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Introduction: Current imaging modalities for peripheral nerves display the nerve’s

structure but not its function. Based on a nerve’s capacity for axonal transport, it

may be visualized by targeted application of a contrast agent and assessing the

distribution through radiological imaging, thus revealing a nerve’s continuity. This

concept has not been explored, however, may potentially guide the treatment of

peripheral nerve injuries. In this experimental proof-of-concept study, we tested imaging

through MRI after administering gadolinium-based contrast agents which were then

retrogradely transported.

Methods: We synthesized MRI contrast agents consisting of paramagnetic

agents and various axonal transport facilitators (HSA-DTPA-Gd, chitosan-DTPA-Gd or

PLA/HSA-DTPA-Gd). First, we measured their relaxivity values in vitro to assess their

radiological suitability. Subsequently, the sciatic nerve of 24 rats was cut and labeled

with one of the contrast agents to achieve retrograde distribution along the nerve. One

week after surgery, the spinal cords and sciatic nerves were harvested to visualize the

distribution of the respective contrast agent using 7T MRI. In vivo MRI measurements

were performed using 9.4 T MRI on the 1st, 3rd, and the 7th day after surgery. Following

radiological imaging, the concentration of gadolinium in the harvested samples was

analyzed using inductively coupled mass spectrometry (ICP-MS).

Results: All contrast agents demonstrated high relaxivity values, varying between 12.1

and 116.0 mM−1s−1. HSA-DTPA-Gd and PLA/HSA-DTPA-Gd application resulted in

signal enhancement in the vertebral canal and in the sciatic nerve in ex vivo MRI.

In vivomeasurements revealed significant signal enhancement in the sciatic nerve on the
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3rd and 7th day after HSA-DTPA-Gd and chitosan-DTPA-Gd (p < 0.05) application.

Chemical evaluation showed high gadolinium concentration in the sciatic nerve for

HSA-DTPA-Gd (5.218 ± 0.860 ng/mg) and chitosan-DTPA-Gd (4.291 ± 1.290 ng/mg).

Discussion: In this study a novel imaging approach for the evaluation of a peripheral

nerve’s integrity was implemented. The findings provide radiological and chemical

evidence of successful contrast agent uptake along the sciatic nerve and its distribution

within the spinal canal in rats. This novel concept may assist in the diagnostic process

of peripheral nerve injuries in the future.

Keywords: peripheral nerve, spinal cord, axonal transport, contrast agents, MRI, nerve injury, nerve repair

INTRODUCTION

Peripheral nerve injuries may result from traumatic events,
compressional or inflammatory pathologies and iatrogenic
injuries (1, 2). If left untreated, these lesions may manifest in
severe motor and/or sensory deficits, which cause significant
health care costs and can severely reduce a patient’s quality of life
(3–5). The therapeutic management of peripheral nerve lesions
requires detailed information about the exact localization and
extent of an injury, especially in closed traumata (6).

Generally, the diagnosis of peripheral nerve injuries
or peripheral neuropathies is based on medical history,
comprehensive clinical examination and electrophysiological
tests combined with specific imaging techniques (7). The gold-
standard for the functional analysis of nerve injuries is a detailed
clinical examination together with various neurophysiologic
tests, which, however, can have limited diagnostic value in
terms of grading the injury, especially within the first few
weeks after injury (7, 8). Imaging of nerve injuries is done
through sonography; however, this modality is limited by the
accessibility of deep nerves and potential swelling and early
hematoma. Alternatively, magnetic resonance neurography
(MNR) allows visualization of nerve tissue alterations and
anatomical disruption of peripheral nerves (9–11). However,
it is scarcely used due to limited availability of high-resolution
magnetic resonance imaging (MRI) scanners and subsequent
centers of expertise (12).

Recently, numerous experimental MRI trials in rat models
were able to demonstrate contrast enhancement in focal nerve
lesions using systemic application of different contrast agents
(13–21). These studies focused on dynamic visualization of
ongoing Wallerian degeneration or demyelination processes,
targeting macrophage transmigration based on blood-nerve
barrier leakage (14, 16, 17). This spatiotemporal contrast
enhancement does currently not provide reliable information
on nerve regeneration and axonal continuity within an injured
nerve (22).

