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Abstract

Signaling pathways mediate the effect of external stimuli on gene expression in cells. The signaling proteins in these
pathways interact with each other and their phosphorylation levels often serve as indicators for the activity of signaling
pathways. Several signaling pathways have been identified in mammalian cells but the crosstalk between them is not well
understood. Alliance for Cellular Signaling (AfCS) has measured time-course data in RAW 264.7 macrophage cells on
important phosphoproteins, such as the mitogen-activated protein kinases (MAPKs) and signal transducer and activator of
transcription (STATs), in single- and double-ligand stimulation experiments for 22 ligands. In the present work, we have used
a data-driven approach to analyze the AfCS data to decipher the interactions and crosstalk between signaling pathways in
stimulated macrophage cells. We have used dynamic mapping to develop a predictive model using a partial least squares
approach. Significant interactions were selected through statistical hypothesis testing and were used to reconstruct the
phosphoprotein signaling network. The proposed data-driven approach is able to identify most of the known signaling
interactions such as protein kinase B (Akt) R glycogen synthase kinase 3a/b (GSKa/b) etc., and predicts potential novel
interactions such as P38 R RSK and GSK R ezrin/radixin/moesin. We have also shown that the model has good predictive
power for extrapolation. Our novel approach captures the temporal causality and directionality in intracellular signaling
pathways. Further, case specific analysis of the phosphoproteins in the network has led us to propose hypothesis about
inhibition (phosphorylation) of GSKa/b via P38.
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Introduction

Cells regulate their function through a complex circuitry that

involves myriad interacting networks from intracellular signaling

and metabolic pathways to genetic regulatory pathways. Intracel-

lular signaling is the first step in translating the environmental cue

in regulating various processes e.g. cell growth, differentiation and

apoptosis. Activation of proteins through phosphorylation is an

important event in intracellular signaling and serves as a metric

for the flux in the signaling pathway. Understanding of the

regulation of protein phosphorylation is the key to identifying

cellular mechanisms which interpret the environmental cues. The

knowledge of the regulation and interaction of various phospho-

proteins is sparse. The goal of this paper is to develop an approach

for data-driven reconstruction of phosphoprotein signaling

networks and to test them using the large-scale phosphoprotein

data available from the Alliance for Cellular Signaling (AfCS).

Among many types of posttranslational modifications of

proteins, protein phosphorylation is the most studied and has

substantial impact on biological function [1,2]. Phosphorylation

occurs on serine, threonine or tyrosine residues. Phosphoproteins

(PPs) are considered as markers of signaling pathways because the

levels of phosphorylation generally indicate the level of signaling

activity in the pathway. The gamut of cellular processes affected by

phosphoproteins varies from signal transduction, gene-expression,

post-translational modifications of other proteins, cell differentia-

tion, and development to cell cycle control. For example, the

extracellular signal-regulated kinase (ERK) and P38 pathways are

involved in cellular differentiation/proliferation [3]. c-Jun N-

terminal kinase pathway is involved in cytokine induced apoptosis

(tumor necrosis factor (TNF) signaling). In a similar manner, the

other signaling pathways mediate important processes such as

inflammation, the most prominent one is the P50–P65 nuclear-

factor kappa beta (NF-KB) pathway [4,5] Some molecules in these

pathways, such as P50–P65 NF-KB and P38 translocate to the

nucleus and act as transcription factors or regulate gene-expression

through other mechanisms. In short, the ability to measure

phosphoproteins has equipped the biologists to study the role of

cytosolic intracellular signaling in virtually all aspects of biological

processes.

Many of the signaling pathways function as a cascade. In

a cascade, subsequent proteins are activated via a previous

(phosphorylated/activated) protein. For example, in the P38

MAPK pathway, the cascade is composed of MAP or ERK
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kinase kinase 4 (MEKK4) and TGF-beta activated kinase 1

(TAK1) (a MAPK kinase kinase or MAPKKK), MKK3 and

MKK6 (a MAP kinase kinase or MAPKK), and p38 MAPK [3,6].

This pathway is activated by stress signals. Upon activation of

MAPKKK, it phosphorylates and activates MAPKK which in

turn phosphorylates and activates P38 MAPK. The information

flows downstream with time, thus these interactions are causal in

nature and can only be captured by dynamic mapping. Some

pathways are activated in a non-cascade manner. One example is

the cAMP signaling pathway in which upon production of cAMP

within the cell through activation of adenylate cyclase via G-

protein Gsa, cAMP activates protein kinase A (PKA) which in turn

stimulates degradation of cAMP itself through phosphorylation of

a phosphodiesterase (an example of a negative feedback) [7]. Even

in such pathways, information flow is generally downstream with

time, e.g. Gsa R adenylate cyclase R cAMP R PKA. The availa-

bility of the temporally resolved measurements of many phospho-

proteins allows us to study signaling pathways and cross-talk

between them.

The development of high-throughput technologies have made

these studies of pathways possible by allowing distinct types of

simultaneous quantitative measurements of the cellular compo-

nents such as mRNA levels, protein phosphorylations and

metabolites. While lack of large datasets is one limiting factor in

detailed and quantitative studies of regulation of signaling and

metabolic pathways, such studies have also been impeded by the

unavailability of suitable mathematical approaches to integrate

diverse types of data and knowledge. Further, the complexity of

intracellular signaling arising from feedback and feed-forward

loops and cross-talk between different signaling pathways has

exacerbated the problems associated with developing reliable

mathematical approaches [8,9]. This complexity is manifested

by the presence of multiple time-scales ranging from few seconds

to several hours across various biochemical processes. Data

measured at accordingly appropriate time intervals are required

to reconstruct causal networks for such processes. The differences

in the time-scales and lack of knowledge about time-lags in various

processes make it difficult to decipher their interactions. How-

ever, systems biology approaches open avenues to decipher the

interactions between the components and aid partial reconstruc-

tion of the underlying cellular network.

Computational systems biology has seen tremendous advances

during this decade. In the past few years, research in computa-

tional systems biology has moved beyond simple clustering and

correlation based interaction networks. Major efforts on data-

driven network reconstruction and model development have been

centered on input/output-based and probabilistic graphical

models. Input/output-based approaches are less tedious compared

to probabilistic graphical models. Some of the contributors to

input/output-based modeling include Bonneau et al. [10], Janes et

al. [11] and Pradervand et al. [12]. Among the probabilistic

graphical models, Bayesian networks are most popular [13,14].

Contributions in Bayesian network-based modeling include the

work of Sachs et al. [15], Hartemink et al. [16] and Yu et al. [17].

