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Functions of metabolic enzymes in the development
of non-small cell lung cancer

Lung cancer is the leading cause of cancer death globally.1

Non-small cell lung cancer (NSCLC), the most common
lung cancer, is known to have various genetic and meta-
bolic alterations, which directly contribute to growth and
malignancy.2,3 Although there are several targeted NSCLC
treatments including the epidermal growth factor receptor-
tyrosine kinase inhibitors (EGFR-TKIs), anaplastic lym-
phoma kinase (ALK) inhibitors and several antibodies, the
effects of NSCLC treatments remain unsatisfactory.4–6

Cancer metabolism is an emerging source of novel tar-
gets for NSCLC treatment, as it is now regarded as one of
the hallmarks of cancer.7,8 Cancer cells alter their metabo-
lism in order to facilitate proliferation, migration and sur-
vival in the tumor microenvironment.9 Metabolic enzymes
carry out a wide range of catalytic activities and are
responsible for a variety of cellular functions necessary for
cancer survival. A growing body of evidence indicates that
metabolic enzymes possess both metabolic and non-
metabolic activities that are critical in the development of
NSCLC.10,11

NSCLC undergo metabolic
reprogramming by dysregulating
metabolic enzymes

Glycolysis

In the early twentieth century, Otto Warburg observed that
that tumor cells depend solely on glycolysis for energy produc-
tion, even with an ample quantity of oxygen.12 This phenome-
non is now known as the Warburg effect. Marked progress
has been made in understanding the molecular mechanisms
leading to constitutive upregulation of glycolysis in NSCLC.
Various glycolytic enzymes are often increased in this cancer
type. For example, hexokinase (HK, the enzyme that converts
glucose to glucose 6-phosphate), has been identified to be
upregulated in NSCLC.13 Phosphofructokinase (PFK, the
enzyme that catalyzes the rate limiting step of glycolysis), is
involved in transcription regulation, and its expression is often
upregulated in NSCLC cells.14 Subsequently, the well-known
classic glycolytic enzyme, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) has been demonstrated to be over-
expressed in NSCLC patients.15 Another critical regulator of
glycolysis is pyruvate kinase (PK, the enzyme which catalyzes
the irreversible phosphoryl group transfer from phosphoenol-
pyruvate to pyruvate, yielding pyruvate and ATP), appears to

be involved in cancer. Previous studies have demonstrated
that the type M2 isoform (PKM2) activity is higher in patients
with NSCLC than in healthy subjects.16

Tricarboxylic acid (TCA) cycle

The tricarboxylic acid (TCA) cycle is a central hub for energy
metabolism. It fulfills the bioenergetic, biosynthetic, and redox
balance requirements of cells. Even a minor alteration in TCA
cycle markedly influences energy production. Mutations in
genes that encode enzymes isocitrate dehydrogenase (IDH)17

and succinate dehydrogenase (SDH)18 may lead to NSCLC.
Fumarate hydratase (FH) is the enzyme that converts fuma-
rate to malate. Previous survival analysis indicated that FH:
rs1414493 was the primary risk factor contributing to overall
survival of NSCLC patients.19

Pentose phosphate pathway (PPP)

The pentose phosphate pathway (PPP) is the major catabolic
pathway of glucose for nucleotide synthesis in cancer cells.20

Through this pathway, cancer cells produce large quantities of
ribose-5 phosphate and glyceraldehyde-3-phosphate dehy-
drogenase (NAPDH). The activation of PPP is a common
hallmark of tumor cells.21 The 6-phosphogluconolactone
hydrolase irreversibly hydrolyzes 6-phosphogluconolactone
into 6-phosphogluconate (6PG). 6PG is then oxidatively dec-
arboxylated by 6-phosphogluconate dehydrogenase (6PGD),
leading to the synthesis of ribulose-5-phosphate (Ru5P), CO2

and a second molecule of NADPH. Upregulation of 6PGD
activity has been identified in NSCLC.22