In peripheral nerves, molecules and organelles are
physiologically carried along an axon’s entire length via
axonal transport (23, 24). This process can be studied in an
experimental setting through retrograde labeling, which is based
on the transport of fluorescent dyes from the point of application
to the nerve’s perikaryon (25, 26). Hence, successful retrograde

delivery of substances to neurons in the spinal cord or brainstem
indicate functional continuity. Today, there are no diagnostic
approaches utilizing axonal transport to assess the functional
capacity of peripheral nerves (26).

In this proof-of-concept study, we investigated a novel
approach to visualize a peripheral nerve’s functional continuity
by novel contrast agents for MRI (Figure 1). The contrast agents
were produced as macromolecular conjugates comprised of
gadolinium (Gd) chelates and specific carriers (human serum
albumin, polylactic acid (PLA) and chitosan), which allow
retrograde axonal transport (27, 28). First, the contrast agents
were tested in vitro regarding their suitability for radiological
use. This was followed by targeted, local application to the
sciatic nerve of rats and subsequent MR imaging. We present
radiological and chemical evidence demonstrating successful
uptake and retrograde transport of these novel contrast agents
along the nerve up to the vertebral cavity.

MATERIALS AND METHODS

Contrast Agents
Different carrier molecules known for their property to be
transported by the axonal cytoskeleton were selected for the
development of the Gd-based contrast agents (29). Human
serum albumin (HSA, fatty acid free, essentially globulin free,
lyophilized powder ≥ 99%, molecular weight 66 kDa); polylactic
acid (PLA, poly-D,L-lactide, molecular weight 75–120 kDa, a
biopolymer) and chitosan oligosaccharides (≥75% deacetylation
grade, molecular weight ≤ 5 kDa, Heppe Medical Chitosan
GmbH) were used in this study. A detailed synthesis protocol will
be published separately.

In vitro Measurements
The three contrast agents were diluted in phosphate-buffered-
saline (PBS) to concentrations of 0.1, 0.01, 0.001, 0.001M. A tube
with pure PBS 0.1M solution was used as a negative control.
To evaluate the relaxivity values of the contrast agents, circular
tubes (2ml) were filled with the different dilutions and placed
in an Eppendorf storage box. Measurements were performed
with a 3 Tesla whole-body MRI scanner (Magnetom PrismaFit
3T, High Field MR Center, Vienna, Austria) using a MRI knee
(birdcage type) coil with an inner diameter of 19mm. The
T1 relaxation time constants were determined with inversion
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FIGURE 1 | Study design. In total, 24 rats were used in this study. In vivo

measurements were performed in eight rats on the 1st, 3rd, and 7th day after

surgery. Ex vivo MRI measurements were performed in harvested sciatic nerve

and spinal cord samples of 16 rats on the 7th day after surgery. Afterwards, the

harvested nerve and spinal cord samples of all rats were subjected to chemical

evaluation to assess the temporospatial propagation of the contrast agents.

recovery sequences (TI)= 15, 30, 60, 100, 200, 300, 400, 500, 700,
800, 900, 1000, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900,
2000, 3000, 4000, 5000ms. The echo time (TE) was 10ms and the
repetition time (TR) was between 12,500 and 15,000ms. A field of
view (FoV) read 480mm, the FoV phase was 75%, slice thickness
was set at 1mm and the nominal flip angle was 20 degrees. Region
of interest (ROI) areas were constructed manually and placed
over the cross-sections of the circular tubes filled with the diluted
contrast agents. The longitudinal relaxation time was measured
within a ROI for each contrast agent at every concentration.
The relaxivity values were calculated using the MATLAB and
Statistics Toolbox Release 2012b, as described previously (The
MathWorks, Inc., Natick, Massachusetts, United States) (30).

Application of Contrast Agents
All animal experiments were approved by the ethics committee
of the Medical University of Vienna and the Austrian Federal

FIGURE 2 | Schematic illustration of targeted application of contrast agents to

the sciatic nerve. the sciatic nerve is exposed and transected proximal to its

trifurcation. Afterwards, the proximal stump of the sciatic nerve is inserted into

a vessel filled up with the 10 µl of the contrast agent and left there for 1 h to

allow the absorption and retrograde transport of the contract agent.

Ministry of Science and Research (reference number: BMWF-
66.009/0025-WF/V/3b/2017).