As discussed in a recent review by Camacho et al. [18], many

other approaches such as partial correlation analysis and other

statistical and systems engineering methods have been developed

[19–25]. These recent efforts emphasis the importance of applying

systems approaches to decipher and reconstruct cellular networks

using high-throughput data.

The time lag between the interactions because of localization,

membrane barrier and transportation has motivated researchers to

employ dynamic modeling techniques. Dynamic models and

temporally causal networks are derived by mapping the input data

at a previous (current) time-point to the output data at the current

(future) time-point to capture the temporal causal effects explicitly

[26–28]. Recently, many approaches have been developed for

reconstructing networks using dynamic (time series) data. These

include (1) state-space representation based techniques [10,29,30]

and (2) dynamic Bayesian networks [31,32]. Such networks have

been more efficient in predicting significant connections reported

in the available literature. Most approaches intended for utilizing

dynamic data for network identification can also handle steady-

state data by setting the time-rate of change of the output or the

state nodes to zero [10].

In the present work, we have applied the linear regression

approach (input/output modeling) and statistical hypothesis testing

to infer the important connections amongst signaling pathways

using phosphoprotein time-series data. Partial least squares (PLS)

method is used for input/output mapping (linear regression). The

advantage of using PLS is that it calculates principal components

(PCs) in the direction of output and captures sufficient variation in

the output data with relatively lesser number of PCs or latent

variables [33–35]. F-test and t-test are used for statistical

hypothesis testing. This manuscript is organized as follows. In

the next section, we present the results and validation of the model

followed by discussion. The last section briefly discusses the

experimental data preprocessing and the methodology used for the

network reconstruction.

Results

Correlation Map
The potential relationships were inferred using the correlation

between the input (predictor) variables and the output (response)

variables. The correlation matrix between the input and output

data is visualized using heat-map in Figure 1. The rows and the

columns represent the inputs (PPs at tk21) and outputs (PPs at tk),

respectively. Please see Table 1 for the names of the PPs. High

correlation was observed along the diagonal in Figure 1 with the

indication that most of the phosphoproteins were highly self-

regulated. The high self-correlation of PPs can be explained

from the fact that most of the chosen PPs are from independent

Author Summary

Cellular systems are dynamic in nature, perform various
biological functions and can adapt to their environment
through compositional and structural remodeling. This
remodeling is initiated by the binding of external ligands
to receptor proteins on the cell surface or other stimuli
resulting in the activation of various signaling pathways.
The activation of signaling pathways in turn results in
altered gene-expression which leads to changes in the
molecular composition both inside and outside the cell.
Thus, a thorough study of the complex interconnectivity of
signaling pathways using dynamic data is necessary to
understand the biological function and environmental
adaptation. Protein phosphorylation is a key event in the
activation of signaling pathways. We have developed an
advanced computational approach to decipher the con-
nections between different signaling pathways using time-
resolved phosphoprotein data provided by the Alliance for
Cellular Signaling. Important signaling events such as
activation of glycogen synthase kinase 3 by protein kinase
B (Akt) are captured by our reconstructed network. Novel
links as well as testable hypotheses are also generated by
our analysis approach.

Identifying Crosstalk between Signaling Pathways
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signaling pathways in this study and majorly activated by their

upstream signaling molecule rather than by interaction/cross-talk

between pathways. Thus in our modeling approach, we have also

allowed this possibility via self activation of its phosphorylation.

PPs in the same pathways showed high correlation. For example,

ERK1/2 and RSK are the part of classical map kinase pathway

and showed high correlation with each other. Variants of the same

PP (i.e. GSKa/b and ST1A/B) and the member of the same

family (EZR and MOE: part of ERM family) also show high

correlation. The PPs belonging to independent pathway (e.g. P40

and ST1A/B) showed no correlation with most of other PPs.

In this dynamic correlation matrix, high correlation was also

observed from P38 to ERK1/2 and its downstream target RSK.

We did not observe good correlation from ERK1/2 to P38, which

suggested that there is a directed edge from P38 to ERK1/2 but

not vice versa. The isoforms of protein kinase C (PKCD and

PKCM) also did not show good correlation with each other

indicating that they are regulated differently.

Identification of Phosphoprotein Signaling Network
The PLS models were developed using Eq. 2. Quality control

of the model was performed at two steps: (1) during the PLS

model development (at least 50% variance in output data

captured) and (2) during the K-fold cross-validation. Overall,

only 14 phosphoprotein models were selected out of 17

phosphoproteins (S6, P40 and P65 were rejected). Table S1 in

Supporting Information lists the number of PCs used and the

percentage variance captured in each PLS model. Significant

interactions were deciphered using the statistical method

discussed in the Materials and Methods section. The method of

PLS is preferred for input/output modeling because of its ability

to handle noise and dependency in the data and to reduce the

dimension of the linear equations. Figure 2 shows the plot of the

ratio (r) of the coefficient-values in actual model to the standard

deviation of the corresponding coefficient-values in random

models for each input for selected outputs. We have omitted

those output variables whose model was not valid under the

selection criteria described in the model development and cross-

validation. The significant interactions are identified by applying

the threshold on r. Only a few of interactions are discovered as

being significant per model and capture the significant variation

in the output variable. Names of PPs with significant coefficients

and possible significant coefficients (90% of the threshold) are

shown in Figure 2.

Minimal Models and Their Predictive Power
The minimal model was constructed using only the significant

connections identified from Figure 2. For comparison with the

PLS models, the percentage variance captured by the minimal

models is listed in Table S1 in Supporting Information. To check

the validity of the minimal model, we also developed the full model

containing all variables as inputs. The root mean square error was

calculated for the minimal model (sr) and the full model (sf).

Figure 3 shows a scatter-plot between experimental measurements

versus the predicted outputs for the minimal models at a future

time-point. Solid lines (y = x), the dashed line (y = x6sf) and

dotted line (y = x62sf) were drawn to show the fit to the

experimental data. Most of the data points lie within the 62sf

band and hence, the reduced model is a good predictive model. F-

test was conducted to verify the similarity in the prediction-error

Figure 1. Heat-map of the correlation matrix between the input and the output variables. The rows and columns correspond to inputs
and outputs, respectively. Negative values of the correlation are small in magnitude (e.g., AKT to P40) compared to positive values of the correlation.
Hence, to enhance the visualization, asymmetric color-scale is used.
doi:10.1371/journal.pcbi.1000654.g001

Identifying Crosstalk between Signaling Pathways
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between the reduced model (sr) and the full model (sf). It was

successful with 95% confidence level for all valid models.

