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Abstract 

Background:  The dengue epidemic in Guangzhou has imposed a rising burden on society and health infrastructure. 
Here, we present the genotype data for dengue virus serotype 2 (DENV-2) to improve understanding of this dengue 
epidemic.

Methods:  We sequenced the envelope gene of DENV-2 obtained from patient serum samples and subsequently 
performed maximum-likelihood phylogenetic analysis using PhyMLv3.1, maximum clade credibility analysis using 
BEAST v.1.10.4, and selection pressure analysis using Datamonkey 2.0.

Results:  The prevalent DENV-2 strains identified in Guangzhou region are related to those in Southeast Asian coun-
tries. In particular, the Malaysia/Indian subcontinent genotype is prevailing in Guangzhou with no apparent genotype 
shift having occurred over the past 20 years. However, episodic positive selection was detected at one site.

Conclusions:  Local control of the DENV-2 epidemic in Guangzhou requires effective measures to prevent and 
monitor imported cases. Moreover, the shift between the Malaysia/Indian subcontinent genotype lineages, which 
originated at different time points, may account for the rise in DENV-2 cases in Guangzhou. Meanwhile, the low rate 
of dengue haemorrhagic fever in Guangzhou may be explained by the dominance of the less virulent Malaysia/Indian 
subcontinent genotype.
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Background
Dengue is caused by infection with dengue virus (DENV), 
which is a member of the genus Flavivirus, family Flavi-
viridae. Approximately 96 million dengue infections were 
estimated globally in 2010, of which 70% were in Asia  [1]. 
The clinical manifestations of dengue range from mild 
fever, known as dengue fever, to lethal forms of dengue 
haemorrhagic fever (DHF) and dengue shock syndrome 
(DSS). No effective vaccines or drugs against DENV have 

been developed to date, despite some vaccines avail-
able are important to decreases hospitalization for severe 
cases. Therefore, prevention strategies, such as avoiding 
additional mosquito bites, cleaning vector breeding sites, 
and use of pesticides, are the primary methods employed 
to control dengue infection.

There are four serotypes of DENV, namely, dengue 
virus serotype 1–4 (DENV-1–4). Each serotype can be 
farther divided into several genotypes based on phyloge-
netic analysis. The envelope of DENV plays a significant 
role during infection. DENV particles bind to host cell 
through envelope receptors. However, this attachment 
can be prevented via binding of antibodies specific for 
the envelope protein. Meanwhile, to avoiding antibody 
neutralisation, the env gene exhibits a high mutation rate. 
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Indeed, the env gene is widely used to classify viruses into 
genetic groups (“genotypes”) within serotypes  [2].

Guangzhou, located at 113°E, 23°N, is an important 
external city of China. With a population of 12 mil-
lion, Guangzhou has borne a heavy burden of dengue 
for nearly 40  years since it was first recorded in 1978. 
In fact, 59,334 dengue cases were reported in mainland 
China from 2005 to 2015 [3], of which 39,325 cases were 
reported in Guangzhou (66.28%).

Over the past 2 decades, the dengue epidemic in 
Guangzhou was dominated by dengue virus serotype 
1 (DENV-1) [4, 5]. However, DENV-2 has also been 
detected and associated with outbreaks in various com-
munities. DENV-2 reportedly exhibits greater potential 
to cause DHF/DSS and is more readily transmitted than 
the other three serotypes. In fact, secondary infection 
with DENV-2 after the first heterotypic infection is more 
likely to result in DHF/DSS than secondary infection of 
the other three serotypes [6]. Therefore, with the preva-
lence of DENV-1in Guangzhou, the spread of DENV-2 
may increase the risk of DHF/DSS outbreaks. Further-
more, a specific genotype may have the propensity to 
cause DHF/DSS and be transmitted efficiently by vectors 
[7, 8]. Therefore, it is necessary to closely monitor the 
genetic diversity and genotype variations of DENV-2 to 
better understand the dengue epidemic in Guangzhou.

To this end, we analysed serum samples of patients 
suspected of being infected with dengue that had been 
sent to the Guangzhou Center for Disease Control and 
Prevention from 2001 to 2020. We believe that phyloge-
netic analysis of the DENV-2 strains present throughout 
Guangzhou during this time period will provide critical 
insights to scientists and public health officials tasked 
with prevention and control of dengue.

Methods
Sample collection
Serum samples were obtained from suspected patients 
presenting with symptoms suggestive of dengue, such 
as sudden high fever with headache, arthralgia, and/or 
myalgia, according to diagnosis for dengue fever promul-
gated by the National Health Commission of the People’s 
Republic of China [9].

Virus isolation and sequencing
The serum samples were analysed by reverse transcrip-
tion-quantitative polymerase chain reaction (RT-qPCR) 
using a dengue virus RT-qPCR kit (Jiangsu BioPerfectus 
Technologies Co., Ltd., China).