In two separate trials, a total of 24 male Sprague-
Dawley rats (Department for Laboratory Animal Science and
Genetics, Himberg, Austria) aged 8–10 weeks underwent surgical
intervention. The animals were housed with a 12-h light-dark
cycle, received standard rat chow (Fa Ssniff, Germany) and water
ad libitum. All animals received human care in compliance with
the principles of laboratory animal care as recommended by
FELASA at the Department of Biomedical Science at the Medical
University of Vienna.

Preoperative anesthesia and analgesia were performed via
intraperitoneal injection of ketamine (100 mg/kg) and xylazine
(5 mg/kg). Afterwards, all rats were anesthetized with isoflurane
(2%) via a Vaporizer (Draeger Vapor 19.3 Forane R©) and then
received a subcutaneous injection of piritramide (0.3 mg/kg) for
further analgesia.

The sciatic nerve was exposed between the superficial gluteal
and biceps femoris muscle. After identifying the sciatic nerve,
the nerve trunk was transected proximal to its trifurcation. The
proximal stump was placed into the cap of a PCR tube (0.2mL,
Eppendorf, Switzerland) filled with 10 µl of a contrast agent
solution. The proximal nerve stump remained in the contrast
agent solution for 1 h to allow sufficient uptake (Figure 2).
Afterwards, excess contrast agent was washed out with sterile
NaCl (0.9%) solution to prevent undesirable accumulation in the
surrounding tissue.

Ex vivo MRI Measurements
The physicochemical behavior of the different contrast agents in
nerve tissue was investigated in 16 rats: HSA-DTPA-Gd 0.06mM
(n=4), chitosan-DTPA-Gd 0.076mM (n = 2), PLA/HSA-DTPA-
Gd 0.13mM (n = 4), HSA-DTPA-Gd 1.72mM (n = 4) and
prohance (n= 2) as control.
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Seven days after targeted application of the contrast agent, the
animals were euthanized and tissue samples harvested. Hereby,
the proximal sciatic nerve stump was identified and carefully
dissected further proximally to where the four lumbar spinal
nerves (L3–L6) unite. Each of them was cut just distal to the
intervertebral foramen. The intact contralateral sciatic nerve
was harvested and used as control sample. The spinal cord
was exposed from segment L1 to L6 via a dorsal approach and
harvested as well. The samples were then stored at+4◦C for 24 h.
Four thawed sciatic nerves were then placed each into one of the
four chambers created by a 10ml concentric syringe’s barrel and
its cross-shaped plunger filled with 0.1M PBS solution. It was
then blocked up on both ends to prevent the nerves from drying
out. Two nerve samples were also placed in a syringe parallel
with tubes filled with prohance 25mM to compare the signal
enhancement. The spinal cords were placed into a 10ml syringe
filled with 0.1 M PBS.

Ex vivo measurements were performed using a 7 Tesla
MRI scanner (Magneton 7T, High Field MR Center, Vienna,
Austria) with a high-resolution MR-microimaging gradient
insert (maximal gradient strength 750 mT/m) and a T1 inversion
recovery (T1IR) sequence. The imaging protocol for the nerve
samples started with localizer scans followed by the inversion
recovery T1 weighted sequence (TR= 12,500ms, TE= 5.8ms, TI
= 1,500–13,000ms, 78µm in plain resolution) in the transverse
plane with a slice thickness of 1mm. The imaging protocol for
the spinal cord consisted of inversion recovery T1 weighted
sequences (TR = 16,000ms, TE = 5.8ms, TI = 100–3,500ms,
78µm in plain resolution) in the transverse and sagittal plane
with a slice thickness of 1mm. The acquisition time was
approximately 5min per inversion recovery sequence and 1 h
in total per sample. MATLAB (The MathWorks, Inc., Natick,
Massachusetts, United States) was used to calculate T1 maps via
a least squares method.

In vivo MRI Measurements
In vivo MRI measurement were performed in 8 rats. Two were
operated without using a contrast agent, as described above.
The first measurement was carried out 1 day before surgery.
Following intraoperative labeling with HSA-DTPA-Gd 0.06mM
(n = 2), PLA/HSA-DTPA-Gd 0.13mM (n = 2) and chitosan-
DTPA-Gd 0.076mM (n = 2), measurements were performed on
the 1st, 3rd, and 7th day after surgery to identify propagation of
the respective contrast agent along the nerve.

