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ABSTRACT The lowland ecotype of switchgrass has generated considerable interest because of its higher
biomass yield and late flowering characteristics compared to the upland ecotype. However, lowland
ecotypes planted in northern latitudes exhibit very low winter survival. Implementation of genomic selection
could potentially enhance switchgrass breeding for winter survival by reducing generation time while
eliminating the dependence on weather. The objectives of this study were to assess the potential of
genomic selection for winter survival in lowland switchgrass by combining multiple populations in the
training set and applying the selected model in two independent testing datasets for validation. Marker
data were generated using exome capture sequencing. Validation was conducted using (1) indirect
indicators of winter adaptation based on geographic and climatic variables of accessions from different
source locations and (2) winter survival estimates of the phenotype. The prediction accuracies were
significantly higher when the training dataset comprising all populations was used in fivefold cross
validation but its application was not useful in the independent validation dataset. Nevertheless, modeling
for population heterogeneity improved the prediction accuracy to some extent but the genetic relationship
between the training and validation populations was found to be more influential. The predicted winter
survival of lowland switchgrass indicated latitudinal and longitudinal variability, with the northeast USA the
region for most cold tolerant lowland populations. Our results suggested that GS could provide valuable
opportunities for improving winter survival and accelerate the lowland switchgrass breeding programs
toward the development of cold tolerant cultivars suitable for northern latitudes.
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Switchgrass (Panicum virgatum L.) is a North American native peren-
nial warm season grass and a promising cellulosic bioenergy feedstock.
The United States Department of Energy (USDOE) recognized switch-
grass as a model bioenergy feedstock owing to its higher biomass pro-
duction potential, perennial growth habit and stress tolerance (Parrish
and Fike 2005; Wright and Turhollow 2010). There are two ecotypes of

switchgrass, lowland (tetraploid) and upland (tetraploid and octoploid)
(Casler 2012; Lee et al. 2014; Parrish and Fike 2005). The lowland
ecotype has generated considerable interest due to its higher biomass
yield and late flowering characteristics relative to the upland ecotype
(Casler et al. 2011; Wullschleger et al. 2010; Poudel et al. 2019).

Lowland cultivars may have double the biomass yield of upland
cultivars when planted in southern locations (Casler 2012). As such,
breeding programs in the northernUSA are focused on adapting south-
ern lowland germplasm for use in the northern USA, where winter
conditions are considerably colder than in the southern USA. Two
traits form the focus of these breeding programs: late flowering to
extend the growing season and winter survivorship to ensure stand
longevity. Three strategies are being employed to accomplish this goal:
(1) the use of upland x lowland hybrids (Vogel et al. 2014; Poudel
et al. 2019), (2) selection for late flowering within northern-adapted
upland germplasm, and (3) selection for winter survivorship within
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late-flowering but unadapted southern lowland germplasm. The latter
strategy is the focus of this research.

Lowland ecotypes planted in the northern latitudes exhibit very low
winter survival. Lowland cultivars, when planted one hardiness zone
northof their origin, resulted in9 to17%reduction inbothbiomassyield
and survival (Casler et al. 2004). While winter survival (WS) can
be improved by selectively saving surviving plants exposed to low-
temperature stress, this approach requires several years for the com-
pletion of a single selection cycle and its success is highly dependent on
the presence of winter conditions that generate the appropriate selec-
tion pressure. Moreover, selection based on controlled environments
does not always reflect selection under realistic field conditions, due to
differential gene expression (Dhanaraj et al. 2007). As such, the effi-
ciency and effectiveness of controlled-environment selection may not
represent the optimal solution. Genomic prediction and selection could
potentially enhance switchgrass breeding for winter survival by
reducing generation time (Lipka et al. 2014; Simeão Resende
et al. 2014; Wong and Bernardo 2008) while eliminating the de-
pendence on weather.

Genomic selection (GS) is emerging as a powerful tool in animal and
plant breeding (Heffner et al. 2009). Through dense genome-wide
marker coverage to predict the breeding value of complex traits
(Meuwissen et al. 2001), it facilitates rapid selection of superior
genotypes and accelerates breeding cycles. Several GS models such
as genomic-best linear unbiased predictor (G-BLUP)(Hayes et al.
2009), ridge regression-BLUP (RR-BLUP) (Endelman 2011),
reproducing kernel Hilbert space (RKHS) (Gianola and van Kaam
2008), Bayesian models (Park and Casella 2008) and random forest
(RF) (Díaz-Uriarte and De Andres 2006) along with their regulariza-
tion are being used to optimize gains in accuracy. Despite the role of
prediction procedures, the efficiency of GS models is primarily af-
fected by heritability of the trait, effective population size of the train-
ing set, the relationship between individuals in training and testing
sets, and marker density (Calus et al. 2008; Habier et al. 2013).

Genomic studies relating predictive ability by combining multiple
populations intoa single trainingset are limited. Increasing the sizeof the
training set by combining populations, generally improves prediction
accuracies because the markers effects are estimated from a larger
number of phenotypes, assuming some degree of homogenous pop-
ulation structure (Lorenzana and Bernardo 2009; VanRaden 2008).
However, increasing size with unrelated individuals or with a hetero-
geneous population structure might lead to inconsistent linkage dis-
equilibrium (LD) patterns between the marker and causal variants
(Wientjes et al. 2013) and thus might reduce prediction accuracy. The
use of high-density markers in GS predominantly captures small-effect
quantitative trait loci (QTL) and outperforms the breeding efficiency
based on phenotype or marker-assisted selection. Marker density is a
critical component of GS predictive ability because a higher number of
markers increases the probability that the causal variant will be in LD
with at least some markers across the population (Calus et al. 2008;
Goddard 2009). In a simulation study in cattle, combining populations
had been beneficial in improving predictive ability at high marker
density and was more accurate for traits with low heritability (de Roos
et al. 2009).

