Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Amino-1,3-thiazolium dihydrogen phosphate

Irena Matulková, ${ }^{\mathbf{a}, \mathrm{b} *}$ Jaroslav Cihelka, ${ }^{\mathbf{b}}$ Ivan Němec, ${ }^{\text {a }}$ Michaela Pojarováb ${ }^{\text {and Michal Dušek }}{ }^{\text {b }}$
${ }^{\text {a }}$ Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic, and ${ }^{\text {b }}$ Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague 8, Czech Republic
Correspondence e-mail: irena.mat@atlas.cz

Received 7 November 2011; accepted 18 November 2011
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.027 ; w R$ factor $=0.070 ;$ data-to-parameter ratio $=14.2$.

In the title compound, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, the dihydrogen phosphate anions form infinite chains along [001] via short $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The 2-aminothiazolium cations interconnect these chains into a three-dimensional network by short linear or bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For metal complexes of 2-aminothiazole and its derivatives used in medicine, see: De et al. (2008); Aridoss et al. (2009); Cukurovali et al. (2006); Franklin et al. (2008); Li et al. (2009); Alexandru et al. (2010); Mura et al. (2005). For the use of 2aminothiazole in the decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2006, 2007); Takeuchi et al. (2007). For uses of 2-aminothiazole and its derivatives as anticorrosive films, see: Ciftci et al. (2011); Solmaz (2011). For non-linear optical properties and for structural properties of closely related compounds, see: Yesilel et al. (2008); Matulková et al. (2007, 2008, 2011a,b).

Experimental

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$b=9.8826(2) \AA$
$M_{r}=198.14$	$c=8.2794(1) \AA$
Monoclinic, $P 2^{\AA} / c$	$\beta=90.680(2)^{\circ}$
$a=9.7581(2) \AA$	$V=798.37(2) \AA^{3}$

$$
\begin{array}{ll}
Z=4 & T=120 \mathrm{~K} \\
\mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } & 0.47 \times 0.17 \times 0.13 \mathrm{~mm}
\end{array}
$$

$\mu=5.35 \mathrm{~mm}^{-1}$

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)
$T_{\min }=0.453, T_{\max }=1.000$
7670 measured reflections 1419 independent reflections 1389 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad 100$ parameters
$w R\left(F^{2}\right)=0.070 \quad$ H-atom parameters constrained
$S=1.07$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{\AA} \AA^{-3}$
1419 reflections

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 2^{\text {i }}$	0.87	1.96	2.815 (2)	167
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{O} 1^{\text {ii }}$	0.80	2.31	3.076 (2)	162
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.80	2.56	3.194 (2)	137
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{O} 3^{\text {i }}$	0.99	1.73	2.726 (2)	175
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1 \cdots \mathrm{O} 2^{\text {iii }}$	0.90	1.61	2.504 (2)	176
$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{O} 3^{\text {iv }}$	0.94	1.65	2.593 (2)	179
$\mathrm{C} 2-\mathrm{H} 1 \mathrm{C} 2 \cdots \mathrm{O} 4^{v}$	0.93	2.40	3.268 (2)	155

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (v) $-x+2,-y+1,-z$.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of the Longterm Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857), the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2339).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Alexandru, M.-G., Velikovic, T. C., Jitaru, I., Grguric-Sipka, S. \& Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639-645.

Aridoss, G., Amirthaganesan, S., Kim, M. S., Kim, J. T. \& Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 4199-4210.
Ciftci, H., Testereci, H. N. \& Oktem, Z. (2011). Polym. Bull. 66, 747-760.
Cristante, V. M., Araujo, A. B., Jorge, S. M. A., Florentino, A. O., Valente, J. S. P. \& Padilha, P. M. (2006). J. Braz. Chem. Soc. 17, 453-457.

Cristante, V. M., Jorge, S. M. A., Valente, J. P. S., Saeki, M. J., Florentino, A. O. \& Padilha, P. M. (2007). Thin Solid Films, 515, 5334-5340.
Cukurovali, A., Yilmaz, I., Gur, S. \& Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.
De, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. \& Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215-223.

Franklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. \& Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129-134.