Samples from 2001to 2018 that tested positive by RT-
qPCR were diluted 1:50 in RPMI-1640 medium (Life 
Technologies Corporation, Grand Island, NY, USA). 
Aedes albopictus cloneC6/36(ATCC  CRL-1660) cell 

monolayers (Cell Bank of the Chinese Academy of Sci-
ences, Shanghai, China) were inoculated with the diluted 
samples and incubated at 28 °C. Supernatants of cultures 
with cytopathic effects (CPE) observed within 7  days 
were harvested for further sequencing. Supernatants of 
cell cultures with no CPE were added to new C6/36 mon-
olayers. Inoculated cells without CPE after three genera-
tions were considered negative for DENV isolation.

In 2019 and 2020, to improve sequence quality and 
fidelity, RNA extracted from serum samples was analysed 
via RT-qPCR and direct sequencing of the envelope gene 
without virus isolation, as recommended by Leitmeyer 
et al.  [10]. Therefore, more sequences were acquired in 
2019 than in other years.

Viral RNA was extracted from the supernatants of cell 
cultures (2001–2018) or sera of patients (2019–2020) 
using the QIAamp Viral RNA Mini kit (Qiagen, Ger-
many) according to the manufacturer’s instructions. 
Nucleotides from positions 937 to 2376 of the DENV-2 
coding envelope gene were amplified using the Super-
Script III One-Step RT–PCR System with Platinum Taq 
DNA polymerase (Invitrogen, USA). The sense primer 
was 5ʹ-CCA​GGC​TTT​ACC​ATA​ATG​GC-3ʹ and the anti-
sense primer was 5ʹ-CCA​GCT​GCA​CAA​CGC​AAC​
CAC-3ʹ. The reaction was initiated at 50  °C for 30  min, 
followed by denaturation at 94  °C for 2  min; 40 cycles 
of denaturation at 94  °C for 30  s, primer annealing at 
52 °C for 30 s, primer extension at 72 °C for 2 min, and a 
final extension step at 72 °C for 7 min. The product was 
sequenced using Sanger sequencing.

Phylogenetic and molecular clock analysis
The maximum-likelihood phylogenetic tree of the 
obtained envelope sequences acquired in Guangzhou, 
along with the reference sequences retrieved from Gen-
Bank, was constructed using PhyML v3.1 [11]. The 
substitution model was determined by SMART model 
selection of the Bayesian information criterion [12]. 
The fast likelihood-based method of eBayes was applied 
owing to the large number of sequences. Genotypes were 
grouped according to the criteria defined by Rico-Hesse 
[2].

A maximum clade credibility (MCC) tree was con-
structed for the same sequences using BEAST v.1.10.4. 
The detected date for each sequence was used as the 
calibration date. The tree was visualised using Bayesian 
Evolutionary Analysis Utility (BEAUti) with the follow-
ing settings: substitution model, GTR; base frequencies, 
estimated; site heterogeneity model, gamma + invariant 
sites; number of gamma categories, 4; clock type, uncor-
related relaxed clock; tree model, random starting tree; 
length of chain, 100,000,000; echo state to screen every 
10,000; and log parameters every 10,000. The results of 
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both the maximum-likelihood and MCC phylogenetic 
trees were visualised and edited using FigTree.

Selection pressure analysis
Episodic adaptive selection was evaluated using the 
Mixed Effects Model of Evolution (MEME) algorithm 
implemented by Datamonkey 2.0 [13]. A positive selec-
tion signature for each site was determined when the β+ 
parameter, representing the rate of nonsynonymous sub-
stitutions (dN), was greater than α, representing the rate 
of synonymous substitutions (dS).

Results
A total of 37,431 serum samples from suspected patients 
from 2001 to 2020 were sent to the lab at the Guangzhou 
Center for Disease Control and Prevention for RT-qPCR 
screening. A total of 2942 positive samples were identi-
fied. From these samples, 1003 sequences were obtained, 
comprising 754 DENV-1,  148 DENV-2, 63  DENV-
3, and 38 DENV-4. Table  1 summarises the DENV-2 
cases detected by RT-qPCR in the serum samples of 
patients suspected to have dengue from 2001 to 2020. 
There were 416 cases of DENV-2 infection, comprising 
373 domestic cases (89.66%) and 43 (10.34%) imported 
cases. Cases from Southeast Asian countries constituted 
83.72% (n = 36) of imported cases. Before 2010, only one 
DENV-2 infection was detected in 2005. Since 2010, 
DENV-2 infections have been detected each year.