The assessment of GS in switchgrass had previously been performed
by Lipka et al. (2014), Ramstein et al. (2016), and Casler and Ramstein
(2018) for morphological and biomass quality traits, which all demon-
strated the possibility of increased gain per unit time. However, GS for
winter survival has not been reported. In this study, we examined the
potential of GS for winter survival in lowland switchgrass by combin-
ingmultiple populations in the training set. Specifically, we assessed the

performance of genomic prediction procedures and applied the selected
model to two independent datasets for validation purpose in two con-
texts: (1) using indirect indicators of winter adaptation based on geo-
graphic and climatic variables of accessions from different source
locations and (2) using winter survival estimates of the phenotype.

MATERIALS AND METHODS

Training population
This study used metadata on 405 half-sib (HS) families from five
separate lowland switchgrass experimental nurseries (Table 1) namely:
Liberty (Ramstein et al. 2016), WS11L, WS08L (Evans et al. 2018a;
Grabowski et al. 2017), WS09L, and Expresso. These five experiments
represented multiple breeding populations of lowland or hybrid
switchgrass. All nurseries were planted using a row-plot design with
three or four replicates per location either in 2011 or 2012. Plots
consist of one row of five plants on a 30 cm spacing with 90 cm
between rows. The experiments were evaluated in a randomized com-
plete block design (RCBD) at two locations: Arlington, WI (Plano silt
loam; fine-silty, mixed, superactive mesic Typic Argiudoll) and Han-
cock,WI (Plainfield loamy sand; mixed, mesic Typic Udipsamment) or
Mead, NE (Sharpsburg silt loam fine, smectitic, mesic Typic Argiudoll).
Libertywas evaluated in Arlington,WI andMead,NE; whereasWS08L,
WS09L, and Expresso were evaluated in Arlington and Hancock, WI.
TheWS11L experimental nursery was the only exception, planted in a
completely randomized design only at Arlington, WI. Plots were har-
vested every year after the first killing frost and biomass was removed at
the time of harvest. Plots were fertilized with 100 kg N ha-1 in spring of
each production year.

Individual plants were scored for survival approximately 7-10 days
after the initial spring growth for two evaluation years: Spring 2014 and
Spring 2015. Scoringwas done by visual assessment of the percentage of
living shoots on the scale of 0-20, where 0 dead, 1 = one green shoot, ...,
and 20 = no winter damage (Supplemental Table 1). The best linear
unbiasedpredictor (BLUP)of eachhalf-sib familywasestimated for each
experiment considering all effects as random and using the following
linear model:

yijkl ¼mþ li þ fj þ rkðiÞ þ ð f · rÞjkðiÞ þ ðl · f Þij
þ ð f · r · lÞjkðiÞ þ eijkl

where: yijkl is the response, li, fj and rk(i) are the effects of location i,
family j and block k nested within location i respectively, and eijkl are
residuals. For WS11L, the following model was used:

yjkl ¼ mþ fj þ rk þ ð f · rÞjk þ ejkl

where: yjkl is the predicted response, fj and rk are the effect of family j
and replication k respectively, and ejkl are residuals. In order to ac-
count for experiment-wise phenotypic variation, the phenotypic
value for genomic analysis was set to be non-centered means such
that yi ¼ m̂þ f̂j.

Genotype and Quality Control
Thematernal parent of each HS family was genotyped using the exome
capture platform. Exome capture sequence reads were cleaned using
Cutadapt (https://cutadapt.readthedocs.org/en/stable/) and the FASTX
toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and were aligned to
the AP13 switchgrass reference genome (Version 1.1) using BWA-
MEM (Li 2013). Variants were called using the GATK package
(McKenna et al. 2010) and copy number variants were called using
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CNVnator (Abyzov et al. 2011). Genotype calling was implemented
using the EM algorithm of Martin et al. (2010). Markers were filtered
for the proportion of missing values lower than 20%; minor allele
frequency greater than 1/2N, with N being the total number of indi-
viduals; and Hardy-Weinberg equilibrium (HWE) based on a chi-
squared test p-value. 1024. Missing observations after filtering, less
than 5% of the total, were imputed by the population mean.

Training (Calibration) Dataset
Of the 405 HS families, 368 HS families were used to develop GS
models. Genotype data for 20 HS families were not available and
17 families were excluded from the analysis because genetically they
were classified as the upland ecotype, as determined by structure
analysis, or were classified as octoploid as demonstrated by the
deviation in distribution of heterozygote biallelic SNP’s alternate
allele frequencies from the mean value 0.5 to either 0.25 and/or 0.75.

The resultingmatrix containedmarkers at 435,919 polymorphic
sites for 368 HS families. The HS families in this dataset were
collected fromdifferent breeding programs and are subject to strong
population structure (Table 1, Supplemental Figure 1). A popula-
tion structure based on Admixture (Alexander et al. 2009) was
performed to identify potential population heterogeneity. Based
on the results from the admixture analysis the training population
was divided into three distinct population groups: Southern Low-
land, Eastern Lowland, and Lowland x Upland, closely corre-
sponding to the subdivisions shown earlier for the northern and
southern association panels (Evans et al. 2018a).