Amino acid metabolism

Amino acids are essential for cancer cell proliferation. Even a
slight alteration in the biosynthetic pathways may have an
impact on amino acid synthesis. Cancer cells are characterized
by glutamine addiction. Glutamine catabolism or gluta-
minolysis is elevated in NSCLC.23 Emerging evidence indi-
cates the role of glutamate and glutamate receptors in NSCLC
cell lines A549 and SK-LU-1.24 Glycine is a significant constit-
uent of proteins in the body, which build tissues and organs.
Glycine metabolism has also been demonstrated to be
upregulated in NSCLC.25 Another important nonessential
amino acid that participates in nucleotide synthesis is serine
which has been shown to be upregulated in NSCLC.26
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Lipid metabolism

Over the past decade, the increased rate of lipid metabo-
lism in cancer cells is being recognized as one of the prom-
inent hallmarks of cancer. Cancer cells demonstrate a high
dependence on lipids.27 One of the enzymes involved in
the synthesis of de novo fatty acids is ATP citrate lyase
(ACLY). In human NSCLC samples, ACLY activity was
found to be significantly higher than in normal lung tissue,
suggesting that ACLY is involved in NSCLC pathogenesis
associated with metabolic abnormality and might offer a
novel therapeutic target.28 Acetyl-CoA carboxylase (ACC)
is the rate-limiting enzyme in fatty acid synthesis. Genetic
and pharmacological evidence have shown that ACC is
required to maintain de novo fatty acid synthesis needed
for growth and viability of NSCLC.29 Fatty acid synthase
(FAS), the enzyme that catalyzes the final step in fatty acid
synthesis, is often upregulated in NSCLC30 and increased
FAS activity in NSCLC tissue is a predictor of patient
survival.31

Metabolic enzymes possess
nonmetabolic activities critical in
development of NSCLC

Metabolic enzymes promote development
of NSCLC by using nonmetabolites as
substrates to catalyze reactions

Recent studies have determined that some enzymes, originally
classified as metabolic enzymes, possess nonmetabolic activi-
ties that are critical in the development of cancer,11 such as
gene transcription and epigenetic regulation.32 Some of them
were found to use proteins as substrates and function as pro-
tein kinases to phosphorylate these protein substrates, thereby
regulating diverse functions in many types of cancer include
NSCLC.33 For example, PKM2 is involved in histoneH3 phos-
phorylation in the nucleus promoting the cancer cell prolifera-
tion in NSCLC.34 It can bind to Bub3 (a spindle checkpoint
protein) and phosphorylate it at Tyr207 enabling the interac-
tion of the Bub3-Bub1 complex with kinetochores, which is
necessary for the mitotic checkpoint and tumorigenesis.35

Moreover, FH localized in the nucleus promotes driver gene-
mediated transcription by inhibiting H3K36me2 demethyla-
tion, and thereby promotes the proliferation of NSCLC cells.36

Metabolic enzymes regulate the cellular
activities of NSCLC via their metabolite
products

Metabolic enzymes can form complexes with other pro-
teins and regulate the function of these proteins through
their metabolites. Acetyl-CoA synthetase 2 (ACSS2) is a

nonmitochondrial source of acetyl-CoA that localizes in
the cytosol and nucleus, and catalyzes the attachment of
acetic acid to CoA from exogenous and recirculating his-
tone deacetylase reactions to produce acetyl-CoA.37,38 In
response to hypoxia, the conditions common in the tumor
microenvironment, ACSS2 translocate to the nucleus,
where it forms a complex with the transcription factor EB
(TFEB) and locally produces acetyl-CoA for histone H3
acetylation in the promoter region of TFEB-regulated
autophagosome and lysosomal genes. Expression of these
genes promotes autophagy, cancer cell survival and
proliferation.38

Perspective

Current studies have demonstrated that metabolic enzymes
involved in the development and progression of NSCLC
have both metabolic and nonmetabolic activities. Selec-
tively targeting metabolic enzymes in cancer cells and
blocking their metabolic and nonmetabolic activities may
present as an effective approach for the treatment of
NSCLC.
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