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1. Introduction

Breastfeeding is the very means by which humans have thrived and developed as a species.
Indeed, the Developmental Origins of Health and Disease Hypothesis recognises that the breastfeeding
phase, which can continue to 2 years and beyond, plays a major role in the continuum of optimal
programming of the lifelong health and development of the infant. Early life nutrition therefore
presents a window of opportunity where the infant’s short and long-term health can potentially be
improved in the face of escalating rates of chronic disease that have reached epidemic proportions.

This special issue “Breastfeeding and Human Lactation” is thus timely, in an era of resurgence of
lactation research, and is comprised of 30 manuscripts that cover a wide range of areas. This research
will contribute to a growing scientific knowledge base that is critical to improving breastfeeding rates
and the delivery of human milk (HM) to all infants, including those that cannot breastfeed, such
as the vulnerable preterm infant. The majority of the papers in this issue address one of two broad
themes; factors influencing milk composition, or relationships between milk composition and infant
development. Findings from these research papers further elucidate the variability of milk composition
and its impact on infant health.

2. Factors Influencing Milk Composition

It is evident that mammalian milk evolved as a protective fluid harbouring antimicrobial proteins
predominantly for the protection of the offspring, with nutrition developing later. As such, many
components of milk have dual roles, working synergistically to protect and nourish the infant.
Indeed, the footprints of evolution are apparent in the presence of immune cells in HM that increase
significantly in response to both maternal and infant infections. Twigger et al. [1] have identified
antimicrobial proteins, granulysin and perforin along with other granzymes released by leukocytes in
HM, that are elevated in maternal breast infection. Milk immune cells may therefore be beneficial for
protection of both the infant and the breast.

Anti-secretory factor (AF) is involved in the regulation of secretory processes and inflammation
and is expressed in immune cells: B-cells, macrophages and dendritic cells. AF concentrations in HM
are lower than that of maternal plasma, with a positive relationship between milk AF concentration
and maternal body mass index (BMI), which might be due to a greater level of maternal inflammation
associated with obesity [2].

It is increasingly apparent that maternal factors such as body composition, diet, ethnicity,
geography, genetics and lifestyle all contribute to the unique milk signature of each woman. In this
issue, a number of papers have shown differences in milk composition with respect to geographical
location. In particular, concentrations of the immune active molecules transforming growth factor-β2
(TGF-β2), immunoglobulin A (IgA), and hepatocyte growth factor (HGF) were higher in African
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women than in Italian women, suggesting a stronger response to the environment and thus greater
infant protection against infection [3].

With cutting-edge technologies, it is possible to study metabolites in all bodily fluids. Variability
of the metabolite profile of HM has not been comprehensively explored, however three papers have
attempted this ambitious task. It was shown in two studies that the milk metabolome differs according
to country [4,5] and mode of birth. Further interactions between the milk metabolites and microbes
in the milk were also discovered, indicating the importance of the milk microbiome [5]. The third
paper studied the endocannabinoid metabolome, for which there are receptors in the infant brain
with evidence of a role in appetite and food intake. The study aimed to determine differences in
endocannabinoids between transitional and mature milk, of which only one was significant [6]. The
impact of these components on infant growth and development is yet to be studied.

Variability in HM composition would logically depend on maternal diet to some extent, although
few studies have been carried out in this area. Studies that attempted this difficult task have provided
conflicting results, largely due to the observational nature of the research. Two papers in this
issue demonstrated an absence of relationship between diet and macronutrients [7,8]. Similarly,
no relationships were observed between maternal dietary intakes of the micronutrients choline and
zinc and their respective HM concentrations [9]. For breastfeeding women in a population with a
high prevalence of zinc deficiency, zinc supplementation during pregnancy did not impact postnatal
maternal serum zinc levels, which likely reflect HM concentrations [10]. Relationships were noted
between diet and HM fatty acid profiles, as previously documented [8]. Interestingly, Bzikowska-Jura
et al made the observation that maternal adiposity was related to HM protein and energy content
at 3 months lactation, irrespective of diet [11]. Appropriate HM sampling methods are imperative
when examining variability of milk components. In this context, Bzikowska-Jura et al found a weak
relationship between HM fat content and maternal BMI using an intense sampling regime to account
for changes in fat over the course of 24 h. Kent et al trialed hourly expression of breast milk over 3 h (4
expressions) in an effort to estimate rates of milk fat synthesis. Unfortunately, this was not a reliable
measure when compared to 24 h milk sampling [12]. George et al has highlighted sampling as one of
the major challenges when examining milk lipids [13].

The idea of maternal-infant signaling via milk is attractive to explain both milk composition and
infant outcome variability. Maternal adiposity is related to lower lean infant mass across 12 months
of lactation [14], and while a review in the issue suggests that milk is tailored according to sex of the
infant, there is yet to be strong evidence of this in humans [15].

3. Relationships of Milk Composition with Infant Protection, Growth and Development

Historically very few milk components have been associated with infant outcomes. Two papers
in this issue highlight that the dose, rather than concentrations, of milk components are associated
with infant body composition development over the first 12 months of life. Specifically, Gridneva and
colleagues showed that the 24 h dose of appetite hormones adiponectin and whole milk leptin [16],
along with casein [17], are differentially related to the development of infant body composition. The
mechanisms by which the components exert their effects are still not clear.