Genomic heritability was calculated as the variance explained by the
GBLUPmodel i.e., s2

u
s2
u þs2

e
, where s2

u is the variance of random effects of

markers and s2
e is the residual variance.

Each panel was evaluated for prediction accuracy using five GS
models. The standard statistical model for genomic prediction was
genomic BLUP (GBLUP). The GBLUP model is defined as

y ¼ mþ Zuþ e

where y is the HS family BLUP, m is the grand mean, Z is the marker
identity matrix; u � N(0, Ks2

u), K being the n x n genome estimated
relationship matrix and e is the residual. The GBLUP model assumed
additive, linear and homoscedastic effects of the markers and was
fitted using rrBLUP (Endelman 2011) R package. In addition, Bayes-
ian models BayesA (BA), BayesB (BB) and Bayesian lasso (BL) were
considered (Meuwissen et al. 2001; Park and Casella 2008). The
Bayesian models were fitted using BGLR R package (Pérez and de
los Campos 2014) with 20000 iterations and 5000 burn-in. To
account for heteroscedastic and nonlinearity, a machine learning
method, Random Forest (RF), was implemented. The RF model
was fitted with 200 decision trees and 1/6 of total markers as
the number of variables to be randomly sampled as candidates at

each split using R package randomForest (Díaz-Uriarte and De
Andres 2006).

The prediction accuracy in the training set was determined as the
Pearson coefficient of correlation between the phenotypic BLUPand
predicted GEBV as determined using a fivefold CV scheme (Legarra
et al. 2008). In this scheme, the observations were randomly di-
vided into five non-overlapping groups, four of which were used as
a pseudo-training set and the remaining group was assigned as a
testing set. The CV was replicated 20 times and the average was
used as the predicted GEBV for GBLUP model and un-replicated
for all other models. The GEBV generated from heteroscedastic
and/or nonlinear models were compared to those from the GBLUP
model using Dunnett’s paired t-test using R package multcomp
(Hothorn et al. 2017).

Validation Datasets
Several trainingmodelswereevaluated for validationperformanceusing
two independent datasets: validation datasets #1 (VDS #1) and #2 (VDS
#2) (Tables 2 and 3). All validations were conducted using three dif-
ferent training sets: All Populations (Southern Lowland, Eastern Low-
land, and Lowland x Upland), All Lowland (Southern Lowland and
Eastern Lowland), and Southern Lowland populations.

Validation dataset #1 consisted of 253 individuals comprising
43 populations or accessions, which were defined as lowland based
on structure analysis and were independent of the training set (Evans
et al. 2018a; Grabowski et al. 2017). Accuracy of prediction was calcu-
lated as a Pearson’s coefficient of correlation between adjusted genome
estimated breeding values (GEBV) and climatic or geographic vari-
ables: 30-yr mean minimum temperature of the coldest month
(http://www.worldclim.org/), latitude, and longitude of the site of
origin of the source population (Supplemental Table 2). Adjusted
GEBV was calculated by fitting a linear model to account for the
effect of individuals within the population.

This dataset is subject to strong population structure. Therefore,
additionally, a mixed population matérn (MPM) model (Ramstein and
Casler 2017) was performed to account for population heterogeneity
using the following linear model

y ¼ mþ uþ e; u � N
�
0; ðVnsZZ9 s2

u

�
and e

� N
�
0;s2

e

�
;Vn ¼ Kv;hðPi; PjÞ

where: y is the n-vector of phenotype, u = Zm, Z is marker matrix
(n x m), s is the element-wise product, Vn is n x n covariance
matrix depicting population differentiation among individuals,
K is the matérn kernel function with v and h as scale and shape
parameters and (Pi, Pj)marker estimated principal components (pc)
for any pair of individuals (i,j). This model is denoted by GBLUP-
MPM throughout this paper.

n Table 1 Description of switchgrass source populations and half-sib families used for genomic prediction of winter survival (training
data sets)

Population Ecotype Source of germplasm Number of families

Libertya Lowland · Upland Kanlow · Summer 111
WS11L Lowland Georgia and Alabama 36
WS08Lb Lowland Eastern and Southern USA, Great Plains 130
WS09L Lowland North Carolina, South Carolina, Florida 69
Expresso Lowland Mississippi 59
a
Ramstein et al. (2016).

b
Evans et al. (2018a); Grabowski et al. (2017).
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GBLUP-MPM model is the extension of the GBLUP model which
accounts for population heterogeneity using principal components
calculated from marker data on the combined (calibration and valida-
tion) dataset. The number of principal components (d) to be used was
determined based on the variance explained by each component and
number of clusters revealed through the principal component plot. The
optimization of v and h parameters inVn were estimated by maximiz-
ing the restricted likelihood of the above model using R function
constrOptim, given the starting point for (vo, h0) as (0.5, 0.5). The
Euclidean distance matrix (n x n covariance matrix) depicting popula-
tion differentiation among individuals was estimated from d, v, and h
using the matérn function in R.