Reconstructed Network and its Graphical Properties
Figure 4A represents the combined network obtained from the

models. The thickness of the interaction lines is proportional to

(the square root of the) confidence obtained from statistical

analysis. Strong similarity was observed between correlation

coefficients and the significant PLS regression coefficients for

most of the phosphoproteins. Examples include AKT R GSKa
and b, ERK1 and 2 r R RSK and PKCD r R SMD2. Variants of

the same PP (i.e. ERK1 and 2, GSKa and b, and ST1A and B)

and the member of the same family (EZR and MOE: part of ERM

family) showed strong significant interaction with each other and

similar interaction with other PPs. Thus for the clarity of

presentation, we have combined these nodes into one node, e.g.

ERK1 and 2 were combined into ERK1/2, GSKa and b in

GSKa/b, ST1A and B in ST1A/B and EZR and MOE in ERM

(Figure 4B). It is important to note that since dynamic mapping is

used to reconstruct the signaling network, the resulting network

inherently captures the temporally causal connections.

The reconstructed network was characterized with respect to

commonly used graph-theoretic metrics defined in the Materials

and Methods section. For all pairs of distinct nodes in the network

of Figure 4B, all the directed paths between them were identified

using a depth-first search approach [36] (for full list of all the

paths, refer Table S2 in Supporting Information). As an example,

Table 2 lists all the paths from P38 to GSKa/b. From this, the

total number of paths, the shortest path length and the average

path length for the pairs of nodes are computed (Table 3). Given

that there are some false-positive connections (correlation can

result in false reversible connection) in the network, these measures

are slightly biased. However, they are still useful because they

provide a lower-bound (for the minimum path-length) and upper-

bound (for the average path-length) and usually exclude totally

unrelated interactions. In the example shown in Table 2, P38

affects GSKa/b directly and indirectly via AKT. It is difficult to

predict the true paths but they do assist in formulating hypotheses

for further investigation through specific knockout or inhibition

experiments. P38 has the highest degree and acts as a hub. The

implication is that any perturbation to P38 will affect many

downstream targets/pathways.

Discussion

Phosphoprotein signaling is important in modulating various

functions. Thus the understanding of the interaction/cross-talk

between them is crucial. Here, we reconstructed the phosphopro-

tein signaling network that captures the interactions known in the

literature and also suggests novel interactions. These models

reasonably predict the interactions between phosphoproteins.

Interactions of these phosphoproteins have been studied exten-

sively. Therefore, the reconstructed network (Figure 4) was

validated from information available in the literature.

Significant signaling pathways. AKT is widely known

for GSK phosphorylation and inhibiting its activity [37–39].

The reconstructed network captured the same outcome i.e.

phosphorylation of GSK via AKT, thus inhibiting its activity.

However, the convention used in the reconstructed network differs

from the literature. Here positive and negative connections

represent activation and inhibition of phosphorylations whereas

positive and negative connections in literature are based on

activation and inhibition of the activity of molecules.

The reconstructed map captured the positive connectivity

between ERK and RSK, members of the classical MAP kinase

pathway [37,40]. A positive connectivity was also found from

PKCM to RSK. This relationship can be a resultant of partial

artifact of the mathematical technique, PLS, used in the network

reconstruction. PLS captures correlation between input and

output variable. According to the literature, PKC activates

ERK[41] which subsequently activates RSK through MAP kinase

pathway[40]. Thus, RSK is supposed to have a good correlation

with PKC and was captured in modeling. In general whenever

there is connection A R B, all correlation based modeling

techniques produce bidirectional connections (A r R B). Such false

Table 1. The names of the 22 ligands used and the
phosphoproteins measured in the AfCS experiments.

Ligands Abbreviations

2-Methyl-thio-ATP 2MA

Resiquimod (R-848) 848

Complement C5a C5A

Granulocyte macrophage colony stimulating factor GMF

Interleukin-4 I04

Interleukin-6 I06

Interleukin-10 I10

Interleukin-1-beta I1B

Interferon-alpha IFA

Interferon-beta IFB

Interferon-gamma IFG

Isoproterenol ISO

Lysophosphatidic acid LPA

Lipopolysaccharide LPS

Macrophage colony stimulating factor MCF

PAM2CSK4 P2C

PAM3CSK4 P3C

Platelet Activating Factor PAF

Prostaglandin E2 PGE

Sphingosine-1-phosphate S1P

Transforming growth factor-beta TGF

Uridine 59-diphosphate UDP

Phosphoproteins Abbreviations

Protein kinase B (Akt) AKT

Ezrin/Radixin EZR

Moesin MOE

Protein kinase C PKC

Nuclear factor kappa beta (NFkB) p65 P65

Mitogen activated protein (MAP) kinase MAPK

p38 MAP kinase P38

p90 ribosomal S6 kinase RSK

Extracellular signal-regulated kinase (Erk) ERK

Glycogen synthase kinase 3 GSK

Signal transducer and activator of transcription 1 (STAT1) ST1

Ribosomal protein S6 S6

Mothers against decapentaplegic homolog 2 (SMAD2) SMD2

Neutrophil cytosolic factor 4 (p40) P40

doi:10.1371/journal.pcbi.1000654.t001
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positives can only be partially removed by dynamic modeling/

time mapping as used here. PKCD r R SMD2 was observed,

whereas literature showed only PKC R SMD2 [42,43]. Similarly,

PKCM r R P38 was observed instead of PKCM R P38 [44].

This reconstruction also captured other known relationships

including PKCD R EZR/MOE [45,46] and P38 R GSK[47].

There were other observed correlations which exhibited reverse

connections than expected. For example, existing research

suggests the connections PKCM R P65 [48,49] whereas our

model captured the reverse connections P65 R PKCM. This

observation was attributed to an outcome of PLS methodology as

explained above.

Correlated groups/proteins. The variants of the same

protein are mostly regulated similarly. The high correlation was

observed for these variants GSK a and b, ERK1 and 2 and ST1A

and B. However, this was not observed for PKCD/M insinuating

different regulatory pathways for the two variants of PKC. EZR

and MOE are the members of Ezrin/radixin/moesin (ERM)

pathway and commonly involved in regulation of actin

cytoskeleton [37]. Consequently, a high correlation was observed

between them as expected.

Rejected models (PPs with no input in the network). The

models for P40, P65 and S6 were rejected. Hence, they do not

have any inputs in the network of Figure 4B. Rejected model PPs

have either no interaction with other pathways or they interact

with other molecules/phosphoproteins not measured in the

AfCS dataset. For example, P40 is a regulatory component of

the superoxide-producing phagocyte NADPH-oxidase pathway

[37,50]. We did not find any relevant interaction for P40 in the

literature. P65 is regulated by other factors such as IkB kinases

(IKK) which are not measured in the AfCS dataset [51]. Similarly,

S6 is regulated by both p90RSK and p70RSK [52]. However,

only p90RSK is measured in the AfCS dataset. The correlation

between p90RSK and S6 is positive in Figure 1. However, this

does not result in any significant connection in the network.