All in vivo MR scans were obtained with a 9.4 Tesla MRI
scanner (Biospec 94/30, Bruker, Ettlingen, Germany) with a
30 cm bore and a BGA12S gradient system (maximal gradient
strength 667 mT/m, 12 cm bore). All animals were anesthetized
with a gas mixture (30% oxygen and 1.5–2% isoflurane) using
a rat face mask and an isoflurane vaporizer (Vapor 19.3
Forane R©, Draeger, Luebeck, Germany) during all measurements.
No muscle relaxant was administered. The rats were placed
in a supine position on an integrated multimodal animal bed.
Furthermore, heart rate, respiratory rate and oxygen saturation
were monitored during the entire scanning procedure.

For the in vivo experiments, multi-slice T2-weighted images
were acquired for anatomical orientation using a “rapid

FIGURE 3 | Illustration of ROIs selection on coronal (A) and transverse (B)

MRI scans. The ROIs were selected for the quantitative evaluation of the signal

enhancement in the sciatic nerve exposed to the contrast agent and other

tissues. The following structures were marked: background air (red),

unaffected muscle (blue), sciatic nerve (yellow).

acquisition with relaxation enhancement” (RARE) sequence
to minimize the acquisition time. T1-weighted images were
obtained to depict the signal enhancement. The imaging protocol
was established in advance in independent experiments with
unexposed euthanized rats. The following imaging parameters
were used for the T1-weighted images: TR = 415ms, TE =

6.89ms, acquisition time = 105 s; while these parameters were
used for T2-weighted images: TR = 3,763ms, TE = 23ms,
acquisition time= 112 s. MRI scans were acquired in the sagittal,
transverse and coronal plane.

MRI scans were processed using manual ROI selection for
the sciatic nerve, spinal nerves (L5/L6), unaffected muscle tissue
and background air (Figure 3). ROIs were selected in the T1WI
scans based on the aligned T2WI scans. The signal-to-noise
ratio (SNR) was calculated in each ROI as a quotient of the
mean ROI signal intensity to the standard deviation (SD) of
the background noise (31). Signal enhancement increase due
to intraoperative contrast agent application was measured as
the percentage increase of the SNR in the nerve and muscle
tissue. Calculated signal enhancement increase was presented
as mean values and standard deviation. In this small sample
size we assumed normal distribution of our data. Furthermore,
signal enhancement increase in the sciatic nerve after contrast
agent application was compared to the native contralateral sciatic
nerve, the transected sciatic nerve without any contrast agent
application as well as to the unaffected muscle using a 2-tailed,
2-sample Student’s t-test and the significance level was set at
p= 0.05.

Chemical Evaluation
Following the MRI measurements, the nerve and spinal cord
samples were subjected to chemical analysis to assess Gd uptake
by the sciatic nerve. Excised nerves were cut into 0.5 cm
long segments (Figure 1). The Gd concentration of each nerve
segment and spinal cord was determined by ICP-MS. A detailed
description of this method will be published separately.
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TABLE 1 | List of contrast agents with their respective gadolinium concentrations

and relaxivity values.

Contrast agent Gd concentration, mM Relaxivity (r1),

mM−1 s−1

1. HSA-DTPA-Gd 0.06 96.8

2. HSA-DTPA-Gd 1.72 N/A

3. PLA/HSA-DTPA-Gd 0.13 116.0

4. Chitosan-DTPA-Gd 0.076 59.2

5. Chitosan-DTPA-Gd 3.00 12.1

RESULTS

Efficacy of the Novel Contrast Agents
The newly synthesized contrast agents were first analyzed in
vitro for their magnetic properties. The relaxivity values (r1)
of all contrast agents tested in the study are shown in Table 1.
The measured values of all contrast agents were 3–35x higher
than those of commercially available contrast agents under
similar conditions (temperature, MRI scanner) (Table 1) (30,
32). When comparing the r1 of the different novel contrast
agents with each other, PLA/HSA-DTPA-Gd (0.13mM) and
HSA-DTPA-Gd (0.06mM) had the highest value with 116.0 and
96.8 mM−1 s−1, respectively. The chitosan-based contrast agents
demonstrated high relaxivity values of 59.2 and 12.1 mM−1

s−1 corresponding to 0.076 and 3.00mM, thus also surpassing
commercially available contrast agents.