Validation dataset #2 was a subset of data, mostly consisting of
natural populations originated from Southern USA (Supplemental
Table 3) from a winter survival study in Wisconsin (unpublished
data). Seedlings that were 16 weeks of age were transplanted in June
2015 at two locations: Arlington, WI andMadison, WI (Kegonsa silt
loam; fine-silty over sandy or sandy-skeletal, mixed, superactive,
mesic Mollic Hapludalf), in a randomized complete block design
with eight blocks and 25 plants per plot. Plants were spaced 0.3 m
apart within rows and rows were 0.9 m apart. The winter survival of
individual plants was scored in Spring 2017, as described for the
training set. A random set of 178 individuals representing 23 pop-
ulations were genotyped as described for the training set (Supple-
mental Table 3).

The winter survival phenotypic values for populations were esti-
mated using the following random effect model.

yijk ¼ pi þ bj þ ðp x bÞij þ eijk

where: yijk is the predicted response, pi and bj are the effect of pop-
ulation i and block j respectively, and eijk are residuals. The effect of
location and location x population were significant (a , 0.05) for

winter survival, so locations were analyzed separately for prediction
purposes.

Two prediction procedures were used for this validation set. First,
phenotypic winter survival scores for the exact same individuals gen-
otyped in the VDS #2 (N = 178) were used to calculate prediction
accuracy. Second, adjusted GEBV for populations were computed on a
population basis independently for the Arlington and Madison loca-
tions. Adjusted GEBV and phenotypic BLUP values were then used to
calculate prediction accuracies on a population basis for each location.

Data availability
Genotype and phenotype data of training set and validation dataset #2
and supplemental materials necessary for confirming the conclusions
presented in the article are available at Figshare. Geno_TS.rds is the
training dataset consisting of 368 individuals at 434,254markers, geno_
vds2.rds is the validation dataset #2 with 178 individuals at 460,822
markers position. Pheno_TS.csv and pheno_VDS2.csv are the corre-
sponding phenotype datafiles for the training set and the validation data
set #2.

The genotype data used for validation dataset #1 can be accessed
through Dryad Digital Repository under the name: snipe_slap_
sapper_filtered_biallelic_snps_final_reheader.txt.bz2 (Evans et al.
2018b) (https://doi.org/10.5061/dryad.mp6cp). Supplemental ma-
terial available at Figshare: https://doi.org/10.25387/g3.7336187.

RESULTS

Phenotypic variability for winter survival
There was considerable variation in winter survival among
populations, ranging from,1% in Expresso to almost 50% in Liberty,
a population derived from lowland x upland hybrids (Table 2). As
expected, HS families from Liberty had the highest mean winter sur-
vival in both years, likely due to the upland genome in their ancestry.

n Table 3 Mean GBLUP prediction accuracies for five combinations of switchgrass populations based on winter survival in either spring
2014 or 2015

Population name Number of families Number of SNP markers Spring 2014 Spring 2015

All Populations 368 434,919 0.88 0.91
All Lowland 257 400,699 0.87 0.77
Southern Lowland 168 204,636 0.17 0.43
Eastern Lowland 89 239,612 0.15 0.23
Lowland x Upland 111 95,397 0.20 0.02

n Table 2 Mean winter survival percentage and family-mean broad sense heritability (H2) for five switchgrass populations and five
population groups, based on field data from Spring 2014 or 2015 at Arlington and Hancock, WI

Spring 2014 Spring 2015

Mean winter Survival H2a Mean winter Survival H2

% %
Liberty (111)b 36.7 6 0.7 0.24 49.3 6 0.3 0.13
WS11L (36) 19.8 6 1.1 NA 29.4 6 0.9 NA
WS08L (130) 37.4 6 0.9 0.72 23.1 6 0.7 0.71
WS09L (69) 5.9 6 0.5 0.62 3.1 6 0.4 0.68
Expresso (59) 0.5 6 0.1 0.87 0.2 6 0.1 0.92
All populations (368) 24.8 6 1.1 0.95 24.5 6 1.1 0.93
All Lowland (257) 19.6 6 1.4 0.99 13.8 6 1.0 0.89
Southern Lowland (168) 5.3 6 0.8 0.98 5.6 6 0.8 0.85
Eastern Lowland (89) 46.5 6 1.5 0.63 29.3 6 1.2 0.61
a
NA = No heritability estimates due to evaluation of this population at only one location.

b
The number inside the parenthesis represents number of half-sib families.
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Liberty had the lowest broad-sense heritability compared to the other
populations, all of which had broad-sense heritability .0.62. The low-
land populations derived from southern USA germplasm possessed con-
siderable phenotypic variability for winter survival, both among and
within populations, the latter evidenced by the relatively high heritability
values.

The structure analysis of these genotypes, using the DNA marker
matrix, resulted in a strong split of lowland individuals between an
Eastern Lowland population and a Southern Lowland population
(Supplemental Figure 1), which was similar to results of Evans et al.
(2018a). The Eastern Lowland population derives largely from New
York and New Jersey (Evans et al. 2018a), while the Southern Lowland
population derives from the Carolinas, the Gulf Coast, and the south-
ern Great Plains. Again, largely as expected, the Eastern Lowland
population had a higher mean winter survival compared with the
Southern Lowland population (Table 2).