This modeling approach also provides support for investigating

novel or less studied interactions. For example, a high correlation

between P38 R RSK was also observed in Figure 1 and this

interaction was captured with high confidence in the reconstructed

network (Figure 4). Some evidence has been found underpinning

this interaction [53], but most of the reviews do not discuss about it

explicitly [40,54]. Similarly, GSK R EZR/MOE connection was

Figure 2. Identification of statistically significant phosphoproteins (acting as inputs) in the regulation of the signaling pathways
(PPs acting as outputs). The labels on the X-axis are the names of the output PPs. For each output PP, one bar is drawn for each input PP. The Y-
axis represents the ratio of the coefficient for the input in the actual model to the standard deviation of the corresponding coefficients in the random
models. Thus, Y-axis is equivalent to z-score. The horizontal dashed-line denotes the threshold, 2.58 on the ratio, corresponding to 99% confidence
level. The bars crossing the threshold line represent the statistically significant interaction. The names of the inputs with the absolute ratio-value
greater than 90% of the threshold are also listed for each input.
doi:10.1371/journal.pcbi.1000654.g002
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observed in the reconstructed network. There is some indirect

evidence about this relationship through PI3 kinase [37,55], but a

direct relationship has not been reported and merits further

investigation. Lastly, a few inhibitory connections were found in

this network. Several of these have not been reported in the

literature. If these are false positives, there can be two possibilities,

both being mathematical artifacts. First, the degradation term is

not included in the linear modeling approach. Second, the

inclusion of the self regulation term which receives very high

weight (coefficient) is possibly altering the coefficients for the other

inputs (described in the Materials and Methods section).

The nodes with in-degree greater than 1, which have multiple

pathways for activation, were further investigated for the relative

importance of the incident edges/connections. Figure 5 shows

the distribution of experimental cases for the activation of select

nodes with in-degree of 2. Such examples include AKT, GSKa/

b, PKCD and PKCM. The purpose is to observe when a selected

node is activated (protein is phosphorylated), then whether this

activation is through input from only one of the two upstream

nodes, or signaling through both the paths is required (labeled

‘both’). There exists a fourth possibility that none of the two

paths are consistent with the observed state of the target node

(labeled ‘None’), suggesting that other edges, involved in

unmeasured pathways or involved in measured but not captured

in our network, are contributing to the activation of the node. An

edge from node i to node j is consistent if sign(node i)*sign

(edge(iRj)) = sign(node j). The analysis of AKT (Figure 5A)

indicated that for most experimental cases (ligand combina-

tions), AKT required input either from only P38 or from both

P38 and ERM. There are significant number of cases in which

the signal flows through neither path was consistent with the

state of AKT (labeled ‘None’ in Figure 5A). This clearly

indicated that AKT is also being activated via pathway(s) other

than the measured phosphoproteins. In the case of GSKa/b,

most of the cases are captured via either activation from P38 or

activation from both P38 and AKT (Figure 5B). There are only

few cases where activity of GSK is in concordances with

regulation via AKT or none. Similar interpretation can be

drawn for PKCD and PKCM from Figure 5C and D.

The activation of GSKa/b was further probed for the different

ligand combinations. To do this, the experimental data corre-

sponding to the four cases of consistency of the edges from AKT

and P38 to GSKa/b (Figure 5B) is displayed as a heat-map in

Figure 6. In the first case (A), none of the edges are valid because

the level of GSKa/b is changing in opposite direction to what the

signals through the paths P38 R GSKa/b (activation) or AKT R
GSKa/b (activation) would otherwise result in. As an example in

the experiment of double ligands GMF (Granulocyte macrophage

colony stimulating factor or GMCSF) and I1B (IL-1B), both AKT

and P38 are positive at t = 1m whereas GSKa/b is negative at

Figure 3. Predictive power of the reduced models containing only significant predictors. The X- and Y-coordinates represent the
experimental and predicted values, respectively. The central diagonal line is the y = x line (i.e. perfect fit with no residual error). The dashed and
dotted lines, denote the y = x6sf and y = x62sf lines, respectively; where sf is the fit-error between the experimental data and the prediction made
by the full model that included all the inputs and was obtained by linear-regression.
doi:10.1371/journal.pcbi.1000654.g003

Identifying Crosstalk between Signaling Pathways
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Figure 4. Reconstructed phosphoproteins signaling network in RAW 264.7 macrophages. (A) Full network with 16 phosphoprotein
nodes. Activation and inhibition are shown with black (arrow end) and red (blunt end) lines, respectively. Thickness is proportional to (square root of)
the confidence in that interaction. (B) Short network after combining ERK1 and 2, GSKa and b, ST1A and B, and EZR and MOE in single node. To do so,
the corresponding rows and columns in the matrix of significant ratios were averaged without any ambiguity in the signs of the incoming or
outgoing edges.
doi:10.1371/journal.pcbi.1000654.g004

Identifying Crosstalk between Signaling Pathways
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t = 3m. In the second case (B), the validity of the signal from

AKT R GSKa/b is evident from the data analysis, as seen in

Figure 6B. In the third case (C), interestingly, P38 and GSKa/b
are both positive in all such experiments and naturally AKT is

negative. Finally, in the fourth case (D), strong phosphorylation of

GSKa/b is observed since the signals through both the paths

superimpose constructively in most of the experiments. Similar

heat-maps for the response nodes (phosphoproteins) AKT

(Figure 5A), PKCD (Figure 5C) and PKCM (Figure 5D) are

displayed in Figures S1, S2, and S3, respectively (Supporting

Information). Then, we plotted a bar-graph of ligand distribution

for all the four cases (Figure 7). With such an elaborate yet

intricate display, one can easily see that the ligands MCF, C5A,

PAF and LPA signal through both P38 and AKT to phosphorylate

GSKa/b [47,56]. In fact, the data indicates that MCF and LPA

signals through AKT alone in only one case (namely, with P3C)

and two cases (namely with P3C and I1B), respectively, out of 22

possible combinations with self or other ligands. The ligands S1P

and 2MA also transduce the signal through both pathways in most

cases. On the contrary, the ligands UDP, ISO, PGE and IFA lead

to phosphorylation of GSKa/b only through the P38 pathway

(Figure 7C). This observation leads to the hypothesis that

inhibition of P38 would reduce or abolish phosphorylation of

GSKa/b. This can be tested by using specific inhibitors of P38

(SB203580 [57] or SB202190 [58]) for a specific ligand such as

PGE (see Figure 7C). It is interesting to note that one can arrive at

conclusions about specific ligands, phosphoproteins or pathways

from global or systemic analysis.

