.; So, B.-C.; Kang, J.-G.; Lim, D.-W.; Son, Y. Expanded Douglas–Peucker polygonal approximation and opposite angle

based exact cell decomposition for path planning with curvilinear obstacles. Appl. Sci. 2019, 9, 638. [CrossRef]
21. Jung, J.-W.; Park, J.-S.; Kang, T.-W.; Kang, J.-G.; Kang, H.-W. Mobile Robot Path Planning Using a Laser Range Finder for

Environments with Transparent Obstacles. Appl. Sci. 2020, 10, 2799. [CrossRef]
22. Geraerts, R.; Overmars, M.H. A comparative study of probabilistic roadmap planners. In Algorithmic Foundations of Robotics V;

Springer: Berlin/Heidelberg, Germany, 2004; pp. 43–57.
23. Kuffner, J.J., Jr.; LaValle, S.M. RRT-connect: An Efficient Approach to Single-query Path Planning. In Proceedings of the IEEE

International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; pp. 995–1001.
24. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal Sampling based Path Planning Focused via Direct Sampling

of an Admissible Ellipsoidal Heuristic. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004.

25. Kang, J.-G.; Lim, D.-W.; Choi, Y.-S.; Jang, W.-J.; Jung, J.-W. Improved RRT-Connect Algorithm Based on Triangular Inequality for
Robot Path Planning. Sensors 2021, 21, 333. [CrossRef] [PubMed]

http://doi.org/10.1155/2018/6392697
http://doi.org/10.5391/IJFIS.2021.21.3.213
http://doi.org/10.1177/02783640122067453
http://doi.org/10.2316/Journal.206.2009.1.206-2853
http://doi.org/10.1023/A:1008034314006
http://doi.org/10.1016/j.eswa.2019.01.032
http://doi.org/10.1109/TRO.2020.3047515
http://doi.org/10.1145/174147.174150
http://doi.org/10.1016/j.eswa.2020.114541
http://doi.org/10.1177/0278364911406761
http://doi.org/10.3390/app11188483
http://doi.org/10.1007/BF01386390
http://doi.org/10.3390/app9040638
http://doi.org/10.3390/app10082799
http://doi.org/10.3390/s21020333
http://www.ncbi.nlm.nih.gov/pubmed/33419005

Sensors 2021, 21, 7425 40 of 40

26. Jung, J.-W.; So, B.-C.; Kang, J.-G.; Jang, W.-J. Circumscribed Douglas-Peucker Polygonal Approximation for Curvilinear Obstacle
Representation. In Proceedings of the IEEE 2019 7th International Conference on Robot Intelligence Technology and Applications
(RiTA), Daejeon, Korea, 1–3 November 2019; pp. 237–241.

27. Han, J. Mobile robot path planning with surrounding point set and path improvement. Appl. Soft Comput. 2017, 57, 35–47.
[CrossRef]

28. Yoon, H.U.; Lee, D.-W. Subplanner algorithm to escape from local minima for artificial potential function based robotic path
planning. Int. J. Fuzzy Log. Intell. Syst. 2018, 18, 263–275. [CrossRef]

http://doi.org/10.1016/j.asoc.2017.03.035
http://doi.org/10.5391/IJFIS.2018.18.4.263

	Introduction
	Related Works
	Classical Path Planning
	Visibility Graph
	Limitation of Classical Path Planning

	Sampling-Based Path Planning Algorithms
	Rapidly Exploring Random Tree (RRT)
	RRT-Connect
	Triangular-RRT-Connect

	Bidirectional Interpolation Method for Post-Processing
	Forward Interpolation Process
	Pseudocode of Forward Interpolation Process
	Pseudocode of the Post Triangular Function from Forward Interpolation Process
	Pseudocode of Interpolation Function from Forward Interpolation Process

	Backward Interpolation Process
	Overview of Bidirectional Interpolation Method

	Experimental Results
	Experimental Environment
	Experimental Results and Analysis for Each Map
	Experimental Results and Analysis

	Conclusions
	References