Genomic structure and relatedness
Thedistributionofminorallele frequency(MAF)of the selectedmarkers
in the Eastern Lowland and Southern Lowland populations differed
from that of theLowlandxUplandpopulation.The95thpercentile of the
markers in Lowland x Upland had MAF, 0.39 while it was only 0.18
and 0.29 in Eastern Lowland and Southern Lowland, respectively (Sup-
plemental Figure 2) indicating the proportion of alleles at or near
fixation was higher in natural populations than the bi-parental hybrid
population. Similarly, the pattern of LD decay in the Lowland x Upland
population was slower than the other populations (Supplemental
Figure 3) in accordance with the smaller effective population size of
the Lowland x Upland population. The within-population identity-
by-state (IBS) was highest in Eastern Lowland (0.35) followed by
Lowland x Upland (0.17) and lowest in Southern Lowland (0.07).

The among-population coefficients of IBS were nearly zero, which
can be inferred from Figure 1.

Assessment of genomic prediction procedures
The assessment of genomic models was conducted separately for five
population groups: All Populations, All Lowland, Southern Lowland,
Eastern Lowland, and Lowland x Upland. Prediction accuracies for the
GBLUP model were highly variable across population groups, ranging
from 0.02 to 0.91 (Table 3). Prediction accuracies were highest for the
most diverse population groups with the greatest population size. Pre-
diction accuracies were lowest for the Lowland x Upland population,
probably due to the low heritability of winter survival in this popula-
tion. None of the other genomic prediction models resulted in any
improvement over the GBLUP model (data not shown).

Validation of genomic prediction models (VDS #1)
Validationdata set #1was composedof exclusively lowlandpopulations,
most of which were of southern origin (Supplemental Table 2). There-
fore, it was of interest to determinewhich of three potential training sets
provided the best predictions of GEBV from minimum temperature,
latitude, or longitude of the site of origin for the populations in
Supplemental Table 2. Correlation coefficients (r) of GEBV
with minimum temperature and longitude were always negative and
those with latitude were always positive, with the only exceptions
occurring for the Southern Lowland population (Table 4). Predictions
using GBLUP-MPMmodel were more accurate than GBLUPmodel as
evidenced with increased |r| value by up to 0.19 while using models
based on All Populations and the All Lowland population. The un-
derrepresentation of Eastern-origin individuals in the Southern Low-
land training set probably led to the inconsistency in prediction
accuracies for that population.

Figure 1 Marker-derived genomic
relationships (identify-by-state, IBS)
for 368 switchgrass half-sib fam-
ilies in the genomic prediction
training set (bold bordered area)
and Validation data set #2 (VDS
#2). The label “Population num-
ber” on the y-axis refers to an
arbitrary number assigned to
368 half-sib families of the train-
ing set plus 178 individuals in
VDS #2.
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The highest and most consistent correlation coefficients across
all variables, years, and methods were observed for the All Lowland
population as the training set (Table 4). Multiple linear regressions of
the GEBV obtained using this model with geographic variables latitude
and longitude were performed to observe the relative contribution of
each variable on winter survival. The minimum temperature was not
included in the model because of collinearity (r = 0.88) with latitude.
Longitude was statistically significant in all combination of years
and methods (a , 0.01) however latitude was not significant for the
GBLUP method in 2015 (a . 0.05, Table 5). However, the prediction
method GBLUP-MPM improved the prediction such that both geo-
graphic variables were statistically significant (a , 0.01) in both
years. By accounting for population heterogeneity, the fitness of
these models, as explained by adjusted R squared, increased by
0.11 and 0.14% for the 2014 and 2015 datasets, respectively. The
map representing the origin of the populations with their adjusted
GEBV using GBLUP-MPM method is presented in Figure 2. This
result indicated that winter survival of lowland switchgrass popu-
lations had a linear relationship to the origin of the population i.e.,
gradually increasing from south to north and from west to east.

Validation of genomic prediction models (VDS #2)
The predictive ability of models developed using training sets All
Populations or All Lowland, when applied to all individuals of VDS
#2 using the GBLUP individual prediction method, was less than 0.20
(Table 6). The low accuracies for these validations were most likely
affected by two factors: inclusion of unrelated individuals in the train-
ing set (the VDS #2 mostly had a southern origin) and possible in-
clusion of octoploids in the validation set (see discussion). The use of
exclusive southern-origin populations in the training set (Southern
Lowland) significantly increased the predictive ability of the genomic
prediction model for all prediction methods. This increase in the

prediction accuracy could be supported by the fact that the populations
used in VDS #2 were mostly natural populations collected from the
southern USA and had a closer resemblance to the individuals in the
Southern Lowland population (Figure 1).

For all combinations of the training set and GBLUP prediction
methods, the prediction accuracies for the dataset consisting only
putative tetraploids were higher than for the dataset consisting of all
individuals for 2014 data, but not for 2015 data. Prediction accuracies
based on Arlington data were always higher than for Madison data
which is probably associated with stronger winter pressure at Arlington
due to colder temperatures. Arlington was also one of the sites used for
calibrating the training model.

DISCUSSION
The winter of 2013/14 had consistently lower minimum temperatures
throughout the winter than the 30-year normal minimum temperature
(data not shown, https://www.ncdc.noaa.gov/cdo-web/), suggesting
that relatively high selection pressures were likely exerted on these
nurseries in the training set. This was evidenced by relatively high
phenotypic variability between and within populations (Table 2). The
winter survivorship scores were highly correlated between evaluation
years 2014 and 2015 (85%), as the effects from the second winter were
largely additive to the evaluation from the first year. However, the data
were analyzed separately for each year as a test of consistency in pre-
diction and due to a significant genotype x year interaction.