Ex vivo MRI Measurements
All three MR compounds (HSA-DTPA-Gd, chitosan-DTPA-Gd
and PLA/HSA-DTPA-Gd) showed signal enhancement in the
sciatic nerve on the 7th day after surgery. For all nerves labeled
with each of the prepared contrast agents, signal enhancement
was visible in multiple consecutive cross sections. In the control
group (n = 2), where prohance 25mM was applied, no signal
enhancement was identified along the sciatic nerve.

Spinal cord samples demonstrated a heterogeneous signal
enhancement pattern on the 7th day after surgery. Focal signal
enhancement was detected in the L4 spinal nerve at the level
of the intervertebral foramen after application of HSA-DTPA-
Gd 1.72mM (n = 4). The corresponding T1 map revealed a
T1 relaxation time of under 800ms. Circumferential and diffuse
signal alterations surrounding the spinal cord were observed
after PLA/HSA-DTPA-Gd 0.13mM (n = 2) or HSA-DTPA-
Gd 0.06mM (n = 2) application. Signal enhancement was also
identified in the L5 spinal nerve after application of PLA/HSA-
DTPA-Gd 0.13mM (n = 1). Following chitosan-DTPA-Gd
0.076mM application (n = 2), no signal enhancement could be
seen in any spinal cord sample.

In vivo MRI Measurements
First, the native spinal cord and sciatic nerve were successfully
visualized with axial and coronal T2WI sequences 1 day before
the application of contrast agents (Figure 3). Signal enhancement
was then detected in the spinal nerves on the 3rd and 7th,

however, not on the 1st day after application of chitosan-DTPA-
Gd 0.076mM (Figure 4). Signal enhancement in the sciatic nerve
(63%; 23%) increased statistically significant on the 3rd and 7th
postoperative day compared with unaffected muscle tissue (7%;
10%) and the native contralateral nerve (1%; 9%), respectively,
(p < 0.05) (Figure 5B). Signal enhancement increase was only
statistically significant on the 3rd postoperative day (2%) when
compared with the control group of rats with transected nerves
without contrast agents (p < 0.05).

The application of HSA-DTPA-Gd 0.06mM led to an
identifiable propagation of the signal enhancement along the
proximal stump of the sciatic nerve after surgery (Figure 6).
However, signal enhancement increase in the sciatic nerve
(88%) was statistically significant on the 7th postoperative day
compared with muscle tissue (2%) and the native contralateral
nerve (6%) (p < 0.05). Compared to the control group with
transected nerves, signal enhancement increase was statistically
significant on the 1st and 3rd day (34 and 19% vs. 9 and 1%) (p <

0.05) (Figure 5A).
In summary, two of the three contrast agents tested in this

trial showed signal enhancement in the sciatic nerve on the 3rd
and 7th day after surgery: chitosan-DTPA-Gd 0.076mM (n = 2)
and HSA-DTPA-Gd 0.06mM (n = 2). Application of PLA/HSA-
DTPA-Gd 0.13mM led to no detectable signal enhancement.

Chemical Analysis
The radiological evidence was further verified by chemically
assessing the temporospatial distribution of the contrast agents
along the sciatic nerves. The highest Gd concentration was
measured 1–2 cm proximal to the trifurcation of the sciatic nerve
after applying HSA-DTPA-Gd 0.06mM and chitosan-DTPA-Gd
0.076mM with 1.078 ± 0.302 ng/mg in segment N5 and 1.197
± 0.359 ng/mg in segment N4, respectively (Figure 7A). The
contrast agents showed only low Gd concentrations ranging
from 0.300 ± 0.211 to 0.990 ± 0.1743 ng/mg in the other
nerve segments. The other contrast agents (PLA/HSA-DTPA-Gd,
0.13mM and HSA-DTPA-Gd, 1.72mM) showed only low Gd
content ranging from 0.161 ± 0.029 to 0.011 ± 0.0219 ng/mg
in all nerve segments (Figure 7A). Spinal cord samples showed
negligibly low Gd concentrations for all tested contrast agents.