Li, J., Du, J., Xia, L., Liu, H., Yao, X. \& Liu, M. (2009). Anal. Chim. Acta, 631, 29-39.
Matulková, I., Císařová, I. \& Němec, I. (2011a). Acta Cryst. E67, o18-o19.
Matulková, I., Němec, I., Cihelka, J., Pojarová, M. \& Dušek, M. (2011b). Acta Cryst. E67, o3216-o3217.
Matulková, I., Němec, I., Císařová, I., Němec, P. \& Mička, Z. (2007). J. Mol. Struct. 834-836, 328-335.
Matulková, I., Němec, I., Teubner, K., Němec, P. \& Mička, Z. (2008). J. Mol. Struct. 837, 46-60.

Mura, P., Piccioli, F., Gabbiani, C., Camalli, M. \& Messori, L. (2005). Inorg. Chem. 44, 4897-4899.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Solmaz, R. (2011). Progr. Org. Coat. 70, 122-126.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Takeuchi, R. M., Santos, A. L., Padilha, P. M. \& Stradiotto, N. R. (2007). Talanta, 71, 771-777.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yesilel, O. Y., Odabaşoğlu, M. \& Büyükgüngör, O. (2008). J. Mol. Struct. 874, 151-158.

supplementary materials

2-Amino-1,3-thiazolium dihydrogen phosphate

I. Matulková, J. Cihelka, I. Nemec, M. Pojarová and M. Dusek

Comment

2-Aminothiazole and its derivatives have been investigated as potential compounds for the modification of TiO_{2} or SiO_{2} particles used for the sorption and photocatalytic reduction of $\mathrm{Hg}(\mathrm{II})$ (Cristante et al., 2006) or phenol (Cristante et al., 2007) in aqueous solutions. 2-Aminothiazole can be also used for electrode modification (Ciftci et al., 2011; Solmaz, 2011) or for the detection of metal impurities (Takeuchi et al., 2007) in ethanol fuel.

Metal complexes of 2-aminothiazole and its derivatives have been studied for treatment of Alzheimers disease (Li et al., 2009), antitumor activity (Alexandru et al., 2010), and activity against leukemia (Mura et al., 2005). Thiazole derivatives have been used as antioxidants (De et al., 2008), antibacterial drugs (Aridoss et al., 2009) and fungicides (Cukurovali et al., 2006). Anti-inflammatory, analgesic and antipyretic activities were observed for thiazolyl and benzothiazolyl derivatives (Franklin et al., 2008).

Only one salt, bis(2-aminothiazolium) squarate dihydrate (Yesilel et al., 2008), was studied in detail for the extensive system of hydrogen bonds, which are very attractive not only in the biological and biochemical processes but also in the field of material and supramolecular chemistry.

The title salt was prepared during the research motivated by the study of salts or cocrystals of the highly related aminotriazoles (Matulková et al., 2011a, 2008, 2007) and 2-aminothiazole (Matulková et al., 2011b), while searching for materials with potential non-linear optical properties. Unfortunately, the title salt, 2-aminothiazolium dihydrogen phosphate (Fig. 1), crystallizes in the monoclinic system in the centrosymmetric space group $P 2_{1} / c$, which excludes the existence of the second order non-linear optical properties. The crystal structure of the title compound is based on chains of anions interconnected via two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with donor-acceptor distances 2.504 (2) and 2.596 (2) Å. Chains are interconnected by 2-aminothiazolium (1+) cations via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(2.728$ (2)-3.202 (3) \AA) and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (3.271 (3) \AA) hydrogen bond interactions into a three-dimensional network. Each cation interacts with three anionic chains by means of two linear hydrogen bonds towards one of the chains, one linear hydrogen bond to another chain and one bifurcated hydrogen bond to the third chain (Fig. 3). The anionic chains are oriented along the axis c (see Fig. 2).

Experimental

Crystals of the title compound were obtained from a solution of 1.0 g of 2 -aminothiazole (97%, Aldrich) and 0.67 ml of phosphoric acid (85%, Lachema) in 200 ml of water. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in vacuum desiccator over KOH.

supplementary materials

Refinement

H atoms attached to C atoms were calculated in geometrically idealized positions, $\mathrm{Csp} p^{2}-\mathrm{H}=0.93 \AA$. The positions of H atoms attached to O and N atoms were localized in difference Fourier maps. All hydrogen atoms were constrained to ride on their parent atoms during refinement, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (pivot atom).