This study used meta-data from five experimental nurseries com-
prising multiple populations tested in multiple environments. Several
studies have proposed that multiple-environment GS models can
capture the variability due to the environment and increase the perfor-
mance of genomic prediction (Burgueño et al. 2012; Cuevas et al. 2016;
Lado et al. 2016). The common strategies to deal with genotype x
environment interaction (GxE) are to ignore, reduce or exploit it

n Table 4 Correlation coefficients between genomic estimated breeding values (GEBV) for winter survival (Spring 2014 or 2015) and
climatic or geographic variables of switchgrass accessions comprising Validation data set #1

Min Tempa Latitude Longitude

Training set Method Spring 2014 Spring 2015 Spring 2014 Spring 2015 Spring 2014 Spring 2015

All Populations GBLUP 20.23b 20.04 0.57 0.32 20.76 20.60
All Lowland GBLUP 20.27 20.15 0.61 0.47 20.78 20.70
Southern Lowland GBLUP 20.26 20.17 0.09 20.05 0.25 20.19
All Populations GBLUP-MPM 20.37 20.10 0.71 0.43 20.80 20.69
All Lowland GBLUP-MPM 20.38 20.29 0.72 0.62 20.80 20.74
Southern Lowland GBLUP-MPM 20.26 20.17 20.05 0.07 0.25 20.19
a
Min Temp = 30-yr mean minimum temperature of the coldest month at the site of origin of source population.

b
Critical values for P , 0.01 significance are: 0.14 for All Populations, 0.17 for All Lowland, and 0.20 for Southern Lowland.

n Table 5 Coefficients of multiple linear regression for regressions of adjusted genomic estimated breeding values (GEBV) predicted from
latitude and longitude of the origin for all lowland switchgrass populations within Validation data set #1

Spring 2014 Spring 2015

Source of variation Estimate t-value P-value Estimate t-value P-value

GBLUP Intercept 67.14 3.05 �� 48.64 3.12 ��

Latitude 1.13 3.15 �� 0.37 1.45 NS
Longitude 0.98 6.47 ��� 0.52 4.86 ���

R2 0.68 0.48
GBLUP-MPM Intercept 46.88 2.51 � 32.23 2.53 �

Latitude 1.67 5.48 ��� 0.67 3.23 ��

Longitude 0.98 7.57 ��� 0.47 5.28 ���

R2 0.79 0.62
� , ��, ��� Significantly different from zero at the 0.05. 0.01, or 0.001 probability level, respectively. NS = Non-significant.
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(DeLacy et al. 1996; Eisemann et al. 1990). For each experiment in this
study (except WS11L, which was evaluated in only one location),
there was a significant GxE interaction. The strategy we employed
here was to reduce the GxE interaction by modeling it during the
estimation of phenotype (Lado et al. 2016). We did not model to
exploit the GxE in this study because the goal of this study was to
determine the possibility of GS for winter survival and to use genomic
prediction of population performance to develop more broadly adapted
switchgrass populations across multiple locations (Lal 2013). Candidate
switchgrass cultivars to be developed from this research will require fairly
broad adaptation across hardiness zones 4-6 before they can be released
for commercialization.

GS prediction procedures and validation
Most of the GS studies consider optimization of the genomic prediction
procedures to improve the performance of prediction (Moser et al.
2009). There are several reported studies which used marker data

transformation for GS. While marker data transformation by account-
ing for LD and weighing marker effects may be useful in reducing the
effective number of markers (Ramstein et al. 2016), it did not signifi-
cantly or consistently improve the prediction accuracy for dry matter
yield in switchgrass. Similarly, higher marker density had an important
role on the reliability of predictive ability while predicting across mul-
tiple populations because higher numbers of markers will increase the
probability that the causal variant will be in LD with at least some
markers across the populations (Calus et al. 2008; Goddard 2009). In
many studies, combining different groups of related populations as part
of the training set has shown to increase prediction accuracy (Schulz-
Streeck et al. 2012; Technow et al. 2013; Zhao et al. 2012). Therefore,
we incorporated all markers in our model regardless of marker effects
and LD (de los Campos et al. 2013; Ramstein et al. 2016). The higher
predictive ability of GBLUP over other models in this study could
be because of the low LD (Supplemental Figure 3) among markers,

Figure 2 Adjusted genomic es-
timated breeding values (GEBV)
of the populations in Validation
data set #1 (VDS #1) plotted
over the map of USDA hardi-
ness zones. A. Predicted winter
survival 2014 and B. Predicted
winter survival 2015.
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supporting the results by Zhong et al. (2009) who reported GBLUP
models to perform better than Bayesian models when markers were in
weak LD and the individuals were highly related.

The model based on a training set that includes the Lowland x
Upland population had lower predictive ability compared to the model
based on the exclusively Lowland-ecotype training set when evaluated
against the two independent-validation datasets (VDS #1 and VDS #2).
This is likely due to the strong genetic dissimilarity of the Lowland x
Uplandpopulation compared to the otherpopulations (Figure 1), owing
to the differences in divergence between natural lowland populations
and the selectively bred population that includes a significant dose of
upland germplasm in its parentage (Zhang et al. 2011a). These results
are similar to those of Ramstein et al. (2016), who demonstrated
low prediction accuracies between a diverse upland population
and the Lowland x Upland population used in our study. Such
low prediction accuracies might be due to the low degree of IBD
between ecotypes (Würschum et al. 2013) (Figure 1) and differences
in mean performance for the trait between training and validation
sets (Windhausen et al. 2012).