Over the 20  years, 148 DENV-2 envelope gene 
sequences (1440 bp) were obtained from isolated strains 
or sera of patients in Guangzhou. All sequences were 
deposited in GenBank. The phylogenetic tree shown 
in Fig. 1 was constructed based on these 148 sequences 
detected in Guangzhou and 56 sequences downloaded 
from GenBank. Most of the sequences (n = 142, 95.95%) 
identified from 2001 to 2020 in Guangzhou belonged to 
the Malaysia/Indian subcontinent genotype, while only 
six sequences (4.05%) clustered in the Southeast Asia 
genotype. No American genotype or West African geno-
type was detected throughout the study period.

The Malaysia/Indian subcontinent genotype can be fur-
ther divided into several lineages: GZ1, GZ2, GZ3, GZ4, 
and GZ5. The sequences acquired in 2005, 2010, and 
2013 all belonged to lineage GZ4; thereafter, a shift was 
observed to lineage GZ5 in 2014. Moreover, nine subspe-
cies were detected in 2015, three of which (33.33%) clus-
tered in lineage GZ2, while the remaining six (66.67%) 
clustered in lineage GZ5. Thereafter, most sequences 
belonged to lineage GZ5; however, a few were scattered 
among the GZ1, GZ2, GZ3, and GZ4 lineages.

When several identical sequences were detected in 
the same year, one was retained as a representative for 
constructing the MCC tree (Fig. 2). This tree was based 

on 80 sequences obtained in Guangzhou along with 53 
sequences retrieved from GenBank. All of the Malaysia/
Indian subcontinent genotype strains shared an ancestor 
in 1955. However, the various lineages of this genotype 
manifested different introduction times. Lineage GZ5, 
which was the most prevalent, emerged in 1995 and com-
prised sequences from 2014 to 2019.

Positive selection of the envelope gene for line-
age GZ5was analysed using MEME. The sequences of 
Guangzhou were compared with those of the reference 
sequence DQ518635 isolated from Malaysia in 2003. Epi-
sodic positive selection was detected at one site, codon 
position 364, with β+ = 2160.36, α = 0.00, P = 0.06. Addi-
tionally, molecular characterisation identified two amino 
acid differences (E329D and I439V) in all sequences 
from the Guangzhou isolates in comparison with the 
DQ518635 sequence from Malaysia in 2003.

Discussion
Over the last century, DENV-2 epidemics were reported 
in 1986, 1987, 1988, and 1993 in Guangzhou [14, 15], 
thereafter, they have subsided. However, our findings 
indicate that DENV-2 has been spreading throughout 
Guangzhou from 2001 to 2020. Although no DENV-2 
infection was detected prior to 2005, the number of 
annual DENV-2 cases continued to increase between 
2010 and 2018. We also determined that the percent-
age of DENV-2 domestic cases increased from 80.95 to 
95.31% between 2015 and 2018, reaching a peak in both 
number and percentage in 2018. Thereafter, the num-
ber and percentage of domestic cases declined slightly 
in 2019 but remained the second highest compared to 
those in previous years. Moreover, a sharp decrease in 
DENV-2 cases occurred in 2020, which might be related 
to the quarantine imposed due to the coronavirus dis-
ease 2019 outbreak [16]. That is, limiting imported cases 
with the quarantine may have controlled the local den-
gue epidemic, highlighting the relevance of monitoring 
imported cases for local control.

The DENV-2 epidemic in Guangzhou is greatly 
impacted by Southeast Asian countries. In fact, our 
epidemiological investigation revealed that 83.72% of 
DENV-2 imported cases, most of which were returning 
travellers, originated from Southeast Asian countries. 
The results of a BLAST search in GenBank and the phy-
logenetic tree (Fig. 1) further revealed that the DENV-2 
strains sequenced in Guangzhou were closely related to 
those in Southeast Asian countries, which was similar 
to the characteristic of dengue epidemics involving the 
other three serotypes in Guangzhou [4, 17, 18]. Indeed, 
the World Health Organization statistics revealed that 
infections in Southeast Asian countries account for half 
of the global dengue burden. Meanwhile, from 2015 to 
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Fig. 1  Maximum-likelihood midpoint rooted phylogenetic tree of DENV-2 envelope sequences from Guangzhou and reference sequences. 
Guangzhou sequences (n = 148) are identified according to the accession number, isolated year, and lab number. Reference sequences (n = 56) 
from GenBank (marked with a triangle) are identified using the accession number, country, and year. Bootstrap support, with > 75%, is shown next 
to the branches. Different colours present different genotypes
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2019, dengue cases in Southeast Asia increased by 46% 
(from 451,442 to 658,301) [19]. China not only contigu-
ous with Southeast Asian countries, but also is farther 
connected by economic ties. Moreover, with the open-
ing of private travel abroad, the number of travellers to 
Southeast Asian countries has steadily increased [20–22]. 
This situation is not unique to China, as the spread of 
dengue viruses by travellers has become a global issue  
[23]. Therefore, better preparation is needed, with strict 
regulations, to prevent the spread of infection when trav-
elling in endemic areas. For example, a convenient and 
rapid method for screening viremia that can be applied at 
customs may help curb the import and spread of DENV.