High Gd concentrations were measured in nerve samples
from the in vivo trial following application of HSA-DTPA-
Gd 0.06mM varying from 3.373 ± 0.053 ng/mg to 5.217 ±

0.860 ng/mg in segments N3–N6 (Figure 7B). Chitosan-DTPA-
Gd showed high Gd concentrations ranging from 4.291 ±

1.290 to 0.751 ± 0.701 ng/mg in the distal nerve segments
(N1–N3). PLA/HSA-DTPA-Gd application led to very low Gd
concentrations along the whole nerve (Figure 7B). Similar to the
ex vivo trial, no quantifiable amount of Gd was measured in the
spinal cord samples.

DISCUSSION

In this study, we present a novel approach for the visualization
of peripheral nerves of rats using macromolecular MR contrast
agents in completely new imaging setting. For the first time,
we were able to demonstrate the temporospatial propagation
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FIGURE 4 | In vivo trial of a rat’s spinal cord after application of chitosan-DTPA-Gd. Coronal MRI scans were acquired on the 1st (A), 3rd (B) and 7th (C) day after

surgery. The spinal nerve L5 is marked in red and the highest signal enhancement is identified on the 3rd day after the surgery, what corresponded with quantification

of the signal enhancement (Figure 5B).

FIGURE 5 | Quantification of signal enhancement increase in the sciatic nerve after HSA-DTPA-Gd (A) and chitosan-DTPA-Gd (B) application in various tissues. (A)

The highest signal enhancement increase (88%) in the nerve was identified on the 7th day after the application of HSA-DTPA-Gd and was statistically significant

compared to muscle (2%) and the native contralateral nerve (6%) (p < 0.05). (B) The enhancement increase was the highest (63%) on the 3rd day after application of

chitosan-DTPA-Gd and statistically significant compared with unaffected muscle tissue (7%) and the native contralateral nerve (1%) (p< 0.05). Error bars represent

standard deviation of the average values.

of a contrast agent along a rat’s sciatic nerve after targeted
intraoperative application following MRI analysis. These novel
findings allow the assessment of a nerve’s course and functional
continuity, which may aid in the evaluation of the level of a
traumatic nerve lesion as well as the regeneration process after
nerve reconstruction procedures.

Furthermore, this approach may be used in the radiological
assessment of various nerve injuries and reconstruction models
in rats. All prepared contrast agents showed superior relaxivity
values than commercially available ones, resulting in better
radiological efficacy (30). In the ex vivo trial, signal enhancement
was demonstrated along the harvested sciatic nerve on the
7th day after application of PLA/HSA-DTPA-Gd 0.13mM,
chitosan-DTPA-Gd 0.076mM and HSA-DTPA-Gd 0.06mM
when compared to nerves exposed to prohance or the native
contralateral nerves. This showed, that the conventional Gd-
based contrast agents necessitate concomitant coupling of a

specific carrier molecule to facilitate retrograde transport along
the nerve. In vivo measurements revealed signal enhancement
along the sciatic nerve on the 3rd and 7th day after
application of HSA-DTPA-Gd 0.06mM and chitosan-DTPA-
Gd. The radiological evidence was further supported by the
Gd concentrations within the sciatic nerves measured in
chemical post-mortem analyses, which suggested contrast agent
accumulation as the basis of the signal enhancement.

As outlined above, the current clinical approach for assessing
peripheral nerve injuries is based mainly on clinical and
electrophysiological examinations (33). In clinical practice,
however, many circumstances (swelling, muscles or nerves,
that are anatomically difficult to access; or early posttraumatic
phase) may reduce the reliability of such examinations (34).
Alternatively, MR neurography can be performed to detect a
nerve lesion regardless of the anatomical localization and assist
in the evaluation of postoperative outcomes (10, 35, 36). Despite
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FIGURE 6 | MRI scans of a rat in which HSA-DTPA-Gd was applied. T2WIs

(left column) were compared to the corresponding T1WIs (right column) on the

1st (A), 3rd (B) and 7th (C) day after surgery. Slight signal enhancement was

visible on the 1st day (A’, red arrow) anatomically corresponding to the sciatic

nerve in the T2WI (A, red circle). Coronal sections on the 3rd day after surgery

did not show sufficient signal enhancement (B’, red arrows). On the 7th day,

signal enhancement was shown along the proximal segment of the sciatic

nerve distal to the intervertebral foramina (C’, red arrows), which corresponded

to the anatomical course of the sciatic nerve and axonal transport of the

contrast agent (C).