Switchgrass ecotypes, cultivars, and breeding populations are
highly sensitive to GxE interactions. Latitude and photoperiod
combine to form the most important factor in determining adap-
tation. In general, ecotypes or cultivars planted more than one
hardiness zone north or south of their origin are frequently subject
to significant reductions in both biomass yield and survival (Casler
et al. 2004; Casler et al. 2007; Hopkins et al. 1995). Breeding for
broad adaptation, including selection for winter survivorship un-
der optimal conditions (i.e., with favorable selection pressure) can
alter this relationship by broadening the adaptation of some pop-
ulations (Casler et al. 2018). Longitude is also a significant factor
influencing GxE interactions of switchgrass, largely in the form of
a moisture gradient from the Great Plains to the Atlantic Seaboard
(Casler et al. 2004; Casler et al. 2019). The prediction model based
on all lowland populations was highly effective at predicting
GEBV for winter survival in Wisconsin, based solely on latitude
and longitude of the site-of-origin (Tables 4 and 5). These results
indicate that genomic prediction methods can be utilized to target
germplasm exploration efforts within regions that possess the
greatest potential for contributing favorable alleles to the breeding
program. Previous germplasm exploration efforts have been fo-
cused vaguely and broadly on collecting lowland ecotypes from

across the entire southern USA to capture the late flowering trait
(Casler 2012).

Using the validation results forVDS#1, future efforts can be directed
tomore specific sites and regionswith a higher probability of containing
alleles useful for improving freezing tolerance of northern-adapted
lowland populations, as illustrated in Figure 2. Indeed, inspection
of Figure 2 suggests that genomic prediction may not be a necessary
component for targeting switchgrass exploration and collection to
broaden the allelic base for winter hardy lowland germplasm. Within
the Great Plains, hardiness zone is the key component, with the most
hardy germplasm coming from the most northern hardiness zones.
Likewise, there is a clear trend within hardiness zones 8 and 9, that
the most winter hardy germplasm tends to be more eastern in origin.
Alleles for winter survivorship and genotypes capable of surviving
Wisconsin winters appear to reside within nearly all investigated pop-
ulations, at varying frequencies, but the more northern and eastern the
origin, the higher the frequency of these alleles and genotypes.

An additional application of these results will be in the utilization of
genomic prediction procedures within the breeding program, i.e., ac-
celerating the breeding of freezing-tolerant lowland populations
through genomic selection. For this application, the Southern Lowland
prediction models appear to have the most applicability, as evidenced
by the highest prediction accuracies likely due to the high mortality
rates associated with populations of southern origin (Table 2). The
Eastern Lowland populations were not useful in this regard, due to
their relatively lowmortality in the field studies, owing to their northern
and eastern origin (Table 2, Figure 2). Furthermore, these Eastern
Lowland populations tend to be early to moderate in flowering date,
as determined by their evolution at 40 to 42�N latitude.

Previous studies of GxE interactions in switchgrass, demonstrating
strong adaptational responses associated with both latitude and longi-
tude, have been largely based on upland cultivars and ecotypes (Casler
et al. 2007; Hopkins et al. 1995). This study expands upon those results,
demonstrating that these adaptational responses also apply equally
importantly to genotypes within the lowland ecotype of switchgrass.
Furthermore, Figure 2 also demonstrates that most lowland accessions
of switchgrass possess some alleles for winter survivorship in hardiness
zones 4 and 5, as well as a small frequency of genotypes capable of
surviving winters in these hardiness zones. Remnant genetic variability
for winter survivorship within Southern Lowland populations is likely
due to the relatively short period of time since the last glacial maximum

n Table 6 Prediction accuracy for winter survival of switchgrass populations in Validation data set #2. Predictions were based on GBLUP
methods applied to training data sets from Spring 2014 or 2015 and applied to independent populations evaluated in 2017 at Arlington or
Madison, WI

All individuals Putative tetraploids only

Training set
GBLUP prediction

methoda
Number of
families

Number of
SNP markers

Spring
2014

Spring
2015

Spring
2014

Spring
2015

All Populations Individual 368 200,933 0.05 0.19 0.17 0.01
Arlington 0.34 0.14 0.46 0.17
Madison 0.05 0.14 0.15 0.00

All Lowland Individual 257 176,581 0.01 0.13 0.20 0.01
Arlington 0.34 0.14 0.46 0.17
Madison 0.05 0.14 0.15 0.00

Southern Lowland Individual 168 141,344 0.51 0.19 0.51 0.25
Arlington 0.79 0.46 0.84 0.49
Madison 0.65 0.24 0.64 0.28

a
Individual: Prediction of individuals that were exactly sequenced. 178 Individuals representing 23 populations from location Madison were sequenced and All
individuals comprised all 178 individuals and putative tetraploids comprised 138 individuals. Arlington: prediction of population GEBV at the Arlington location
(23 populations for All individuals and 18 populations for putative tetraploids only); Madison: prediction of population GEBV at the Madison location (23 populations
for All individuals and 18 populations for putative tetraploids only). GEBV = genomic estimated breeding value.
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when northern and southern populations, as well as upland and low-
land ecotypes, were compressed together into a narrow adaptational
zone (Zhang et al. 2011b). Hybridization between extreme genotypes
was frequent during glacial maxima, essentially creating wide hybrids
and new genotypes that were useful in repopulating prairie and savanna
ecosystems during the past 11,000 years. The polyploid nature of
switchgrass is likely an important factor, at least partly responsible
for the remnant variability for extreme winter survivorship within these
Southern Lowland populations.