The predictor-response (or input-output) characteristics for the

other three phosphoproteins, namely, AKT, PKCD and PKCM,

analyzed in Figure 5 can be further studied with respect to the

various experiments using the ligand distribution for different valid

paths displayed in the bar-graphs of Figures S4–S6, respectively

(Supporting Information).

Explanation of complex scenario with multiple

connections. Several output nodes in the network have

multiple input connections. Depending upon the state of the

predecessor nodes, these connections can affect the output node in

the same or opposite directions. The reconstructed network can be

used to understand/explain such cases. For example, in Figure 4B,

GSKa/b is phosphorylated/affected by both P38 and AKT

(P38 R GSKa/b, AKT R GSKa/b). In turn, AKT, is affected by

P38 (P38 R AKT) and ERM (ERM x AKT) (see also Figure 5A,

Figure S1 and Figure S4). Now, in the context of interpreting/

projecting data for P38, AKT and GSKa/b, it is possible that

for some ligand inputs only the edge AKT R GSKa/b is valid

(Figure 5B and Figure 6B). This can happen if the effect of the

edge ERM x AKT dominates over that of the edge P38 R AKT.

Another case, where only the edge P38 R GSKa/b is valid

(Figure 6C), is more intriguing. This complexity arises because

the positive edge P38 R AKT, P38 tries to set the state of AKT in

its direction. Intuitively, this makes one think that AKT should

have the same sign as P38 and the edge AKT R GSKa/b should

be valid. However, in our experimental data there exist cases

with only P38 R GSKa/b as a valid edge. This anomaly can be

explained by including the node ERM in the analysis.

The sign of AKT is set by both the sign of P38 and ERM.

Hence, the sign of ERM can be considered to explain the cases of

only the edge P38 R GSKa/b being valid. One such case is the

application of the ligands IL-4 (I04) and IL-1b (I1B) (Figure

6C, 7th row from top, both P38 and GSKa/b are positive). In

Figure S1B (valid edge ERM x AKT, 2nd row from top), ERM

is positive and AKT is highly negative. This case actually

suggests that interpretation of the individual nodes locally has

limited scope and complete interpretation is possible only at a

systemic level.

As seen above, interpretation of individual experimental sets is

complicated. Even more complications arise if one or more of the

inputs are unmeasured. One can imagine a scenario where protein

A is affected by protein B which is also affected by unmeasured

protein C. Two interesting scenarios can arise depending upon the

effect of protein C on protein B: (1) B increases without increase in

A, if the effect of C on B is positive and (2) A increases but B does

not, if the effect of C on B is negative. Such cases can be explained

similar to the above examples if we hypothesize some input nodes

to be unmeasured.

Prediction capability for extrapolation. To test the ability

of the network of Figure 4 to predict data at 10 min using data at

3 min, we have performed the following study:

1. We have used the models developed from 1 min and 3 min

data to predict the data at 10 min using the experimental data

at 3 min. The results are shown in Figure 8 and Table S3 in

Supporting Information. These results show that the models

developed using the 1 and 3 min data have reasonable

predictive power for all of the outputs/phosphoproteins at

10 min. For extrapolation to 10 min, we have used numerical

integration to avoid the error due to discrete approximation of

time-derivatives. The phosphoprotein levels at 10 min were

calculated using the pseudo-rate parameters obtained from the

model (from 1 min and 3 min data) and initial state at 3 min.

Table S3 also lists the fraction of data points which lie within

the s and 2s band in Figure 8. Similar numbers for the

prediction of 3 min data in Figure 3 are also listed in Table S3

for comparison. The predictive power for extrapolation is

better for some of the PPs such as SMD2 and ST1A/B as

compared to others such as AKT and P38. This is likely

because SMD2 and ST1A/B translocate into the nucleus and

are dephosphorylated only in the nucleus [59,60]. Hence, their

phosphorylation can sustain for longer time and result in better

agreement between the experimental data and the model

predictions at 10 min.

2. We performed pathways-based advanced statistical analysis

similar to what is shown in Figures 5–7 and S1, S2, S3, S4, S5,

and S6, using the mapping of data from 3 min to 10 min. The

results are shown in the Figures S7, S8, S9, S10, S11, S12, S13,

S14, and S15 (Supporting Information). It is evident that

despite the differences between the individual cases, the overall

broad statistical features are similar between the mappings

from 1 min to 3 min and from 3 min to 10 min. This suggests

that most of the connections in Figure 4 are qualitatively

correct.

In conclusion, deciphering the interconnectivity of large

signaling networks is a complex problem in systems biology. The

Table 2. All paths from P38 to GSKa/b.

Path length Path (R positive edge;x negative edge)

2 P38 R AKT R GSKa/b

3
P38 x ERM x AKT R GSKa/b

1 P38 R GSKa/b

6
P38 R PKCMx ST1A/B R PKCD R ERMx AKT R GSKa/b

doi:10.1371/journal.pcbi.1000654.t002
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analysis and interpretation of large-scale temporal datasets on such

pathways is challenging due to myriad issues such as multiple

input-multiple output connectivity and lack of temporal data at

appropriate time-scales. In the present work, a novel algorithm for

the discovery of bio-molecular networks using large-scale temporal

data is presented. Our methodology integrates partial least squares

based dynamic input/output (state-space) modeling and statistical

significance testing. The resulting models have sound predictive

power validated by F-test. When applied to the early-time

phosphoprotein dataset on RAW 264.7 macrophage cells provided

by the AfCS, the approach is able to find most of the known

connections between the signaling pathways. Example includes

AKT R GSK. The model developed here is able to predict the

10 min data set with good accuracy. Potentially novel connections

also have been found; an example is P38 R RSK. By varying the

threshold of the statistical significance test, a researcher can probe

additional connections which could have been otherwise missed.

Thus, both the algorithmic approach and results are capable

of generating novel hypothesis for further investigation. The

proposed approach tackles the challenge of capturing dynamics

and temporal causality in intracellular signaling pathways. The use

of PLS in our approach makes it extensible to even larger data sets

Table 3. Graph-theoretic metrics for the network (Figure 4B).