Figures

Fig. 1. The molecular structure of 2-aminothiazolium dihydrogen phosphate. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing scheme of the anions in the crystals of 2-aminothiazolium dihydrogen phosphate (projection to $a c$ plane). Dashed lines indicate the hydrogen bonds.

2-Amino-1,3-thiazolium dihydrogen phosphate

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
$M_{r}=198.14$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.7581$ (2) \AA
$b=9.8826$ (2) \AA
$c=8.2794(1) \AA$
$\beta=90.680(2)^{\circ}$
$V=798.37(2) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=408 \\
& D_{\mathrm{x}}=1.648 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.5418 \AA \\
& \text { Cell parameters from } 6931 \text { reflections } \\
& \theta=4.5-66.8^{\circ} \\
& \mu=5.35 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Plate, colourless } \\
& 0.47 \times 0.17 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer
Radiation source: Enhance Ultra (Cu) X-ray Source mirror
Detector resolution: 10.3874 pixels mm^{-1}
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
$T_{\text {min }}=0.453, T_{\text {max }}=1.000$
7670 measured reflections

1419 independent reflections
1389 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=66.9^{\circ}, \theta_{\text {min }}=4.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-9 \rightarrow 7$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.070$
$S=1.07$
1419 reflections
100 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0339 P)^{2}+0.5451 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.30$ e \AA^{-3}
$\Delta \rho_{\min }=-0.37 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. The hydrogen atoms were be localized from the difference Fourier map. Despite of that, all hydrogen atoms connected to C were constrained to ideal positions. The distance in $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ groups were left unrestrained. The isotropic temperature parameters of hydrogen atoms were calculated as $1.2 * U_{\text {eq }}$ of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.66442(17)$	$0.80237(17)$	$0.1326(2)$	$0.0234(4)$
C2	$0.85753(17)$	$0.75229(19)$	$-0.0086(2)$	$0.0283(4)$
H1C2	0.9367	0.7716	-0.0657	0.034^{*}