Effect of the octoploid and tetraploid admixture in
prediction accuracies
Flow cytometry of 11 populations within VDS #2 revealed an
admixture of tetraploids and octoploids, with two out of eleven
populations classified as octoploids. Genomic analysis was per-
formed to determine the ploidy of all populations similar to that
by Lu et al. (2013), using allelic read depth counts to generate
apparent segregation ratios. For each individual, the reference allele
frequency at each marker position was calculated as a ratio of ref-
erence allele read depth to the total read depth. A distribution of the
reference allele frequency of heterozygous markers (segregating in a
1:2:1 Mendelian ratio) was plotted. All tetraploids had a peak at
allele frequency 0.5. Conversely, the individuals which were octo-
ploid had a peak at allele frequency 0.75 (Supplemental Figure 4)
(Evans et al. 2018a; Grabowski et al. 2017). The determination of
ploidy on the remaining individuals was based on similarity of
segregation ratios to known tetraploid types or octoploid types.
Based on these observations, 40 individuals from five populations
were predicted to be octoploid.

Because there are very few reported lowland switchgrass that are
octoploids (Zalapa et al. 2011; Zhang et al. 2011a), population structure
analysis was required to identify the origin of these five populations.
A combined population structure analysis of VDS #2 with the northern
association panel (Evans et al. 2018a) revealed a hybrid origin of these
five populations (Supplemental figure 1B), similar to observations
made by Zhang et al. (2011a). The five VDS #2 octoploids populations
in this study originated from Alabama, Georgia, Mississippi and Ten-
nessee, where most of the intermediate octoploids accessions origi-
nated, and where both upland and lowland genotypes are known to
be adapted (Zhang et al. 2011a).

The octoploid populations in this study had higher average
predicted winter survivorship than tetraploids when the training
set containing all lowland populations was used. This is likely due to
their hybrid origin, containing significant upland genomic content,
and unlikely due to ploidy per se. This result was in contrast to the
phenotypic value recorded from the field evaluation and likely had a
small adverse impact on predictive accuracy. Higher ploidy levels
are generally associated with increased photosynthetic activity and
greater stress tolerance in several crops (Joseph et al. 1981; Warner
et al. 1987), while some reports indicated a decrease in photosyn-
thesis activity (Austin et al. 1982). However, in switchgrass, higher
ploidy (hexaploid) was reported to have lower photosynthetic ac-
tivity than tetraploids (Wullschleger et al. 1996). Irrespective of the
photosynthetic activity, the field evaluation of populations in VDS
#2 demonstrated no differences in winter survivorship between
octoploid and tetraploid populations that originated from the
Southern USA. Due to the small differences in prediction accuracy
between the full validation set and the tetraploid-only validation set
(Table 6), it appears that these genomic prediction equations are
relatively insensitive to ploidy. Rather, the geographic source of
populations, reflecting their underlying genetic makeup, diversity,

and linkage relationships, are the more important determinants of
prediction accuracies within independent validation sets.

The overall aim of this study was to assess the GS models for
predicting winter survivorship in lowland switchgrass populations.
The measurement of winter survival under field conditions is very
challenging in switchgrassbecause it is highlydependenton thepresence
of winter conditions that generate appropriate selection pressure. This
was clearly evident in the evaluation of the VDS #2 population, with
experienced ,5% mortality following the winter of 2015/2016, com-
pared to 50–75% following the winter of 2016/2017, even though the
average minimum temperature during these two winters was similar.
This limitation could be addressed to some extent by conducting se-
lection in a controlled environment, but controlled environments do
not often mimic real field conditions. Field grown plants are exposed to
a varying light spectrum, light intensities, wind pressure, variable snow
cover, and biotic stresses that are not present in controlled environ-
ments, resulting in differential gene expression (Dhanaraj et al. 2007;
Gusta and Wisniewski 2013). Furthermore, the performance of peren-
nial grass species cannot be effectively evaluated in a single growing
season, as evidenced by multiple short-term breeding cycles leading to
relaxed selection pressure for winter survivorship in high-digestibility
switchgrass populations (Vogel et al. 2002). In general switchgrass
breeding requires 3 to 7 years for the completion of a single phenotypic
selection cycle (Casler 2012) and field evaluations should occur over
a minimum of three winters (Casler et al. 2019).

Prediction accuracies, based on validations with indepen-
dent populations in this study showed a high degree of predictive
ability, within the range for which GS is thought to be beneficial
for improving the efficiency of breeding programs (Simeão
Resende et al. 2014). Results from the VDS #1 population indi-
cate that it is possible to target sites for additional lowland switch-
grass germplasm collection in the northern Great Plains, certain
regions along the Gulf Coast, and in the northeastern USA. Sim-
ilarly, the validation results from the VDS #2 population indi-
cated that GS could be confidently used for predicting winter
survivorship of individual genotypes within breeding popula-
tions, serving to both (1) accelerate the breeding program and
(2) provide a basis for consistent selection pressure that does
not necessarily depend on waiting for optimal selection condi-
tions in the field.
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