Property AKT ERM P38 RSK ERK1/2 GSKa/b PKCD PKCM SMD2 ST1A/B

AKT # paths 7 3 9 11 3 3 3 3 3

MPL 2 1 2 1 1 4 2 5 3

APL 4 2.7 3.4 4.2 2.3 5.7 3.7 6.7 4.7

ERM # paths 2 3 6 9 5 3 3 3 3

MPL 1 2 1 2 2 5 3 6 4

APL 2 2.7 3.5 3.7 3.4 5.7 3.7 6.7 4.7

P38 # paths 4 4 12 12 4 1 1 1 1

MPL 1 1 1 1 1 3 1 4 2

APL 2.8 2.5 3.5 3.5 3 3 1 4 2

P40 # paths 8 8 2 13 19 8 2 2 2 2

MPL 2 2 1 1 2 2 4 2 5 3

APL 4.3 4 1.5 4.2 4.6 4.5 4.5 2.5 5.5 3.5

P65 # paths 17 15 10 21 36 23 5 5 5 5

MPL 2 1 2 1 2 3 3 1 4 2

APL 5 4.7 4.3 4.8 5.1 5.5 5.6 3.6 6.6 4.6

RSK # paths 4 4 1 7 4 1 1 1 1

MPL 2 2 1 1 2 4 2 5 3

APL 3.8 3.5 1 3.7 4 4 2 5 3

ERK1/2 # paths 4 4 1 1 4 1 1 1 1

MPL 3 3 2 1 3 5 3 6 4

APL 4.8 4.5 2 1 5 5 3 6 4

GSKa/b # paths 2 1 3 6 9 3 3 3 3

MPL 2 1 3 2 3 6 4 7 5

APL 3 1 3.7 4.5 4.7 6.7 4.7 7.7 5.7

PKCD # paths 2 1 3 6 9 5 3 1 3

MPL 2 1 3 2 3 3 4 1 5

APL 3 1 3.7 4.5 4.7 4.4 4.7 1 5.7

PKCM # paths 11 10 6 14 20 14 1 1 1

MPL 2 2 1 1 2 2 2 3 1

APL 4.5 4.2 4 4.2 4.5 5.1 2 3 1

SMD2 # paths 2 1 3 6 9 5 1 3 3

MPL 3 2 4 3 4 4 1 5 6

APL 4 2 4.7 5.5 5.7 5.4 1 5.7 6.7

ST1A/B # paths 5 4 4 6 8 8 1 4 1

MPL 3 2 3 2 1 4 1 4 2

APL 4.6 4.3 4.3 4.5 4.8 5.3 1 5.3 2

The rows and columns correspond to start and terminal nodes, respectively. For each row-node and column-node pair, the total number of paths, minimum path-length
(MPL) and average path-length (APL) are listed. The average path-length for the whole network, defined as the average of shortest path-length between all pairs of
nodes, is 1.83. Average degree of the nodes is 4.3.
doi:10.1371/journal.pcbi.1000654.t003
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comprising of hundreds or thousands of measured variables.

Further, these quantitative models can be used to make predictions

about the response at a future time-point using the values at the

current and past times.

Materials and Methods

Experimental Data
The experimental data was generated by the Alliance for

Cellular Signaling (AfCS) laboratories using the RAW 264.7

cells. Single- and double-ligand screening for 22 ligands

(Table 1) in 251 experiments were performed. In each

experiment, time-dependent changes in the phosphorylation-

level of 21 signaling proteins were measured at 1, 3, 10,

30 minutes after stimulation using phosphoprotein-specific

antibodies (western blot analysis, AfCS protocols #PP00000177

and #PP00000181 [61]. Most experiments were done in

duplicates and triplicates. For complete details of the data and

the experimental protocols, please refer the AfCS website [62].

The PP data is available from the AfCS Data Center (‘‘RAW

264.7 ligand screen’’ and ‘‘RAW 264.7 two-ligand screen’’).

The 22 ligands used and the phosphoproteins measured in

experiments are listed in Table 1.

Data Processing
Time scale for most of the signaling events lies in minutes.

Response at early times, such as five minutes after the

stimulation with the ligand(s), shows the primary effect of

ligands stimulation and signaling from upstream (phospho)pro-

tein to the expected pathways. In most cases, the strength of an

early response is much higher than the degradation rate of the

signaling molecule. Contrary to this, during the later phase, the

desensitization/internalization of the cell surface receptors

decreases/stops the effect of ligand stimulation. The changes

in the signaling molecular concentrations observed at those

times are primarily due to its self degradation. Here, in the case

of phosphoprotein data, degradation mostly represents dephos-

phorylation of the phosphoprotein. Thus, to avoid such false

positive results in linear modeling approach, we have used the

early time point data at only 1 and 3 minutes and ignored the

later time point data at 10 and 30 minutes. However, the data at

10 min has been used for accessing the predictive power of the

model. The data at t = 0 minute was not included as it was

always equal to 1 (available as fold-change from the AfCS data

center). For the purposes of mathematical treatment, replicates

are considered as separate conditions. Explicit use of replicates

has two advantages: (1) different experiments were repeated

different number of times, so separate treatment of replicates

resulted in more weighting to the experiments with more

replicates and (2) the effect of experimental variation was

automatically accounted in the statistical analysis during model

development and cross validation. Data was log2 transformed

prior to the modeling to give equal weighting to up- and down-

regulation. Both input and output data were normalized with

respect to the mean and standard deviation of the respective

variables.

Network Identification
Model development. A linear model was developed using

partial least square (PLS) method. Matlab was used for the

calculation [63] and Graphviz software was used to draw the

network [64]. Dynamic mapping (yt = f(yt21)) was used to calculate

the interaction coefficients. The model (yt = f(yt21)) represents the

dependence of the level of measured PPs at time t on the level of

all measured PPs at time t21. If the mapping function (f) is linear,

then it can be derived from the state-space representation of the

system as follows.

d

dt
X~AX ð1Þ

After discretization and rearrangement, we get

d

dt
X

�
�
�
�
t~tk

&
Xt~tk

{X jt~tk{1

(tk{tk{1)
~AXt~tk{1

, or equivalently,

Xt~tk
~BXt~tk{1

ð2Þ

Where X (the vector of state variables) denotes the set of PPs. A
and B are coefficient matrices with suitable relationships between

the elements of A and B. From here on, we will work with Eq. 2.

In a signaling pathway, signaling occurs from upstream

molecules to downstream molecules. The limitation of this data

set is that, in each signaling pathway, usually only one PP is

measured. To circumvent this limitation, we have assumed that

the concentration of upstream signaling molecule is same or

linear function of the measured PPs (validity of this assumption

is also evident from the correlation plot of Figure 1). This

assumption also presents complication because (1) the rate of

degradation of PP is usually proportional to its level of

phosphorylation, and (2) the input effect from the upstream

(phospho)protein in the same pathway is also proportional to

the level/amount of the upstream protein, thus making their

separation difficult.