Interestingly, endogenous satiety factors produced in the small intestine have been detected in
HM and have been related to infant weight gain and weight for age z scores [18]. Whilst more work
has to be done to verify the results, it is becoming increasingly clear that both the composition and
volume of milk consumed by the infant modulates growth and development.

Growth of the preterm infant is critical, as these vulnerable infants are at high risk for morbidities
both early and later in life. Whilst HM is recommended as the optimal nutrition for preterm infants,
fortification is almost universal to ensure adequate growth of those born < 33 weeks gestation. The
delivery of human milk during continuous enteral feeding therefore is an area where enhancement
may be needed to avoid the potential loss of nutrients to the infant. Zozaya et al. [19] found a reduction
in the total fat delivered to the preterm infant via continuous enteral feeding, with long chain fatty
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acids more likely to be adsorbed to the feeding tube. These losses, while statistically significant, were
considered clinically small. Once preterm infants are able to feed orally a dilemma exists about how to
feed the infant in the absence of the breastfeeding mother. Geddes et al compared breastfeeding with
use of a novel teat that required the infant to apply a vacuum and use a tongue movement mimicking
that of breastfeeding to remove milk. They observed that although the infants’ intra-oral vacuums
were lower with the teat than at the breast, more milk was transferred [20]. This finding is indicative
of the immaturity of the preterm infant’s oral motor systems and should be taken into account when
transitioning to full breastfeeding.

Many of the preterm infant’s systems are immature, in particular the gastrointestinal system. This
increases the preterm infant’s susceptibility to infection and may impact the digestion of milk and
subsequent absorption of nutrients and immune components. Indeed, Demers-Mathiew et al. [21]
have described differences in the digestion of HM immunoglobulins between the preterm and term
infant. The impacts of these findings are yet to be determined.

One of the major reasons HM feeding is recommended for preterm infants is that it markedly
decreases the risk for necrotizing enterocolitis. However, controversy exists over whether raw or
pasteurized HM should be fed to infants less than 32 weeks corrected age or less than 1500g in weight
due to the high prevalence of cytomegalovirus in the milk. Lopes et al. [22] describe the heterogeneity
in feeding practices between French neonatal units highlighting lack of consensus within the medical
field. Pasteurization of HM is of concern because it reduces the impact of several immune factors in
milk, including lactoferrin, which plays a significant role in antimicrobial and immunomodulatory
functions. Telang provided a comprehensive review of the structure and functions of lactoferrin, and
discussed the importance of continued clinical trials in determining the role of lactoferrin in prevention
of neonatal sepsis [23].

An in-depth understanding of both the complex processes that impact HM and the impact of
HM on the infant is critical to understanding lactation dysfunction, and may inform the identification
of windows of potential intervention. An understanding of physiological and clinical dilemmas in
lactation is also important.

In this context, insufficient milk supply is the most common reason for early weaning. Currently
evidence-based treatments are limited for women with low milk supply. While galactogogues are
often prescribed, the effect is modest for pharmacologic galactogogues as reviewed by Asztalos [24].
In light of this review, much more research is required to understand the causes of low milk supply
along with more controlled studies of the efficacy of galactogogues.

Low milk supply may follow delayed secretory activation, or may be associated with breast
inflammation. While both conditions are characterised by an elevated HM sodium concentration and
sodium:potassium ratio, to date there are no clinical tools available to track these complications of
lactation. Lai et al validation of handheld devices for determining sodium and potassium levels in HM
indicates these may offer a promising point of care tool for monitoring secretory activation, the onset
of mastitis and evaluation of treatment [25].

Mothers face many other barriers to successful breastfeeding, including their perceptions and
own wellbeing [26,27]. Early hospital practices can also impact lactation, including early introduction
of formula in the hospital, which was estimated at 28% in the UK [28]. The authors found many of
the factors implicated in early supplementation to be modifiable. Further early recognition of infant
feeding cues and responsive feeding is facilitated by increased mother-infant contact [29].

Finally, one must not discount the health benefits reaped by the lactating mother. The incidence
of gestational diabetes mellitus is increasing and is associated with greater maternal risk for type
2 diabetes. However, breastfeeding is associated with lower risk of maternal type 2 diabetes, and
in a new analysis maternal thyroid function also appears to be positively affected out to 6–16 years
post-partum [30].
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4. Conclusions

While HM is traditionally thought of primarily as a source of infant nutrition, evidence from
lactation research shows a diverse range of functions, including protection from infection and disease,
and programming of future health and development of both mother and infant through microbial
and hormonal signaling. Interactions between maternal endocrine and mammary function, as well as
diet, also impact milk composition and production. New evidence presented in this special edition of
Nutrients contributes to the growing body of lactation and breastfeeding research, and informs our
understanding of the complex composition of HM and its impact on infant health.

Conflicts of Interest: The authors declare no conflict of interest. Both authors receive a salary from an unrestricted
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