its wide applicability, MR neurography is susceptible to imaging
artifacts, lacks specificity in T2WI, and, most notably, does not
provide crucial data on axonal transport and thus functional
continuity of axons (8, 37). In order to optimize signal specificity
of lesioned nerves, various studies investigated contrast agent-
enhanced MR neurography (13–21). Here, MR imaging was
performed after systemic application of Gadofluorine M in
rats with induced autoimmune neuritis, focal demyelination
processes or crush injuries of the sciatic nerve. These studies
demonstrated a correlation between Gadofluorine M-enhanced
signals and nerve regeneration progress (13, 14, 19, 20). Different
authors provided histological evidence of Gadofluorine M as
well as superparamagnetic iron oxide particles bound to myelin
debris accumulated within migrated macrophages (16, 20).
Gadofluorine M is able to infiltrate regenerating nerve tissue

due to increased permeability of the blood-nerve-barrier during
Wallerian degeneration and demyelination processes (21, 38, 39).
Therefore, signal enhancement after Gadofluorine M application
only allows the visualization of the temporospatial process
of nerve regeneration, mainly focusing on its inflammatory
components. Interestingly, the aforementioned studies could
not demonstrate signal enhancement of nerval structures after
systemic application of Gd-DTPA in rats with ligation injury
of the sciatic nerve, induced autoimmune neuritis or focal
demyelination (13, 14, 19, 20, 34). On the other hand, Gd-DTPA-
enhanced signals were demonstrated in the facial nerve following
crush injuries in humans (40). Several studies demonstrated
Gd-DTPA-enhanced signals in the median nerve of dogs and
in the sciatic nerves of rats after crush injury (18, 21). These
discrepancies may be explained by the different animal models,
nerve injury mechanisms as well as MR imaging protocols. To
prevent discrepancies in this novel proof-of-concept imaging
approach, we did not use systemic administration of the contrast
agent but used a well-established approach for retrograde axonal
tracing of fluorescent dyes in the rat’s sciatic nerve.

In this study we focused on the axonal transport as
a driving force for contrast agents (41). Numerous factors
influence transport direction and speed, yet we assume
that for macromolecular contrast agents such as protein or
polysaccharide-based compounds it is mainly their molecular
structure and net charge (41). Therefore, we tested both larger
(HSA-PLA-DTPA-Gd having a molecular weight over 200 kDa
and an average nanoparticle size of about 163 nm; HSA-DTPA-
Gdwith∼78 kDa) and smaller (5 kDa chitosan, oligosaccharides)
compounds as contrast agents for peripheral nerve imaging.
We assume that the observed signal enhancement in the sciatic
nerves on the third day after surgery in case of chitosan-DTPA-
Gd and with HSA-DTPA-Gd on the seventh day is due to the
different spreading velocities of these compounds or their cargo-
complexes within the nerve.

Other novel diagnostic tools such as diffusion tensor imaging
aim at delivering information about a nerve’s functional integrity
by distinguishing between its myelin sheath and axons (37).
This imaging tool was further supported by experimental trials
demonstrating a correlation between DTI-derived information
and histological data of injured nerves (42, 43), as well as
clinical trials comparing electrophysiological data with DTI-
derived information in healthy patients (44) and patients with
neuropathic changes (45). The major issue with interpreting
DTI-derived tractography data to investigate a nerve’s functional
continuity lies in extrapolating data from water molecule
movement in the extracellular space of peripheral nerve lesions.
However, this only represents an indirect representation of
axonal transport and subsequently nerve anatomy and function
(46). Moreover, the integration of DTI into the routine clinical
practice of MR neurography is limited by the scarce technical
availability and high demand on resources (37).