Even though PLS has the capability to handle multiple

outputs, we developed the models for individual PPs (single

output). This is motivated by a criteria for model selection,

namely, the input matrix should capture significant variance

in the output. Only those models were selected for network

Figure 5. Distribution of the consistency of pathways for nodes
which are activated through two different pathways. X-axis
represents four possibilities: (1) neither path consistent (‘None’), (2) path
1 consistent, but not 2 (3) path 2 consistent but not 1, (4) both paths
consistent (see text). Y-axis represents the number of experiments
counted for each case.
doi:10.1371/journal.pcbi.1000654.g005
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reconstruction for which the input data captured at least 50%

variance of the output data. The PPs for which the variance

captured was less than 50% were not included in the network

reconstruction with the reasoning that they are mainly regulated

directly by the ligands or other pathways and molecules rather

than through the measured PPs (signaling pathways) in the

experiments. The number of PCs for model development was

selected based on the criteria that variance captured by that last

PC should capture at least 5% of total variance captured by all

PCs.

Cross-validation. The K-fold cross-validation method was

used to evaluate the performance of the proposed phosphoprotein

network; for each output we find out if the fit-error of the model

for the K-fold test data sets is statistically similar to that for the

training set and is lesser than the fit-error for a random model for

that output. The experiment data set was randomly divided into k

groups. The model estimation was conducted on (k21) groups as

training set and remaining one set was used as a test set. This

process was repeated until all k groups were used as a test set once.

In this work, we have used k = 10, as it produces less bias, variance

and sum of squared error (SSE) and has good computational

efficiency [65]. For each output, mean of SSE for test set was

compared with mean of SSE for training set and random models

through F-test. Even though data are log2 transformed and fit-

error (the difference between the predicted and experimental

values) may have log-normal distribution, the use of F-test is robust

as shown in ref. [66]. Detailed procedure of F-test in K-fold cross-

validation is described in the Text S1 (Supporting Information).

The random models were generated from the entire dataset by

randomly shuffling the output as explained in the section

‘‘Statistical significance of the interaction coefficients’’ below.

The models, for which the probability in F-test was less than 0.95

between the test and training sets and the p-value was less than

0.05 between the test set and random model, were selected for

network reconstruction.

Statistical significance of the interaction coefficients.

Significant coefficients are selected using statistical significance-test

based approach. To implement the test, the probability distribution

Figure 6. Display of experimental data corresponding to the four cases of valid paths from P38 and/or AKT to GSKa/b in Figure 5B.
Red and green colors are for positive and negative values (log(x), where x is ratio of raw value at current time to the raw value at t = 0), respectively,
with the darker color indicating larger magnitude. (A) None of the two edges are valid because the level of GSKa/b is changing in opposite direction
to what the signals through the paths P38 R GSKa/b or AKT R GSKa/b would otherwise result in. (B) The effective signaling is through the path
AKT R GSKa/b alone. (C) Only the path P38 R GSKa/b is valid. (D) Both paths are valid as indicated by the same color in each column for all rows.
1 min data was used for AKT and P38. 3 min data was used for GSKa/b.
doi:10.1371/journal.pcbi.1000654.g006
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of the coefficient value for a random model is generated and

compared with the coefficient value in the actual model. We use the

standard deviation (s) parameter of the distribution (mean value is

zero). The procedure is as follows.

1. To compute s, many random output datasets are generated by

randomly shuffling the actual experimental output data, and

PLS model is developed corresponding to each random output

dataset. For a chosen output and input, s is the standard

deviation of the corresponding coefficient values in the random

models. If br is the coefficient in a random model then,

br=s~N(0,1), where N(m,s) is the normal distribution with

mean m and standard deviation s.

2. Next, if b denotes the coefficient value in the actual PLS model

for a chosen input and output, then, we compare the ratio,

r = b/s, with a threshold (rth). rth is taken as the inverse of the

cumulative normal distribution function N(0,1) for a chosen

level of confidence. A threshold (rth) of 2.58 corresponding to

99% confidence in two tailed t-test has been used in this study.

If r.rth, then the connection from the chosen input to the

chosen output is considered significant.

Graphical properties of networks. A graph, G, can be

defined as a collection of nodes or vertices, V~fv1,v2,:::,vng, and

the edges between the nodes, E~fe1,e2,:::,emg. n is the number of

nodes or the size of the graph. Thus, G = (V, E). If a direction is

associated with the edges then they are called directed edges and G

is called a directed graph (digraph). If the directed edge ek starts at

the node vi and ends at the node vj then vi is called the start node

and vj is called the terminal node of the edge ek, and vi is also a

predecessor node of vj . A directed path from node vi to node vj in

a digraph is an alternating sequence of nodes and directed edges

of the digraph (vi~vl1 ,ek1
,vl2 ,ek2

,:::,vlp ~vj ) such that the edge

ekq
(q~1,2,:::,p{1) connects the node vlq to the node vlqz1

, where

p is the total number of nodes on the path [67,68]. The number of

edges on the path, i.e., path-length, is (p21). The number of edges

coming into (going out of) a node is called the in-degree (out-

degree) of the node. The adjacency matrix of G, A~½aij �, is

computed as, aij = 1, if there exists an edge from node vi to node

Figure 7. Ligand distribution for all four cases of GSKa/b activation (discussed in Figure 5B). X-axis and Y-axis represent the name of
ligand and counts of the cases, respectively. For dual ligand experiments, the case is added to both of the ligands. The panels A–D also correspond to
the heat-maps of Figure 6 A–D, respectively.
doi:10.1371/journal.pcbi.1000654.g007
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vj , 0 otherwise. In this work, once the significant predictors are

identified and the coefficient matrix B is computed, A is obtained

as A = sign(BT) if the sign of the edge is retained. Once A is known,

G is completely defined.

Supporting Information

Table S1 Number of principal components (PCs) used and the

corresponding variance captured for all the phosphoproteins

(outputs) in the PLS model, and the variance captured in the

minimal model (using least-squares). The phosphoproteins exclud-

ed from the network were S6, P40 and P65. In most cases, the

variance captured by the minimal model is slightly larger than that

by the PLS model. This is because the least-squares approach is

equivalent to using all the PCs in the application of PLS. To

develop the PLS model, only the first few (2 or 3) PCs were used.

We have verified that the variance captured by the minimal model

is always lesser than by the full model if all the PCs were used.