The Malaysia/Indian subcontinent genotype was 
responsible for the epidemic in Guangzhou. As displayed 
in the phylogenetic tree in Fig.  1, this genotype, shown 
in yellow, constitutes 95.95% (142 sequences) of the total 
148 DENV-2 sequences. Meanwhile only six sequences 
of the Southeast Asia genotype were detected. Moreover, 
no genotype shift in the Malaysia/Indian subcontinent 
genotype was observed over the 20-year study period. 
The most recent common ancestor of all Malaysia/Indian 
subcontinent strains was estimated to have appeared in 
1955. However, when dividing the Malaysia/Indian sub-
continent genotype into its different lineages, a shift from 
lineage GZ4 to GZ5, was observed between 2013 and 
2014, which coincided with a rising number of DENV-2 
cases since 2014. Although there is no clear relationship 
between lineage and virulence in DENV, outbreaks, lim-
ited circulation, and spreading related to shifts in lineages 
have been reported [24–27]. Substitutions in the enve-
lope gene that may result in maturation and activation 
of macrophages, with consequent enhancement of the 
immune response characterised by increased production 
of cytokines, are considered to be likely causes of the pre-
vailing differences among lineages. Meanwhile, positive 
selection analysis of the GZ5 lineage by MEME exhib-
ited signs of directional selection, which may contribute 
to the prevalence of GZ5. However, further research is 
needed to confirm whether this lineage shift is responsi-
ble for the rise in cases.

With the prevalence of the Malaysia/Indian subcon-
tinent genotype in Guangzhou, the relatively low rate 
of DHF/DSS suggests that this genotype may be less 
virulent. Secondary infection with DENV-2 after infec-
tion with heterotypic DENV is believed to be associ-
ated with an increased risk of DHF/DSS [6]. However, 
with the DENV-1epidemic in Guangzhou persisting for 
more than 20  years and the rising number of DENV-2 
cases [4, 5], the incidence of DHF/DSS remained rela-
tively low compared with the global incidence and that 
of Southeast Asian countries [28–31]. Another study 
revealed that secondary infection with the American 

genotype of DENV-2 failed to cause DHF/DSS  [32], 
whereas other extensive studies indicated that the South-
east Asian genotype was more efficient at infection and 
was also more likely to cause DHF/DSS  [7, 8, 32, 33]. 
Of the 148 sequences detected in Guangzhou, only six 
(4.05%) belonged to the Southeast Asia genotype, four of 
which were identified from imported cases. This revealed 
that the Southeast Asia genotype was rare in Guang-
zhou, which may explain the low incidence of DHF/DSS. 
Meanwhile, the prevailing Malaysia/Indian subconti-
nent genotype has a limited capacity for leading to DHF/
DSS. However, further studies are needed to determine 
whether the incidence of DHF/DSS is low in other areas, 
with an epidemic dominated by the Malaysia/Indian sub-
continent genotype. Determining the critical differences 
between genotypes and host immune mechanisms that 
may enhance the pathogenesis of genotypes might pro-
vide new insights to advance the current understanding 
regarding the mechanism of DHF/DSS.

The DENV-2 epidemic in Guangzhou was complex. 
Specifically, the MCC tree in Fig.  2 revealed that the 
Guangzhou strains originated from different time peri-
ods, indicating various evolution and dissemination 
paths. Strains that clustered into lineage GZ5 shared 
the eldest ancestor in 1995, whereas strains belonging to 
lineage GZ1 emerged in 2016. Meanwhile, the domestic 
and foreign strains of lineage GZ2 detected in 2014 and 
2016 shared the same ancestor in 2012. The strain then 
evolved during 2014 and 2016 in Guangzhou and spread 
not only in China but also throughout Thailand and Viet-
nam. However, within the same year, the strains may have 
also be distributed in different lineages; for example, the 
sequences from isolates obtained in 2018 were distrib-
uted among lineages GZ1, GZ3, GZ4 and GZ5. This co-
epidemic of different lineages showing different origins 
has complicated the epidemic situation in Guangzhou.

Conclusions
Our study has investigated the epidemiology of DENV-2 
and shed light on epidemiologic impact of the Malaysia/
Indian subcontinent genotype and its different lineages, 
in Guangzhou, an important dengue circulation city in 
China. In particular, the increase in DENV-2 cases may 
be due to an observed lineage shift. Taken together, our 
study findings suggest that global cooperation is required 
to curb the spread of dengue.
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