In this study, contrast agents were successfully transported
along the sciatic nerve, but no signal enhancement or chemical
evidence were detected within the spinal cord (Figure 7). Ex vivo
MRI scans showed a diffuse signal enhancement pattern within
the vertebral cavity after application of HSA-DTPA-Gd and
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FIGURE 7 | Chemical evaluation of Gadolinium concentration in the sciatic nerve and spinal cord from the ex vivo (A) and in vivo (B) trials. The nerve was cut into

50mm segments, as indicated in the Figure 1, N1 corresponds to the most distal segment of the sciatic nerve, N2–N6 are more proximal segments of the nerve, N7,

N8, and N9 correspond to the L6, L5, and L4 spinal nerves, respectively. Highest Gadolinium concertation (ng/mg) (1.078 ± 0.302 ng/mg in segment N5 and 1.197 ±

0.359 ng/mg in segment N4) was identified in ex vivo trial after application of HSA-DTPA-Gd 0.06mM and chitosan-DTPA-Gd 0.076mM, respectively (A). In in vivo

trial the highest Gadolinium concentration was identified after application of HSA-DTPA-Gd 0.06mM (3.373 ± 0.053 to 5.217 ± 0.860 ng/mg in segments N3–N6)

(B). The Gadolinium concentration in in the spinal cord (SC) was negligibly low in all rats. High Gadolinium concentration along the sciatic nerve indicated successful

uptake and propagation of contrast agents.

PLA/HSA-DTPA-Gd. The circumferential signal enhancement
distribution around the spinal cord suggests an accumulation
of contrast agents within the cerebrospinal fluid (CSF). As
mentioned before, this may be explained by a disruption of
the blood-nerve-barrier following nerve injury (21, 38, 39).
Moreover, the multifocal appearance of contrast agents within
the CSF may be explained by a communicating pathway,
the so-called meningeal lip, between a peripheral nerve and
the subarachnoid space, which was extensively described by
Himango et al. in the rat model (47). This pathway may
explain how the contrast agents in our study reached the
CSF. Our findings correspond with a study by Chen et al.,
which demonstrated convection-enhanced transport of Gd-
DTPA-albumin along the sciatic nerve into the CSF (48)
using convection-enhanced delivery. In our study, we achieved
equivalent results using an alternative delivery mechanism.
Notably, we utilized passive delivery without exerting pressure
on the sciatic nerve to infuse higher volumes (12–47µl) of
Gd-DTPA-albumin into it. Passive transport of contrast agents
may present a more gentle, precise and efficient delivery
method, preventing leakage from spinal nerves or damaged
connective tissue of the nerve. Overall, the true nature of
the transport mechanism remains unclear. According to Chen
et al., Gd-DTPA-albumin was considered to be transported
by convection and diffusion mechanisms using convection-
enhanced delivery (48).

A limitation of this proof-of-concept study is the small sample
size of the trial with different contrast agents. Nevertheless, the
statistically significant data from the in vivo trial still highlighted
successful transport of contrast agents. MRI measurements
were performed within 1 week on the 1st, 3rd, and 7th day
after contrast agent application. Measurements done beyond
1 week may provide additional insights into the dynamics of
contrast agent propagation in future studies. Additionally, future

studies may investigate imaging of other nerve injury types (e.g.,
traction or crush injury) or to evaluate the success of surgical
reconstruction. In this regard, intramuscular or intradermal
application of contrast agents may also be interesting to evaluate
the connection between muscles or skin and their innervating
nerves (25). Thus, we assume our novel imaging modality may
be used to visualize all types of peripheral nerves (sensory,
motor or mixed) and different nerve injury types using less
traumatic application of contrast agents (e.g., intramuscular,
intraneural or epineural application). Thus, it is essential to
conduct further trials with bigger sample size to investigate
the transport mechanism behind our novel approach and long-
term outcomes.

In this study we established for the first time a novel
MRI imaging modality for peripheral nerves using retrograde
transport of contrast agents along the nerve. This novel approach
to contrast agent delivery along peripheral nerves has a wide
spectrum of potential experimental and clinical applications.
Using this approach, one may be able to determine functional
continuity of peripheral nerves after injury or reconstruction.
Therefore, it could be applied in various experimental models
for nerve regeneration. Since imaging modalities for peripheral
nerve lesions are limited, visualization of functional integrity of
axonal transport using MRI may be a useful tool to diagnose and
precisely localize nerve lesions. Moreover, retrograde transport
of our molecular complexes up to the CSF may provide a
targeted drug deliverymechanism for neurodegenerative diseases
or traumatic nerve injuries.
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