Found at: doi:10.1371/journal.pcbi.1000654.s001 (0.05 MB

DOC)

Table S2 The list of all paths between all pairs of phosphopro-

tein nodes in the network of Figure 4B. The format is explained in

Table 2 for all the paths from P38 to GSKA/B listed here.

Found at: doi:10.1371/journal.pcbi.1000654.s002 (0.03 MB

TXT)

Table S3 Comparison of prediction of 3 min and 10 min data

using the model developed by mapping 1 min data to 3 min

data. Numerical integration is used to predict the data at

10 min. s is root mean squared error (RMSE) between the

experimental data and its best linear-fit obtained between the

corresponding input and output data for the two intervals

independently.

Found at: doi:10.1371/journal.pcbi.1000654.s003 (0.05 MB

DOC)

Figure S1 Display of experimental data corresponding to the

four cases of valid paths from ERM and/or P38 to AKT in

Figure 5A.

Found at: doi:10.1371/journal.pcbi.1000654.s004 (1.59 MB TIF)

Figure S2 Display of experimental data corresponding to the

four cases of valid paths from SMD2 (SMAD 2) and/or ST1A/B

(STAT 1A/B) to PKCD in Figure 5C.

Found at: doi:10.1371/journal.pcbi.1000654.s005 (1.56 MB TIF)

Figure S3 Display of experimental data corresponding to the

four cases of valid paths from P38 and/or P65 to PKCM in

Figure 5D.

Found at: doi:10.1371/journal.pcbi.1000654.s006 (1.51 MB TIF)

Figure S4 Ligands distribution for all four cases of AKT

activation (displayed in Figure 5A). X-axis and Y-axis represent

Figure 8. Prediction of data at 10 min using the experimental data at 3 min and the reduced models containing only significant
predictors. Numerical integration is used to eliminate the error due to discrete approximation of time-derivatives. The central diagonal line is the y = x
line (i.e. perfect fit with no residual error). The dashed and dotted lines, denote the y = x6sf and y = x62sf lines, respectively; where sf is the best
(minimum) fit-error obtained by linear-regression between the experimental data at 3 min (as input) and the experimental data at 10 min (as output).
doi:10.1371/journal.pcbi.1000654.g008
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the name of ligand and counts of the cases respectively. For dual

ligand experiment, the case is added to both of the ligands.

Found at: doi:10.1371/journal.pcbi.1000654.s007 (0.31 MB TIF)

Figure S5 Ligands distribution for all four cases of PKCD

activation (displayed in Figure 5C). X-axis and Y-axis represent

the name of ligand and counts of the cases respectively. For dual

ligand experiment, the case is added to both of the ligands.

Found at: doi:10.1371/journal.pcbi.1000654.s008 (0.31 MB TIF)

Figure S6 Ligands distribution for all four cases of PKCM

activation (displayed in Figure 5D). X-axis and Y-axis represent

the name of ligand and counts of the cases respectively. For dual

ligand experiment, the case is added to both of the ligands.

Found at: doi:10.1371/journal.pcbi.1000654.s009 (0.31 MB TIF)

Figure S7 Distribution of the consistency of pathways for nodes

which are activated through two different pathways (similar to

Figure 5), based on the mapping of data from 3 min to 10 min. X-

axis represents four possibilities: (1) neither path consistent

(‘None’), (2) path 1 consistent, but not 2 (3) path 2 consistent but

not 1, (4) both paths consistent. Y-axis represents the number of

experiments counted for each case.

Found at: doi:10.1371/journal.pcbi.1000654.s010 (0.32 MB TIF)

Figure S8 Display of experimental data corresponding to the

four cases of valid paths from ERM and/or P38 to AKT in

Figure S7A based on the mapping of data from 3 min to

10 min.

Found at: doi:10.1371/journal.pcbi.1000654.s011 (1.51 MB TIF)

Figure S9 Display of experimental data corresponding to the

four cases of valid paths from P38 and/or AKT to GSKa/b in

Figure S7B based on the mapping of data from 3 min to 10 min.

Found at: doi:10.1371/journal.pcbi.1000654.s012 (1.26 MB TIF)

Figure S10 Display of experimental data corresponding to the

four cases of valid paths from SMD2 (SMAD 2) and/or ST1A/B

(STAT 1A/B) to PKCD in Figure S7C based on the mapping of

data from 3 min to 10 min.

Found at: doi:10.1371/journal.pcbi.1000654.s013 (1.59 MB TIF)

Figure S11 Display of experimental data corresponding to the

four cases of valid paths from P38 and/or P65 to PKCM in Figure

S7D based on the mapping of data from 3 min to 10 min.

Found at: doi:10.1371/journal.pcbi.1000654.s014 (1.46 MB TIF)

Figure S12 Based on the mapping of data from 3 min to

10 min: Ligands distribution for all four cases of AKT activation

(summarized in Figure S7A). X-axis and Y-axis represent the

name of ligand and counts of the cases, respectively. For dual

ligand experiments, the case is added to both of the ligands. The

panels A–D also correspond to the heat-maps of Figure S8 A–D,

respectively.

Found at: doi:10.1371/journal.pcbi.1000654.s015 (0.31 MB TIF)

Figure S13 Based on the mapping of data from 3 min to

10 min: Ligand distribution for all four cases of GSKa/b
activation (summarized in Figure S7B). X-axis and Y-axis

represent the name of ligand and counts of the cases, respectively.

For dual ligand experiments, the case is added to both of the

ligands. The panels A–D also correspond to the heat-maps of

Figure S9 A–D, respectively.

Found at: doi:10.1371/journal.pcbi.1000654.s016 (0.31 MB TIF)

Figure S14 Based on the mapping of data from 3 min to

10 min: Ligand distribution for all four cases of PKCD activation

(summarized in Figure S7C). X-axis and Y-axis represent the

name of ligand and counts of the cases, respectively. For dual

ligand experiments, the case is added to both of the ligands. The

panels A–D also correspond to the heat-maps of Figure S10 A–D,

respectively.

Found at: doi:10.1371/journal.pcbi.1000654.s017 (0.31 MB TIF)

Figure S15 Based on the mapping of data from 3 min to

10 min: Ligand distribution for all four cases of PKCM activation

(summarized in Figure S7D). X-axis and Y-axis represent the

name of ligand and counts of the cases, respectively. For dual

ligand experiments, the case is added to both of the ligands. The

panels A–D also correspond to the heat-maps of Figure S11 A–D,

respectively.

Found at: doi:10.1371/journal.pcbi.1000654.s018 (0.31 MB TIF)

Text S1 F-test in K-fold Cross-Validation

Found at: doi:10.1371/journal.pcbi.1000654.s019 (0.08 MB PDF)
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