C3	$0.81429(18)$	$0.62710(18)$	$0.0206(2)$	$0.0301(4)$
H1C3	0.8591	0.5492	-0.0132	0.036^{*}
N1	$0.57066(15)$	$0.87839(15)$	$0.20091(19)$	$0.0303(4)$
H1N1	0.5829	0.9648	0.2168	0.036^{*}
H2N1	0.5099	0.8487	0.2540	0.036^{*}
N2	$0.77265(14)$	$0.85134(15)$	$0.05485(17)$	$0.0237(3)$
H1N2	0.7837	0.9509	0.0454	0.028^{*}
O1	$0.66404(15)$	$0.33219(15)$	$0.06047(15)$	$0.0400(4)$
H1O1	0.6636	0.3367	-0.0481	0.048^{*}
O2	$0.65458(14)$	$0.14664(14)$	$0.25914(15)$	$0.0338(3)$
O3	$0.80601(12)$	$0.12283(11)$	$0.01267(14)$	$0.0243(3)$
O4	$0.87030(12)$	$0.28418(13)$	$0.23071(15)$	$0.0301(3)$
H1O4	0.8469	0.3189	0.3326	0.036^{*}
P1	$0.74805(4)$	$0.21447(4)$	$0.14002(5)$	$0.02120(14)$
S1	$0.66311(4)$	$0.62775(4)$	$0.13014(5)$	$0.02763(15)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0219(8)$	$0.0251(9)$	$0.0234(9)$	$-0.0034(6)$	$0.0016(6)$	$-0.0005(6)$
C2	$0.0210(8)$	$0.0331(9)$	$0.0310(9)$	$0.0010(7)$	$0.0049(7)$	$-0.0035(8)$
C3	$0.0220(9)$	$0.0288(10)$	$0.0398(10)$	$0.0024(7)$	$0.0051(7)$	$-0.0049(7)$
N1	$0.0277(8)$	$0.0262(8)$	$0.0373(9)$	$-0.0053(6)$	$0.0157(7)$	$-0.0039(6)$
N2	$0.0216(7)$	$0.0245(7)$	$0.0250(7)$	$-0.0023(5)$	$0.0050(5)$	$-0.0015(6)$
O1	$0.0515(9)$	$0.0436(8)$	$0.0247(7)$	$0.0265(7)$	$-0.0028(6)$	$-0.0091(6)$
O2	$0.0347(7)$	$0.0371(7)$	$0.0300(7)$	$-0.0138(6)$	$0.0155(5)$	$-0.0113(6)$
O3	$0.0287(6)$	$0.0216(6)$	$0.0227(6)$	$0.0031(5)$	$0.0089(5)$	$0.0001(4)$
O4	$0.0228(6)$	$0.0444(8)$	$0.0231(6)$	$-0.0071(5)$	$0.0070(5)$	$-0.0071(5)$
P1	$0.0201(2)$	$0.0230(2)$	$0.0207(2)$	$0.00071(15)$	$0.00549(16)$	$-0.00254(15)$
S1	$0.0252(2)$	$0.0228(2)$	$0.0351(3)$	$-0.00293(15)$	$0.00515(18)$	$-0.00053(16)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.317(2)$	$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1$	0.7980
$\mathrm{C} 1-\mathrm{N} 2$	$1.334(2)$	$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	0.9934
$\mathrm{C} 1-\mathrm{S} 1$	$1.726(2)$	$\mathrm{O} 1-\mathrm{P} 1$	$1.564(1)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.330(3)$	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1$	0.8996
$\mathrm{C} 2-\mathrm{N} 2$	$1.389(2)$	$\mathrm{O} 2-\mathrm{P} 1$	$1.508(1)$
$\mathrm{C} 2-\mathrm{H} 1 \mathrm{C} 2$	0.9300	$\mathrm{O} 3-\mathrm{P} 1$	$1.505(1)$
$\mathrm{C} 3-\mathrm{S} 1$	$1.741(2)$	$\mathrm{O} 4-\mathrm{P} 1$	$1.562(1)$
$\mathrm{C} 3-\mathrm{H} 1 \mathrm{C} 3$	0.9300	$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4$	0.9413
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} 1$	0.8718		
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{N} 2$	$123.9(2)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$113.9(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$124.79(13)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	119.0
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{S} 1$	$111.3(2)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	127.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	$113.3(2)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1$	117.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 1 \mathrm{C} 2$	123.4	$\mathrm{P} 1-\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4$	113.5
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{H} 1 \mathrm{C} 2$	123.4	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	$115.19(7)$

sup-4

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$111.3(1)$	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	$108.11(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 1 \mathrm{C} 3$	124.3	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	$110.24(7)$
$\mathrm{S} 1-\mathrm{C} 3-\mathrm{H} 1 \mathrm{C} 3$	124.3	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	$110.61(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	121.9	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	$106.73(8)$
C1-N1-H2N1	123.4	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 1$	$105.54(8)$
H1N1-N1-H2N1	112.3	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 3$	$90.21(8)$

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.87	1.96	$2.815(2)$	167
$\mathrm{~N} 1 — \mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.80	2.31	$3.076(2)$	162
$\mathrm{~N} 1 — \mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	0.80	2.56	$3.194(2)$	137
$\mathrm{~N} 2 — \mathrm{H} 1 \mathrm{~N} 2 \cdots 3^{\mathrm{i}}$	0.99	1.73	$2.726(2)$	175
$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{O} 1 \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.90	1.61	$2.504(2)$	176
$\mathrm{O} 4 — \mathrm{H} 1 \mathrm{O} 4 \cdots 3^{\mathrm{iv}}$	0.94	1.65	$2.593(2)$	179
$\mathrm{C} 2 — \mathrm{H} 1 \mathrm{C} 2 \cdots 4^{\mathrm{v}}$	0.93	2.40	$3.268(2)$	155

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, y+1 / 2,-z+1 / 2$; (iii) $x,-y+1 / 2, z-1 / 2$; (iv) $x,-y+1 / 2, z+1 / 2$; (v) $-x+2,-y+1,-z$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

